!"# $$# %&# "!# "# &# ' '# ()*+,'-# +# *+#
The assembly loop

IP assembly = communications and reductions

Exact arithmetic sequential parallel

V (i) = D k V (i) subdomains D k , k = 1...p V (i) = a V (i1) = b V (i2) = c V (i) = b + c = a

IP assembly = communications and reductions

Floating point arithmetic sequential parallel

V (i) = D k V (i) subdomains D k , k = 1...p V (i) = a V (i1) = b V (i2) = c V (i) = b ⊕ c = a
Interface point assembly Interface node assembly:

AM1 in each iteration CV 2 = Bu -AuhH, CV 3 = Bv -AvhH.
Interface node assembly:

CV 2, CV 3 System equation Ay = b AM2, AM3 : diagonal matrices, AM1 = Ahh -AhuAM2 -1 Auh -Ahv AM3 -1 Avh, CV 1 = Bh -AhuAM2 -1 Bu -Ahv AM3 -1 Bv ,
Interface node assembly:

AM2, AM3, CV 1    A hh A hu A hv A uh Auu 0 A vh 0 Avv      H U V   =    B h Bu Bv    algebraic transformation   AM1 0 0 0 AM2 0 0 0 AM3     H U V   =   CV 1 CV 2 CV 3   Mesh (elements,
AM1 = Ahh -AhuAM2 -1 Auh -Ahv AM3 -1 Avh, CV 1 = Bh -AhuAM2 -1 Bu -Ahv AM3 -1 Bv , Interface node assembly: AM2, AM3, CV 1    A hh A hu A hv A uh Auu 0 A vh 0 Avv      H U V   =    B h Bu Bv    algebraic transformation   AM1 0 0 0 AM2 0 0 0 AM3     H U V   =   CV 1 CV 2 CV 3   Mesh (elements,
((a⊕b)⊕(c⊕d)) ⊕ ((e 1 ⊕ e 2) ⊕ e 3) = (((a⊕b)⊕c)⊕d) ⊕((f 1 ⊕ f 2) ⊕ f 3) IEEE binary64 (double): x 1 = 2 53 -1, x 2 = 2 53 and x 3 = -(2 54 -2).
Exact sum:

x 1 + x 2 + x 3 = 1.
Classic summation

2 54 -1 0 2 53 -1 2 53 -(2 54 -2) 2
Relative error = 1

Compensation of the rounding errors

2 54 0 -1 2 53 -1 2 53 -(2 54 -2) 1 2 -1
The exact result is computed

!" !!! "#$%!&! ! '%! (#$%!&!)*! + ! ' "#$%&"#$%*(#$%) + '
,(!-../0123! 45'67$186$5'! %!957!/:/73!'5;/!0/.<!$!1/25'=$'=!65!/2/0/'6!/ /'!! 450>86-6$5'!-';!-??8082-6$5'!59!758';$'=!/7757.! 450>/'.-6$5'!59!6</!,(!-../0123!957!/:/73!0/.<!'5;/!@! The parallel case is easy to derive

!"# $$# %&# "# &#)#
678#.9:/",#;9:# ###678#.<=<>/",#;<=<># ########./0123#+.<=<>,#.9:-#### ########4+.-/4+.-5#?+.<=<>,#.9:-## Reproducible conjugate gradient Hardware and software env.

!"! !#$!%! ! ! ! ! ! "#$%!&!"#$%!'!"#$%!'!"#$%! ! !!!(#$%!&!##(#$%!'!(#$%!')*%'!(#$%')+%!!!!!! "#$%!&!,-#./%!'!,-#.0%!'12'!,-#.3%! ! ! (#$%!&!4*'!4+'1'!43! "#$%&"#$%'(#$%!
Initialization: r 0 = AX 0 -B; a given d 0 ρ 0 = (r 0 , d 0) (Ad 0 , d 0) ; X 1 = X 0 -ρ 0 d 0 Iterations: r m = r m-1 -ρ m-1 Ad m-1 d m = r m + (r m , r m) (r m-1 , r m-1) d m-1 ρ m = (r m , d m) (d m , Ad m) X m+1 = X m -ρ m d m A=[AM1, E AM1]
socket: Xeon E5-2660 (L3 cache = 20 M).

2 cores, 8 cores on each socket.

OpenMP 4.0 (Intra socket parallelism).

Compare vs. Intel MKL 11

To conclude

Feasibility ?

Do existing techniques easily provide reproducibility to large scale industrial scientific software?

Efficiency ?

Do correctly rounded summation algorithms provide efficient implementations of reproducible parallel BLAS routines?

A

 five year old dam break: 433 dead people and huge damage Simulation mesh: 26000 elements and 53000 nodes Simulation: 2200 seconds with a 2 sec. time step A rule → 10 18 flop/sec in 2020 Massive and heterogeneous parallelism : 1 million of computing units Numerical simulation of complex and sensitive physical phenomena Moore's rule → 10 18 flop/sec in 2020 Massive and heterogeneous parallelism : 1 million of computing units Numerical simulation of complex and sensitive physical phenomena Numerical reproductibility failure of finite precision computations Non associative floating-point addition Computed value depends on the operation order Reproducibility failures reported in numerical simulations for energy [12], dynamical weather science [4], dynamical molecular [11], dynamical fluid [8] When? why? Operation order uncertainty for consecutive executions of a given binary file Appears both in parallel and "sequential+SIMD" environments When? why? Operation order uncertainty for consecutive executions of a given binary file Appears both in parallel and "sequential+SIMD" environments Parallel reduction: SIMD, openMP, MPI, GPU Let p be the number of computing units When p varies, the partial computed values before the reduction also vary For a given p > 2, the computed reduced value depends on the dynamic scheduling of the reduction: omp, mpi, gpu Reproducibility = Portability Portability : one source → different binaries Parameters: compilers and their options, librairies, OS, comput. units Reproducibility may fail for a given set of portability parameters Reproducibility = Accuracy Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1 Full accuracy = unit roundoff accuracy = bitwise exact result Improving accuracy up to correct rounding ⇒ reproducibility Reproducibility = Portability Portability : one source → different binaries Parameters: compilers and their options, librairies, OS, comput. units Reproducibility may fail for a given set of portability parameters Reproducibility = Accuracy Reproducibility: bitwise identical results for every p-parallel run, p ≥ 1 Full accuracy = unit roundoff accuracy = bitwise exact result

 for idp = 1, ndp //idp: triangular local numbering (ndp=3) for ielem = 1, nelem i = IKLE(ielem, idp) V(i) = V(i) + W(ielem, idp) //i: domain global numbering Assembly step principle: V (i) = elements W e (i) compute the inner node values accumulate W e for every ielem that contains i for idp = 1, ndp //idp: triangular local numbering (ndp=3) for ielem = 1, nelem i = IKLE(ielem, idp) <--LOOP INDEX INDIRECTION V(i) = V(i) + W(ielem, idp) //i: domain global numbering Parallel FE: subdomain decomposition

 non-reproducibility to compute reproducible system and solutions System equation Ay = b AM2, AM3 : diagonal matrices,

 Rounding errors are computed with EFT 2Sum (Knuth, 65), Fast2Sum (Dekker, 71) for base ≤ 2 and RTN. a + b = x + y , with a, b, x, y ∈ F and x = a ⊕ b. Algorithm (Knuth) function [x,y] = 2Sum(a,b) x = a ⊕ b z = x a y = (a (x z)) ⊕ (b z) Algorithm (|a| > |b|, Dekker) function [x,y] = Fast2Sum(a,b) x = a ⊕ b z = x a y = b z Existing techniques to recover numerical reproducibility in summation Accurate compensated summation [6

A=

 ;$3!<(!;==.:7>?2!! @93AB$76C93!,-#.D%!E9B!.F.B?!398.!:.=G!$!7.>93H$3H!A9!.>.:!./I12I!.3!! @9:J6A;C93!;38!;KK6:6>;C93!9E!B9638$3H!.BB9B=!4!! L3A.BE;K.!J9$3A!;==.:7>?! !$!M!$3A.BE;K.!J9$3A!7.AN..3!O*IO+IOP! QKK6:6>;C93!9E!.BB9B=!!4!;38!)!! @9:J.3=;C93!9E!AG.!<(!;==.:7>?!E9B!.F.B?!:.=G!398.!$! "#$%I!(#$%! "#$%I!(#$%! =$:$>;B! =$:$>;B! =$:$>;B! =$:$>;B!Interface Point assemblyTowards a reproducible conjugate gradientInitialization: r 0 = AX 0 -B; a given d 0 ρ 0 = (r 0 , d 0) (Ad 0 , d 0) ; X 1 = X 0 -ρ 0 d 0 Iterations: r m = r m-1 -ρ m-1 Ad m-1 d m = r m + (r m , r m) (r m-1 , r m-1) d m-1 ρ m = (r m , d m) (d m , Ad m) X m+1 = X m -ρ m d m

 length n → sum of length 2n A correctly rounded result is reproducible A large panel of algorithms for faithful or correctly rounded sums Motivation How to benefit from these CR sums for reproducible BLAS? Is the over-cost acceptable in practice for reproducible BLAS? Current results BLAS 1 : asum, dot, norm2 openMP for shared memory Hybrid openMP-MPI for shared+distributed memory Parallel BLAS-1: Runtime overcost for reproducibility Runtime/size of parallel level 1 BLAS, up to 16 threads, cond=10 32

 Assembly step: example of reproducibility failure Sequential vs. p-parallel results differ for p = 2, 4, 8, 16Assembly with the classical floating-point accumulation sequential FPAss vs. p-parallel FPAss p

	Telemac2D finite element method (FE)
	Culprits: theory Solution U,V
	max |FPAssp -FPAss|/|FPAss| Building step: interface point assembly Basic ingredients wave equation
	10 Recovering reproducibility in a finite element resolution 20 30 40 50 60 70 Time step 10 -17 10 -16 10 -15 FPAss P=2 FPAss P=4 FPAss P=8 FPAss P=16 Compensation Reproducible parallel FE assembly Reproducible conjugate gradient Efficient and reproducible BLAS 1 Conclusion and work in progress Culprits: practice = optimizations Element-by-element storage of FE matrix and second member Wave equation and associated algebraic transformations Interface point assembly and system solving are merged Maximum Relative Error vs. Sequential Computation Sources of non reproducibility in Telemac2D conjugate gradient 10 -14 Finite element assembly: sequential and parallel cases Resolution with conjugate gradient: matrix-vector and dot products Solution H
	Mean frequency wave, Nice test case, Tomawac

 x 1 = 2 53 -1, x 2 = 2 53 andx 3 = -(2 54 -2). Exact sum:

Recovering reproducibility in Telemac2D Overview II Hardware and software env.

OCCIGEN: 26 th supercomputer in top500 list.

4212 cores, 12 cores on each socket.

OpenMP 4.0 (Intra socket parallelism).

OpenMPI (Inter socket communications).

Configurations

#sockets = 1 .. 128.

#threads = 12 per socket.

Dataset

Entry vectors size = 10 7 .

Condition number = 10 32 .

Results

Good scaling for large datasets.

Two communications cost limits ReprodDot and FastReprodDot.

We need only one communication for OneReduction, HybridSum and OnlineExact.

Time to conclude

Motivations