Bastien Cazaux
email: cazaux@lirmm.fr

Eric Rivals
email: rivals@lirmm.fr

A linear time algorithm for Shortest Cyclic Cover of Strings

Merging words according to their overlap yields a superstring. This basic operation allows to infer long strings from a collection of short pieces, as in genome assembly. To capture a maximum of overlaps, the goal is to infer the shortest superstring of a set of input words. The Shortest Cyclic Cover of Strings (SCCS) problem asks, instead of a single linear superstring, for a set of cyclic strings that contain the words as substrings and whose sum of lengths is minimal. SCCS is used as a crucial step in polynomial time approximation algorithms for the notably hard Shortest Superstring problem, but it is solved in cubic time. The cyclic strings are then cut and merged to build a linear superstring. SCCS can also be solved by a greedy algorithm. Here, we propose a linear time algorithm for solving SCCS based on a Eulerian graph that captures all greedy solutions in linear space. Because the graph is Eulerian, this algorithm can also find a greedy solution of SCCS with the least number of cyclic strings. This has implications for solving certain instances of the Shortest linear or cyclic Superstring problems.

Introduction

The possibility of merging two words into a longer one according to their overlap -for instance merging abcde with cdeba into abcdeba -allows to infer the sequence of a target molecule from the short reads produced by sequencing machines. In computer science, merging results in a superstring of the input words. The action of merging is heavily used in any genome assembler (although not necessarily on the complete reads, sometimes only on substrings of the reads) and given the redundancy of the sequencing, which yields a high density of reads, the objective is to compute a shortest superstring of a set of input words [START_REF] Gusfield | Algorithms on Strings, Trees and Sequences[END_REF]. In bioinformatics, the task of genome assembly is worsened by the inaccuracy of the sequencing and by the structure of the genome which contains repeated sequences [START_REF] Gusfield | Algorithms on Strings, Trees and Sequences[END_REF]. However, progresses on the model question, called Shortest (linear) Superstring Problem (SLiS), still shed light on the difficulty of assembly. Moreover, the target molecule can be a linear or a circular structure. It is also interesting to address the question of the Shortest Cyclic Superstring (SCyS). Finding superstrings also has application in data compression. Indeed, as a superstring represents a condensed representation of the initial language, it can serve as a compressed version of the input set.

Let P := {s 1 , . . . , s |P | } be a set of input words and denote the sum of their lengths by ||P ||, i.e. the norm of P . Without loss of generality, we always assume that P is factor free, i.e. for any two strings of P , none is a substring of the other. From the computational viewpoint, finding a shortest superstring is known to be hard to solve (NP-hard even on a binary alphabet) and to approximate (Max-SNP hard) [START_REF] Gallant | On finding minimal length superstrings[END_REF][START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. The research in the last 25 years has mainly focused on polynomial time approximation algorithms for SLiS (see [START_REF] Golovnev | Approximating Shortest Superstring Problem Using de Bruijn Graphs[END_REF] for a recent list). Despite these efforts, the algorithm greedy (Algorithm 1), an algorithm that iteratively updates the input set by merging two maximally overlapping strings until one string is left, was conjectured to approximate the shortest superstring with ratio 2 [START_REF] Tarhio | A greedy approximation algorithm for constructing shortest common superstrings[END_REF][START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. This is better than most known algorithms, and the conjecture is still valid. The question of approximating the superstring can be reformulated on a complete weighted digraph, the so-called distance graph: each input word is a vertex and an arc encodes the directional merging of the two words. The weight of an arc from u to v equals the length of the prefix of u that is not covered by the overlap of v (e.g., the corresponding prefix of abcde to cdeba is ab, and the weight would be 2). Then a shortest linear superstring is associated with a Hamiltonian path on this graph, and a shortest cyclic superstring with a Hamiltonian cycle [START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. Yet those problems are also hard to approximate and most approximation algorithms for SLiS resort to a relaxed question, namely Shortest Cyclic Cover of Strings (SCCS). These algorithms solve SCCS by computing a minimum assignment on the distance graph in O(||P ||+|P |

3) [START_REF] Papadimitriou | Combinatorial optimization : algorithms and complexity[END_REF], and then transform the cycles into cyclic strings. Our work focuses on SCCS. We propose an algorithm that uses only linear time in ||P ||, and for this sake introduce the superstring graph, which captures all solutions of greedy for SCCS (see Sections 4 and 3). These greedy solutions are called greedy superstrings. Exploring the graph properties, we show that it gives, for a subset of instances of the shortest linear and cyclic superstring problems, interesting approximations or even exact solutions (Section 4).

Notation and problem definition

For any rooted tree T , V T is the set of nodes of T . For a node v of V T , Children T (v) is the set of children of v in T . We denote by [i, j] the set of integers between i and j.

We consider two kinds of strings: linear and cyclic strings (see Figures 1a and1b). For a string s, the length of s is |s|. For a linear string s and i ≤ j in [1, |s|], s[i, j] is the linear substring of s beginning at the position i and ending at the position j, s[i] is the substring s[i, i], s [1, j] is a prefix of s and s[i, |s|] is a suffix of s. A prefix (or suffix) s of s is proper if s is different of s. For another linear string t, the overlap from s to t, denoted by ov(s, t), is the longest substring which is a proper suffix of s and a proper prefix of t. The prefix from s to t, denoted by pr(s, t), is such that s = pr(s, t)ov(s, t). The merge of s with t is the linear word pr(s, t)t if s = t, and the cyclic word pr(s, t) otherwise. A linear superstring of a set P of linear strings is a linear string w such that each string of P is a substring of w. We say that a linear string w is a substring of a cyclic string c if there exists w c a linear permutation of c such that w is a substring of w ∞ c (where w ∞ c = w c w c . . .) -see Figure 1c. A cyclic cover of P is a set C of cyclic strings such that each linear string of P is a substring of a cyclic string of C.

We define the following problem:

Problem 1 (Shortest Cyclic Cover of Strings)

Input: A set of linear strings P .

Output: A cyclic cover C of P that minimises ||C||.

Let σ be a permutation of {1, . . . , |P |}, we can split up σ in cyclic permutations: σ = σ 1 • . . . • σ m . For each cyclic permutation σ i of length n i , we denote the cyclic string by: 2: Running example with the input set P := {ababb, aab, abba, abaa}. Instance of a cyclic cover of P obtained with a permutation σ. We obtain the cyclic cover P (σ) = {ababba, aba} (ababba and aba are cyclic words). and, P (σ) = {P (σ 1), . . . , P (σ m)} (See Figure 2).

P (σ i) = pr(s σi(1) , s σi(2)) . . . pr(s σi(ni-1) , s σi(ni)) pr(s σi(ni) , s σi(1)
It is easy to see, that for each permutation σ of {1, . . . , |P |}, P (σ) is a cyclic cover of P and for each optimal solution w of Problem 1 (SCCS), there exists σ a permutation of {1, . . . , |P |} such that w = P (σ).

Related works

Let us briefly recall some crucial works in the study of shortest superstrings and of Shortest Cyclic Cover of Strings.

Since SLiS does not admit a PTAS, numerous works on SLiS have reported polynomial time approximation algorithms with a constant ratio ranging from 4 to > 2 (see [START_REF] Golovnev | Approximating Shortest Superstring Problem Using de Bruijn Graphs[END_REF]Table 1]). A majority of these model SLiS as a minimum weight Hamiltonian path problem on the distance graph G of P (where an arc (s i , s j) is weighted by |pr(s i , s j)| for any valid i, j). Note that if instead it is weighted by |ov(s i , s j)|, we obtain the Overlap Graph, and SLiS becomes equivalent to finding a maximum weight Hamiltonian path [START_REF] Blum | Linear approximation of shortest superstrings[END_REF]. Clearly, the weight of a cyclic cover of G (i.e., the sum of the weight of all cycles) is lower than that of a Hamiltonian cycle, which itself gives a lower bound of the weight of a Hamiltonian path on G. Hence, most algorithms rely on solving SCCS, which is polynomial. Blum et al. [START_REF] Blum | Linear approximation of shortest superstrings[END_REF] were the first to exhibit such an algorithm and to prove that it achieves a constant ratio of 3 for SLiS. This algorithm first solves SCCS and in a second step combines the cyclic strings by running a greedy algorithm on them. Teng and Yao improved this ratio by an algorithm that recursively solves SCCS [START_REF] Teng | Approximating shortest superstrings[END_REF]. After that, many authors have investigated the combinatorial properties of words and of some specific cycles, which enabled them to further improve the approximation (e.g. [START_REF] Breslauer | Rotations of periodic strings and short superstrings[END_REF][START_REF] Mucha | Lyndon words and short superstrings[END_REF][START_REF] Paluch | Better Approximation Algorithms for Maximum Asymmetric Traveling Salesman and Shortest Superstring[END_REF]), but all need to solve SCCS. To do so, they compute a Minimum Assignment on the distance graph. An assignment (or cyclic cover) of a digraph G is a set of cycles such that every vertex of G belongs to exactly one cycle. To solve SCCS on an instance P , approximation algorithms for SLiS first) time and space using the Generalised Suffix Tree (GST) of P [START_REF] Gusfield | An efficient algorithm for the all pairs suffix-prefix problem[END_REF], then 2/ compute a minimum cyclic cover using the Hungarian algorithm in O(|P |

3) time [START_REF] Papadimitriou | Combinatorial optimization : algorithms and complexity[END_REF]. Once the cyclic cover is known, the algorithm in [START_REF] Teng | Approximating shortest superstrings[END_REF] also requires to compute a particular assignment called a canonical assignment, which takes an additional O(||P ||) using the suffix tree based algorithm of [START_REF] Gusfield | Faster implementation of a shortest superstring approximation[END_REF]. However, the complexity bottleneck of algorithms using a cyclic cover remains the O(||P || + |P |

3) time to build the graph and compute the cover. It was also shown that greedy (Algorithm 1) solves SCCS exactly [START_REF] Cazaux | Approximation of greedy algorithms for max-atsp, maximal compression, maximal cycle cover, and shortest cyclic cover of strings[END_REF]. To the best of our knowledge, there is currently no linear time algorithm for solving SCCS.

Theorem 1 ([6]

) For Shortest Cyclic Cover of Strings, Algorithm greedy yields an optimal solution.

Explanations about Algorithm greedy

An overlap is said to be greedy-feasible if a greedy solution takes it. Let u 1 , u 2 , v 1 and v 2 be four strings. We say that the overlaps ov(u 1 , u 2) and ov(v 1 , v 2) are dependent if and only if u 1 = v 1 or u 2 = v 2 . When Algorithm greedy merges u with v, it chooses the overlap between u and v and forbids any overlap beginning by u and ending by v, i.e. it forbids all overlaps that are dependent of ov(u, v). We say that a set of overlaps is independent if each overlap is not dependent of another.

Thus, Algorithm greedy makes a series of choices to select a sequence of greedy-feasible and independent overlaps:

• In the first step of the Algorithm greedy chooses an overlap among the longest overlaps.

• In the second step, it chooses an overlap among the longest overlaps which are independent of the first overlap.

• At each further step, it takes a maximum overlap that is independent of the previously selected overlaps.

• In the end, it outputs a set of overlaps that are maximal (for the inclusion as a base in a matroid). This set of overlaps is independent.

As the set of overlaps at the end of greedy is maximal, there exists a permutation σ of {1, . . . , |P |}, such that for all i in {1, . . . , |P |}, ov(s i , s σ(i)) is an overlap of our set of overlaps. Thus, we obtain the following property which is similar at a well-known property on the solution of the greedy algorithm for SLiS [START_REF] Vassilevska | Explicit inapproximability bounds for the shortest superstring problem[END_REF]Def. of Induced(π, S) and Def. The suffix tree of a word w is a data structure that indexes all substrings of w. Each arc is labelled with a substring of w such the concatenation of the labels along a branch from the root to a leaf spells out a suffix of w. A constraint requires that the labels of arcs from a node to its offspring start with different symbols. Thus, each node represents a prefix of a suffix, i.e. a substring of w. In fact, each internal node is the longest common prefix of all leaves in its subtree. Traversing an arc extends the represented string on its right. The word depth of a node is the length of the string it represents. An example of (generalised) suffix tree is shown on Figure 3: the sole suffix tree structure is displayed on Figure 3a. For instance, the node 2 represents the string aa. Going from node 3 to node 1 extends the string represented by a b to yield the string aab.

ST are equipped with additional arcs called Suffix Links (SL): a SL links a node representing au (with a a letter and u a string) to the node representing u. Let us label the SL by the letter a. The notion of SL is usually restricted to internal nodes, but it extends naturally to leaves. We consider that each node has its SL. Traversing a SL removes the first letter of the word: it shortens the represented word at the front. To each SL, we associate a label, which is the letter it removes. For instance, in Figure 3, traversing the SL of node 1 shortens the word aab to ab, which is the string represented by node 2 . The label of that SL is a (labels of SL are not represented in this figure). It is known that, if SLs are reversed (considered in the other direction), they form a tree rooted in the root of the ST, and all leaves are on the same branch of this tree [START_REF] Cazaux | Reverse engineering of compact suffix trees and links: A novel algorithm[END_REF]. Note that the chain of SL starting from any node goes up to the root of T (For simplicity, assume the root has a SL to itself). In the tree composed by the suffix links is displayed on Figure 3b. Moreover, in the figures, the SL are drawn as an arc from a child to its parent in L (See Figure 3).

For simplicity, we say that a suffix tree arc is blue, while SL are red. So, we have the blue tree, denoted T , and the red tree, denoted L, on the same nodes.

The GST generalises this principle to several words. From now on, the generalised suffix tree of P is the pair (T, L). An extensive introduction to GST and their applications can be found in [START_REF] Gusfield | Algorithms on Strings, Trees and Sequences[END_REF]. The distinction between explicit and implicit nodes is skipped here, but explained in [START_REF] Gusfield | Algorithms on Strings, Trees and Sequences[END_REF][START_REF] Breslauer | On suffix extensions in suffix trees[END_REF].

Overlaps

Basically, all suffixes and all substrings of words of P are represented in the GST. If a word u overlaps a word v, then a suffix of u equals to a prefix of v. Hence, one expects the overlap to be represented somewhere in the GST. Indeed, if an internal node representing the suffix of u appears on the branch spelling v, then u overlaps v. This internal node exists since this substring occurs at least twice (in u and in v), and represents the overlap. Let us call such node an overlap node from u to v. In our representation, the internal node is labelled with the starting position of that suffix in u on the branch leading the leaf of v. For example, in Figure 3 the node 2 is located on the branch of 1 . It is also on the branches of 1 and 1 . It represents the string ab. So we know that aab overlaps abba, abaa and ababb, with the overlap ab.

Clearly, all overlap nodes from u to v are ancestors of another. Moreover, the word depth of an overlap node gives the length of the corresponding overlap. Hence, the maximum overlap between two words is the deepest overlap node of those words. For instance, both nodes 4 and 3 are ancestors of 1 meaning that abaa overlaps aab with two possible overlaps: a and aa, of length 1 and 2 respectively.

All these notions are known. Indeed, it is known that one can compute efficiently all overlaps for each pair of words in P using the GST of P . In fact, one usually computes pairwise the maximum overlaps for P [START_REF] Gusfield | An efficient algorithm for the all pairs suffix-prefix problem[END_REF], to build the prefix or the overlap graph of P (as mentioned in introduction).

27th June 2014 5 LIRMM (a) the tree T , which is the basic structure of the suffix tree -in blue arcs, and (b) L, the tree made by the suffix links of T -in red arcs. Square nodes represent words that occur as a suffix of some input word, circle nodes are the other nodes of T . Each square node stores its positions of occurrences in S; for simplicity, we display the starting position as a number and the word of S in which it occurs as its colour, instead of showing the list of pairs (i, j). The square node labelled by a red 2, which represents the string ab, means that this string occurs as the suffix starting at position 2 in the red word aab. A square node labelled with a 1 represents an input word.

Merge and Red-Blue Paths

Above the overlap node was defined only using T ; the SL (hence L) were not involved. Let us now give an alternative definition using T and L.

If u overlaps v, then a suffix of u equals a prefix of v. We have seen that the overlaps is a node on the branch spelling v. We can also find this precise suffix of u starting at the node representing u by following enough suffix links. This means going up in the red tree from the node u. Hence, one sees that an overlap node from u to v is an ancestor of u in L (the red tree), and an ancestor of v in T (the blue tree). We obtain an alternative definition: an overlap node from u to v is a red ancestor of u and a blue ancestor of v. For simplicity, let us say it is a red-blue ancestor of the ordered pair (u, v). Now, we see that the maximum overlap of (u, v) is the lowest red-blue ancestor of (u, v). Also, if the red path reaches the root, then the overlap is the empty word (and their merge is simply their concatenation).

In other words, any overlap for a pair (u, v) corresponds to a Red-Blue path from u to v in (T, L).

The merge of u and v using their maximum overlap ov(u, v) is the word w := pr(u, v)ov(u, v)su(u, v), where u := pr(u, v)ov(u, v) and v := ov(u, v)su(u, v). We state this definition with the maximum overlap, but it is valid with any overlap; the larger the overlap, the shorter the merge. We denote by Pathuv the Red-Blue path which corresponds to the maximum overlap between u and v.

Assume we want to spell out the (linear) merge of u and v using the overlap node w in (T, L). It can be done in three steps:

1. traverse T from the root to u: this spells out u with the labels of blue arcs; 2. go up L from u to w following the red arcs: it is possible since w is a red ancestor of u (here we skip one by one all letters of pr(u, v))

3. go down T from w to v using blue arcs, which is possible since v is a descendant of w; this spells out su(u, v).

A merge of (u, v) is a linear superstring of {u, v}. The process above can be generalised to spell out any cyclic superstring of a cyclic permutation of words (w 1 , w 2 , . . . , w n) using some given pairwise overlaps: one starts from the node representing w 1 , then performs steps 2 and 3 using the appropriate Red-Blue path from w 1 to w 2 to merge them, then iterates only steps 2 and 3 for each following word until one reaches w 1 again. This circuit on the GST is called a Red-Blue circuit.

Example 1 For instance in Figure 3, the Red-Blue circuit corresponding to the cyclic merge of the words ababb, abba, and then aab in this order, contains three Red-Blue paths: for the pairs (ababb, abba), (abba, aab) and then for (aab, ababb). This circuit starts at node 1 goes up with SL to node 2 and then 3 which is a red-blue ancestor of (ababb, abba), then goes down with blue arcs to 1 . This is the Red-Blue path for (ababb, abba), which spells out ab with the SL labels. Then the circuit goes up with SL to 2 , 3 , and 4 , which is an ancestor of 1 . This spells out abb with SL labels. Then, it goes down to 1 . This makes up the Red-Blue path for (abba, aab). Then, the circuit goes up to 2 , which is an ancestor of 1 ; this spells out a with one red label. Then, it goes down and back to 1 , which was the starting node. Altogether the sequence of red labels spells out ababba, while the sequence of blue labels yields aababb: both write the same cyclic word.

Now, let us state a more subtle property. For a Red-Blue circuit, writing all blue labels in order or writing all red labels in order spell out the same superstring (a red label is a label of a SL). Hence, the number of blue arcs is smaller than the number of red arcs, which is the superstring length. A proof of a slightly different version of this property can be found in [5, Section 4.3 on p. 18].

The Superstring Graph

Here, we are going to show that the choices made by Algorithm greedy for SCCS are not really choices. In fact, we will show that each greedy solution can be represented by a unique graph embedded in the Generalised Suffix Tree. As this graph turns out to be computable in linear time, one can derive a greedy solution for SCCS in linear time.

27th June 2014 7 LIRMM

u 1 v 1 v 2 u 2 l k k (a) on the strings u 1 v 1 v 2 k k u 2 k (b) in the Overlap Graph u 1 v 1 v 2 u 2 l k -k (c) in the Superstring Graph G P ()

Equivalence of greedy solutions

Let w be a greedy solution of SCCS. By Proposition 2, there exists a permutation σ such that w = P (σ). For each cyclic permutation σ i of σ, we denote by c(σ i) the Red-Blue circuit obtained from σ i in the GST.

We denote by G P (σ) = (V, R, B) the directed multigraph built with the arcs of the Red-Blue paths of all the c(σ i), where R denotes the set of Red arcs, and B denotes the set of Blue arcs of all the c(σ i).

A graph is said to be Eulerian, if there exists a Eulerian path on this graph, i.e. a path that visits each arc of the graph exactly once. As G P (σ) is a collection of Red-Blue circuits, which are made of Red-Blue paths, each connected component of G P (σ) is Eulerian. (With each additional circuit, the graph remains Eulerian.)

For each permutation of {1, . . . , |P |}, we can build the corresponding multigraph G P (). We have the following proposition.

Proposition 3 Let w 1 and w 2 be two greedy solutions of SCCS and let σ 1 and σ 2 be their respective permutations of {1, . . . , |P |}. Then G P (σ 1) = G P (σ 2).

Proof 1 (Idea of the proof) Let w = P (σ) be a greedy solution of SCCS. Let us show that the choices made by Algorithm greedy for SCCS do not influence G P (σ). Clearly, independent overlaps do not influence the graph. So, let us focus on dependent overlaps, because they are the shear choices made by greedy.

Let ov(u 1 , v 1 ,) and ov(u 1 , v 2 ,) be two dependent and greedy-feasible overlaps. Assume that ov(u 1 , v 1 ,) is the overlap choosen by greedy to obtain w, thus there exists u 2 in P such that ov(u 2 , v 2 ,) is the overlap choosen by greedy to obtain w. By the definition of greedy, we have that |ov(u

1 , v 1 ,) | ≥ |ov(u 2 , v 2 ,) |. Let us show that there exits a Red-Blue path from u 2 to v 1 in G P (σ). As |ov(u 1 , v 1 ,) | ≥ |ov(u 2 , v 2 ,) |, we have that ov(u 2 , v 2 ,) is a prefix of ov(u 1 , v 2 ,)
, and thus a prefix of ov(u 1 , v 1 ,). Hence in the GST, the node ov(u 2 , v 2 ,) is an ancestor of ov(u 1 , v 1 ,), and ov(u 1 , v 1 ,) is a node in the Red-Blue paths from u 1 to v 1 and from u 2 to v 2 . Thus, we have both Red-Blue paths from u 1 to v 2 and from u 2 to v 1 are in G P (σ) (see Figure 4). By Proposition 3, the graph G P () represents all the solutions of the greedy algorithm for SCCS. We called this graph, the Superstring Graph of P , and denote it by G P . An example of Superstring Graph for P := {abb, bbb, bbc} is shown in Figure 6.

27th June 2014 8 LIRMM

To sum up, we know that for each greedy solution w, there exists a permutation of {1, . . . , |P |} that can be translated into a set of Red-Blue circuits, c(w) = {c 1 (w), . . . , c m (w)}. Remember that each Red-Blue circuit is made by chaining Red-Blue paths. Let c be a multi-cycle of G. We say that c covers G P if each arc of G P is included in a single cycle of c. By Proposition 3, for each greedy solution w we have that c(w) covers G P .

By the following proposition, we have that each multi-cycle that covers G comes from a greedy solution.

Proposition 4 {multi-cycle p | p covers G P } = {c(w) | w is a greedy solution}.

To prove Proposition 4, we first need a lemma. A crossing in G P is a node that has red in-and out-going arcs and blue in-and out-going arcs.

Lemma 5 (Absence of crossing) G P does not contain any crossing.

Proof 2 (Lemma 5) It is enough to see that the only nodes that can have a red out-going arc and a blue in-going arc correspond to the words of P . But if v ∈ P , v is a leaf in T and in L by Definition of the GST, and thus v has neither a blue arc going out, nor a red arc going in.

Proof 3 (of Proposition 4) To understand this equality, it is sufficient to note that there is a relation between choosing the longest overlap in greedy and the absence of crossing in G P .

Proof of ⊆. Let us show {multi-cycle p | p covers G P } ⊆ {c(w) | w is a greedy solution} by contraposition. Assume that there exists a multi-cycle p covering G P and there does not exist a greedy solution w of P such that p = c(w). Then, there exist four nodes v 1 , v 2 , v 3 and v 4 in P such that |ov(v 1 , v 2)| < |ov(v 3 , v 4)|, and such that both P ath(v 1 , v 4) and P ath(v 2 , v 3) are in p. Hence, the node ov(v 3 , v 4) is a crossing in G P . As there does not exist any crossing in G P (Lemma 5), we obtain a contradiction, and get {multi-cycle p | p covers G P } ⊆ {c(w) | w is a greedy solution}.

Proof of ⊇.

Reciprocally, assume that there exists a greedy solution w of P and there does not exist a multi-cycle p that covers G P such that p = c(w). Thus, there exists an arc of c(w) which is not an arc of G P . Among those arcs, let e = (u, v) be the one with the deepest node (i.e. longest word) v in T . By the definition of G P , e belongs to R (i.e. is a red arc), because it is the deepest of its kind. Let v 1 and v 2 be the nodes of P such that e belongs to P ath(v 1 , v 2). As e is not in G P , for each u in P such that P ath(v 1 , u) is in G P , u = v 2 . Thus, there exists v 4 in P such that

P ath(v 1 , v 4) is in G P and |ov(v 1 , v 2)| < |ov(v 1 , v 4)|.
As w is a greedy solution of P , there exists v 3 in P and not in

G P such that P ath(v 3 , v 4) is in c(w) and |ov(v 1 , v 4)| ≤ |ov(v 3 , v 4)|.
Thus, there exists an arc in c(w) that is not in G P with a deeper extremity than e. This contradicts our hypothesis and we get {c(w) | w is a greedy solution} ⊆ {multi-cycle p | p covers G P }.

Characterisation of the Superstring Graph and a construction algorithm

Now, we are going to characterise the Superstring Graph and give a linear time algorithm to build it from a set of words. For this algorithm, we define and compute weights (respectively n() and d()) for the red and for the blue arcs of the GST. Finally, the SG will be composed of those arcs having a strictly positive weight (and of the nodes visited by them).

As greedy selects overlaps in order of decreasing length, one can see it as a recursive algorithm that progresses along the branches of the GST of P . On the GST, greedy progresses from the leaves toward the root, i.e. in order of decreasing word depth of the nodes. Let us use this recursive side of greedy to explain the Superstring Graph.

Let v a node of the GST, when greedy sees the overlaps of length |v|, it has already considered overlaps of larger lengths. We define two weights n() and d() such that: 27th June 2014 9 LIRMM

• n(v) is the number of strings of P which have v as suffix and are not merged on their right with another string of P with a larger overlap.

• d(v) is the number of strings of P which have v as prefix and are not been merged on their left with another string of P with a larger overlap.

In other words, n(v) is the number of leafs of the subtree of v in L that are not yet merged on their right, and d(v) is the number of leafs of the subtree of v in T that have not yet been merged on their left. First, it can be seen easily seen that a node v which has no other leaf both in its subtrees in L and in T , is a string of P . Thus, for these nodes we set,

n(v) = d(v) := 1.
For the other nodes, we use the recursion of greedy. In fact, we can determine how many strings of P have not yet been merged with another string by looking the weights n() and d() of the children of v in L and of its children in T (see Figure 5).

Let a(v) be the difference between the sum of the n(u) of the children u of v in L and the sum of the d(u) of the children u of v in T :

a(v) := u ∈ Children L (v) n(u) - u ∈ Children T (v) d(u).
Hence, the absolute value of a(v) is the largest number of strings of P that we can merge with another strings of P with the overlap v by greedy. With a(v), we can calculate n(v) and d(v): With this recursive definition of the weights n() and d(), we can construct the Superstring Graph from the GST of P . Whenever the weight of an arc of the GST is equal to 0, this arc does not belong to the Superstring Graph. Similarly, if for a node, say v, all of its in-going and out-going arcs have a zero weight, v is isolated and is not included in the Superstring Graph -this corresponds to the subset U in Definition 1 (which states another definition of the Superstring Graph). Algorithm 2, on its third line (in blue), computes a cyclic cover of G P . This requires to perform a random choice when facing two alternative out-going arcs. Clearly, the combination of all possible successive choices allows to produce all possible cyclic covers of G P . Certain choices will generate a solution containing several cycles to cover one connected component (see Figure 6b), although it is always possible to cover one connected component with a single cycle (see Figure 6c). Thus, any two cyclic covers may differ in their number of cycles, i.e. in their cardinality. This gives rise naturally to a new question, to a new variant of SCCS, which we define below. Algorithm 3: The Superstring Graph algorithm for SCCS Figure 7: An instance with an optimal solution that is not a solution of greedy for SCCS (however, the solution of the SG is also optimal). Let P = {abec, bed, cf abe, dgab}. (Top) the generalised suffix tree, (middle) the SG, and (bottom) an optimal solution of SCCS that consists in single cycle, while the SG has two components. it is a greedy solution it solves Problem 2. We obtain Theorem 7. The minimisation of the number of cyclic strings by Algorithm 3 is illustrated in Figure 6.

If a(v) ≥ 0, we have n(v) := a d(v) := 0, if a(v) < 0, we have n(v) := 0 d(v) := -a. t w v 1 v 2 u 1 u 2 n(v) n (u 1) n (u 2) d (v) d (v 1) d (v2) v
Theorem 7 Algorithm 3 solves Problem 2 in linear time.

Proof 5 As the connected components of the Superstring Graph are Eulerian, this is done in linear time and space in the size of G P . By Proposition 4, a label of a Eulerian multi-cycle of G P is an optimal solution for the Problem 2.

Remark: Although for SCCS, all solutions of greedy are optimal, some optimal solutions are not output by greedy. Thus, the question of finding a shortest cyclic cover with a minimum number of elements is not solved by the Algorithm 3 (see a counter example in Figure 7).

Consequences of the topology of the Superstring Graph

The characterisation of the SG can also be applied to solve or approximate the "classical" shortest superstring problem (SLiS -for Shortest Linear Superstring), in which the solution is a linear superstring, as well as its variant where the solution is a single cyclic word (SCyS -for Shortest Cyclic Superstring). Let w OP T (SLiS) , respectively w OP T (SCyS) , denote an optimal solution for SLiS, resp. for SCyS. Let w a greedy solution for SCCS, we have: |w| ≤ w OP T (SCyS) ≤ w OP T (SLiS) . If the SG is connected, then w is a cyclic superstring of P , i.e. a solution of SCyS. By the above relation, it is an optimal solution for SCyS. Now, from this cyclic superstring, we can easily derive a linear superstring of P . Basically, we cut the cyclic string at the start of a suffix of a word of P and pre-catenate the corresponding prefix. Let v a node of the SG such that n(v) = d(v) = 0, then v is a prefix of some word of P . Then vw makes up a linear superstring of P . We obtain |w| ≤ w OP T (SLiS) ≤ |v| + |w|. As |v| ≤ w OP T (SLiS) , we get |v| + |w| ≤ 2 w OP T (SLiS) . In other words, for instances P that have a connected SG, we obtain a 2-approximation for the shortest linear superstring. Furthermore, if the Eulerian cycle visits the root of the suffix tree, then v is the empty word and then |w| ≤ w OP T (SLiS) ≤ |w|, meaning that w is an optimal linear superstring.

Note that there exist non trivial instances, with an arbitrary large norm, whose SG is connected: any instance in which all words are cyclic shifts of another belong to this class. As the SG can be built and explored in linear time in ||P ||, one can use this procedure as a predicate to check whether SCyS or SLiS are solvable in linear time. If not, one can launch a more complex approximation algorithm [START_REF] Paluch | Better Approximation Algorithms for Maximum Asymmetric Traveling Salesman and Shortest Superstring[END_REF].

Conclusion

We consider the problem Shortest Cyclic Cover of Strings, which is solved by Algorithm greedy. The set of solutions of greedy can be exponential. Nevertheless, with the SG, we exhibit a characterisation of this set in a graph that is Eulerian and linear in the input size. This enables us to solve SCCS in linear time, but also to find a greedy solution with the least number of cyclic strings. Moreover, this approach can solve or approximate some non trivial instances of the shortest superstring problems. Our approach can be adapted to a variant of SCCS where the multiplicity of each input word is given as input.

Currently, approximation algorithms for shortest superstring problems use a procedure for solving SCCS that takes cubic time (i.e. O(||P || + |P |

3) time) and quadratic space in the number of strings. This step represents their time complexity bottleneck since other steps can be done in O(||P ||) time. Using our algorithm makes the overall time complexity linear in the input size.

Figure 1 :

 1 Figure 1: (c) shows how the linear word (a) is included in the cyclic word (b).

Proposition 2

 2 Let w a greedy solution of SCCS, there exists a permutation σ of {1, . . . , |P |} such that w = P (σ). 27th June 2014 4 LIRMM 2 Generalised Suffix Tree, overlap, merge, and Red-Blue Paths

Figure 3 :

 3 Figure3: (c) The GST of P := {ababb, aab, abba, abaa}. The GST of P is in fact composed of two trees: (a) the tree T , which is the basic structure of the suffix tree -in blue arcs, and (b) L, the tree made by the suffix links of T -in red arcs. Square nodes represent words that occur as a suffix of some input word, circle nodes are the other nodes of T . Each square node stores its positions of occurrences in S; for simplicity, we display the starting position as a number and the word of S in which it occurs as its colour, instead of showing the list of pairs (i, j). The square node labelled by a red 2, which represents the string ab, means that this string occurs as the suffix starting at position 2 in the red word aab. A square node labelled with a 1 represents an input word.

Figure 4 :

 4 Figure 4: Example with three overlaps: two dependent ones, between u 1 and v 1 and between u 1 and v 2 , and another overlap between u 2 and v 2 : shown on the strings (a), in the overlap graph (b), and in the Superstring Graph (c).

Figure 5 :

 5 Figure 5: General scheme of the in-and out-going arcs of a node v in GST. The red arcs belong to R and the blue arcs to B. If a weight is zero, the arc is not included in the Superstring Graph.

Definition 1 Theorem 6

 16 The Superstring Graph G P = (V, R, B) whereV = V T \ U27th June 2014 10 LIRMM A linear time algorithm for Shortest Cyclic Cover of Strings B. Cazaux & E. RivalsR = {(u, w) n(u) | u ∈ V T , w the parent of u in L} B = {(t, v) d(v) | v ∈ V T , t the parent of v in T } and U = {v ∈ V T | vis not an extremity of an arc of R ∪ B} where n() and d() are the weights on arcs as defined above. Algorithm 2 solves SCCS in linear time and space.Proof 4 Correctness. By Proposition 4, the set w of cyclic words computed by Algorithm 2 is a solution of greedy for SCCS. Hence, each word of P appears as a substring of a cyclic word in w, and by Theorem 1, the norm of w is minimal.Complexity. The Superstring Graph of P is embedded in the generalised suffix tree of P , and thus built in a time linear in ||P ||. By Proposition 2, the length of a solution of greedy is bounded by ||P ||; thus, the length of a multi-cycle of G P is bounded by 2 × ||P ||. Consequently, one can find a multi-cycle also in O(||P ||) time and space. Finally, traversing all its cycles takes a time proportional in the size of the Superstring Graph.Algorithm 2: The Superstring Graph algorithm for SCCS 1 Input: P a set of linear words. Output: w a greedy solution for SCCS; 2 build G P the Superstring Graph of P ; 3 compute a cyclic cover c = (c 1 , . . . , c n) of G P ; 4 for j ∈ [1, n] do 5 traverse c j : list the words of P whose node is in c j and insert the cyclic string of the concatenation of the prefix in w;6 return w Note that with Algorithm 2, one obtains a cyclic cover.4 Implications of the Superstring Graph4.1 SCCS with a cardinality constraint on greedy solutionsWe can split up G P into connected components: G P = {C 1 , . . . , C g }. By Proposition 4, each multi-cycle c of G P can be partitioned in a subset of cycles c = S 1 ∪ . . . ∪ S g , where each set of cycles S i covers a connected component C i of G P .

Problem 2 (Figure 6 :

 26 Figure6: A Superstring Graph and SCCS solutions. (a) the generalised suffix tree and the Superstring Graph (SG) for P := {abb, bbb, bbc}. Square nodes of T represent strings that are suffixes of some word of P : the integer in the square node is a starting position of its suffix. A word of P is identified by its colour. Figure(b) and (c) show the two multi-cycles which cover SG and the respective sets of cyclic strings. This example is well known for showing the lower bound of the approximation ratio of the greedy algorithm for SLiS. The SG for this instance is connected and thus finds the optimal solution.

 algorithm for Shortest Cyclic Cover of Strings B. Cazaux & E. Rivals

 : list the words of P whose node is in c j and insert the cyclic string of the concatenation of the prefix in w;Output : A set of cyclic strings c, with the least number of elements, that is a solution of the greedy algorithm on Shortest Cyclic Cover of Strings.Algorithm 3 differs from Algorithm 2 only on the third line: instead of computing any cyclic cover of G P , it computes a Eulerian multi-cycle of G P . This is possible since each connected component of the Superstring Graph is Eulerian and it can be done in linear time in the norm of P . A Eulerian multi-cycle of G P covers each connected component with a single cycle, hence it minimises the cardinality of the cyclic cover, and as

	A linear time algorithm for Shortest Cyclic Cover of Strings	B. Cazaux & E. Rivals
	6 return w		
	27th June 2014	12	LIRMM

1 Input: P a set of linear words. Output: w a greedy solution for SCCS; 2 build G P the Superstring Graph of P ;

3 compute a Eulerian multi-cycle c = (c 1 , . . . , c n) of G P ; 4 for j ∈ [1, n] do 5 traverse c j

27th June 2014

Acknowledgements: This work is supported by ANR Colib'read (ANR-12-BS02-0008) and Défi MASTODONS SePhHaDe from CNRS.