
HAL Id: lirmm-01241181
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01241181

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Fault Tolerance of Autonomous Mobile
Robots

Didier Crestani, Karen Godary-Dejean, Lionel Lapierre

To cite this version:
Didier Crestani, Karen Godary-Dejean, Lionel Lapierre. Enhancing Fault Tolerance of
Autonomous Mobile Robots. Robotics and Autonomous Systems, 2015, 68, pp.140-155.
�10.1016/j.robot.2014.12.015�. �lirmm-01241181�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01241181
https://hal.archives-ouvertes.fr

Enhancing Fault Tolerance of Autonomous Mobile
Robots

D. Crestania, K. Godary-Dejeana,∗, L. Lapierrea

aLaboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM),
UMR 5506, Université Montpellier 2; 161 rue Ada 34095 Montpellier Cedex 5 - France

Abstract

Experience demonstrates that autonomous mobile robots running in the field

in a dynamic environment often breakdown. Generally, mobile robots are not

designed to efficiently manage faulty or unforeseen situations. Even if some

research studies exist, there is a lack of a global approach that really integrates

dependability and particularly fault tolerance into the mobile robot design.

This paper presents an approach that aims to integrate fault tolerance prin-

ciples into the design of a robot real-time control architecture. A failure mode

analysis is firstly conducted to identify and characterize the most relevant faults.

Then the fault detection and diagnosis mechanisms are explained. Fault de-

tection is based on dedicated software components scanning faulty behaviors.

Diagnosis is based on the residual principle and signature analysis to identify

faulty software or hardware components and faulty behaviors. Finally, the recov-

ery mechanism, based on the modality principle, proposes to adapt the robot’s

control loop according to the context and current operational functions of the

robot.

This approach has been applied and implemented in the control architecture

of a Pioneer-P3DX mobile robot.

Keywords: Dependability; Fault tolerance; Diagnosis; Recovery; Control

Architecture; Mobile Robotics.

∗Corresponding author : Karen Godary-Dejean, +33/0 467 41 85 62

Email addresses: crestani@lirmm.fr (D. Crestani), godary@lirmm.fr (K.

Godary-Dejean), lapierre@lirmm.fr (L. Lapierre)

Preprint submitted to Journal of LATEX Templates June 4, 2014

Manuscript
Click here to view linked References

1. Introduction

Mobile autonomous robots operating in an unstructured dynamic environ-

ment have many practical applications, e.g. space robots for space exploration,

war robots for military field operations or rescue robots for urban search and

rescue missions. However, autonomous control of a robot in the field is still an5

open research domain.

Experimental feedbacks and mission sequence analysis of unmanned mobile

robots in the field have generally demonstrated that there is a huge lack of

dependability when physical or logical failures occur [1, 2, 3, 4]. Unfortunately,

this limitation is an important bottleneck for the development of a real public-10

oriented robotics that must efficiently deal with availability, reliability, safety

and maintainability aspects. To achieve this objective, it is essential to consider

and introduce dependability rules as soon as possible into the robot’s design life

cycle. According to this principle, this paper proposes a global and structured

approach to guide the introduction of fault tolerance principles into a robot’s15

embedded control architecture.

The first part of this paper outlines what motivated this work and enumer-

ates some of the challenges that must be overcome to implement fault tolerance.

The second part summarizes the main techniques used to introduce fault detec-

tion and identification, and recovery mechanisms into the control architecture.20

Then the different phases we proposed for the development of a fault tolerant

control architecture are explained. The next part details the implementation

of our approach using the COTAMA control architecture and a Pionner-P3DX

mobile robot for an office delivery mission. Finally, before concluding, the ex-

perimental results and robot behaviors are analyzed.25

2. Dependable Robotics: a Critical Challenge

The design of dependable systems is a critical issue when human life, environ-

mental pollution or expensive projects are concerned (space, aviation, nuclear,

2

human rescue, etc.) [5]. Therefore it is essential to develop techniques to avoid

fault occurrence, and to use methods that take faults during system operation30

into account. Indeed, nominal behavior could not be preserved in uncontrolled

and dynamic environments that represent a potential source of dysfunction. A

fault tolerant system could guarantee minimal and acceptable behavior even in

presence of faults.

Dependability principles have been largely studied and used in computer35

science [6]. In autonomous robotics, these principles must be adapted and im-

plemented to carry out reliable missions in real and complex dynamic environ-

ments. Dependability means can be broken down into four main complementary

categories:

• Fault forecasting, which performs an evaluation of the system behavior,40

analyzing the component failures and their effects on dependability.

• Fault removal, which aims to reduce the number of faults.

• Fault prevention concerning engineering principles, which aims to prevent

faults from occurring during the system design.

• Fault tolerance, which tries to avoid service failures when a fault occurs45

during operation. This article mainly concerns fault tolerance issues.

This paper focuses on the application of fault tolerance concepts to enhance the

reliability of autonomous robotics.

2.1. Motivation

Today, the most efficient robot system is not able to have the perfect behavior50

necessary to execute all robotic missions that people could imagine. A fault may

generate relatively dramatic effects such as a significant decrease in the robot’s

performance, an aborted mission, loss or crash of the robot, or human injuries.

Carlson [3] conducted a detailed analysis of several unmanned ground ve-

hicle (UGV) military or rescue field missions performed by a broad range of55

robotic platforms. The analysis globally highlighted a major lack of reliability

3

of the robotic systems, frequently leading to a dead stop in the mission. Be-

sides human-induced faults (design, mistakes), five classes of physical faults were

identified, which are effector, sensor, power, communication or control system

oriented.60

The development of really efficient robots for public, industrial or military

applications require integration of dependable principles from the beginning

of the robot design process. However, this issue is very seldom addressed in

robotics. In research laboratories, most autonomous robots are just built to

address a specific scientific issue. Hence, there are just prototypes for which the65

dependable principles are not really considered. Moreover, when dependability

is critical, e.g. for space robots, the economic cost is out of line with large-

scale production strategies. Indeed, the industrial robotic domain has not been

confronted with hard critical constraints in the past decade. Things may change

with new emergent robotic applications.70

This is why so few articles have been published that propose a methodology

explicitly integrating the dependable perspective into the design of autonomous

robots. This scientific topic is rarely addressed in major robotics conferences

(ICRA, IROS). Concerning Robotics and Autonomous Systems, it seems that

only one article has focused on the dependable issue [7] since 2006.75

There is also a need for a methodology to consciously guide robot designers

to introduce dependable principles. Concerning the fault tolerance aspects, this

methodology covers the offline relevant fault identification problem, and the

embedded fault detection, identification and recovery mechanisms.

2.2. Challenges for Fault Tolerance in Robotics80

Many challenges must be overcome to create fault tolerant autonomous mo-

bile robots:

• Although many research studies have focused on fault tolerant control

systems, there is not yet an accepted standardization of the concepts,

design methods and terminology [8].85

4

• An autonomous mobile robot running in a complex dynamic and unstruc-

tured environment can cope with a large variety of faults. The robotic

system must be able to address them.

• It is unrealistic to think that a robotic system is able to consider all pos-

sible faults and react intelligently to every situation that might be en-90

countered. Hence it is important to identify the most relevant faults, i.e.

faults that are the most crucial for the robot’s behavior and the concerned

mission, depending on the current context.

• The severity of a failure must be linked with the performance of the robotic

mission. For the user, what are the performance criteria? They could be,95

for example, the mission duration, the robot availability, or just the mis-

sion success. On the other hand, failure severity depends on the recovery

means. Does the user accept a loss of performance? Does the user accept

to adjust the autonomy level of the robot to overcome -punctually or not-

an encountered fault? All of these questions must be addressed to define100

the relevant faults.

• When a fault occurs and can be identified, it must be handled in real-time

using the robot’s embedded operational resources of the robot as well as

possible.

• Many research studies concern some parts of the fault tolerance logic.105

However, in robotic control architectures, there is a lack of a global, trans-

verse and structured fault tolerance approach.

• Fault tolerance principles are currently scrambled into the control archi-

tecture. These fault tolerance principles must be reified to be efficiently

considered.110

• The design of a fault tolerant control architecture requires collaboration

between two different worlds, i.e. robotics specialists and architecture

designers (a priori computer specialists). They must understand each

5

other to integrate robotics and architectural constraints into the fault

tolerance design.115

3. Fault Tolerance Principles in Robotic Systems: An Overview

3.1. Fault Tolerance Principles

Zhang [8] defines a fault tolerant control system as a control system that is

able to automatically maintain the system stability and an acceptable perfor-

mance when component failures occur. Generally these systems must implement120

four main principles to achieve these objectives:

• Fault Detection: To detect if there is something wrong in the system and

that a fault has occurred somewhere.

• Fault Isolation: To decide which component is faulty and its location in

the system.125

• Fault Identification: To identify the fault and its associated severity.

• Fault Recovery: According to the identified fault, to adapt the system

controller structure so as to maintain the stability of the system and ac-

ceptable performance.

The general principles of fault tolerance have generated a substantial corpus130

of scientific research concerning fault detection and isolation (FDI), and fault

detection and diagnosis (FDD) (i.e. FDI with identification in addition [8]) in

control engineering over the last decades. Most of them can potentially be used

for robotic purposes.

3.2. Fault Tolerance in Control Engineering135

Fault detection and diagnosis requires inter-disciplinary expertise. Many

interesting and complete bibliographical overviews have been proposed [8, 9,

10, 11, 12, 13].

6

Fault tolerant control usually distinguishes passive and active techniques.

Passive approaches do not require a previous fault diagnosis. Robust control140

techniques (quantitative feedback theory, CRONE control, H∞ synthesis, adap-

tive control) are used to design a controller to ensure that the control-loop re-

mains stable and efficient from a performance standpoint. Unfortunately these

methods can only deal with a few system faults. Active techniques need to know

which fault affects the system (FDD methods) in order to adapt the controller145

design while preserving the stability and graceful performance (recovery means).

Generally two main classes of FDD methods are identified: model-based and

data-based methods. In model-based methods, mainly based on analytical re-

dundancy which provides mathematical models of the system’s behavior, the

emergence of a fault induces a modification of the system’s state variables or150

model parameters. The detected deviation (residual) of the real system from

the system’s model can be used for fault diagnosis purposes. Widely used in

robotics, many approaches performing signal processing techniques have been

proposed for fault detection using state estimation observers, Kalman filters,

parameter estimation, or parity spaced oriented methods. Contrary to quanti-155

tative methods, data-based methods (expert systems, trend analysis, principal

component analysis) do not require a priori knowledge about the system behav-

ior. They only require a large amount of historical data to extract a knowledge

base which is used by the diagnosis system.

Two main strategies can be used for recovery. First, some predefined control160

laws can be selected to correct the impact of identified faults (multiple models

or variable gain command approaches) can be applied. Second, in response to

the occurrence of a fault, an on-line controller synthesis can be performed.

Many advanced control engineering research strategies can be used to de-

velop fault tolerant controllers to deal with robotic issues. However, for the165

development of efficient fault tolerant robotics, these strategies are not suffi-

cient to address all of the issues that must be considered:

• It is difficult to ensure that all of the proposed approaches will always be

7

suitable for real-time treatment of a fault occurrence. This is a key point

for mobile robots functioning in a dynamic environment.170

• In the vein, fault tolerant mechanisms must be efficiently implement in an

embedded context with limited resources.

• Some efficient detection techniques like data-based ones are not suited to

robotics where thorough knowledge of the system can be easily used but

the amount of data is limited.175

• The tolerant control-loop integrating FDD and recovery solutions pro-

posed in control engineering are efficient for dealing with sensor or actua-

tor faults. But they generally do not consider faults related to high-level

knowledge such as the contextual environment of the robot.

• Despite the efficiency of these approaches, we think that they cannot deal180

with the wide range of fault types nor multiple fault occurrence which

must be considered in mobile robotics for complex missions in unknown

environments.

The control laws are embedded into a software environment. So the soft-

ware aspect is the main dimension to be considered to develop real fault toler-185

ant mobile robots. This is where fault tolerant principles must be integrated

and managed. Control architectures provide more flexibility, expendability and

adaptability capabilities, which are precious in a design process for fault tolerant

systems. They will therefore be considered in the sequel.

3.3. Fault Tolerance in Robotic Control Architectures190

To enable efficient autonomous robotics, hybrid control architectures [14,

15, 16] are presently widely used because they allow merging of planning capa-

bilities with reactive behavior. Conventionally, in these architectures, planning

(deliberative), executive and behavioral (reactive) layers are defined. They may

be used to efficiently address goal oriented and dynamic environment issues.195

They are clearly the main support of fault tolerance principle deployment.

8

3.3.1. Fault Detection and Diagnosis

In [17], three basic mechanisms are identified to implement FDD in au-

tonomous robot system architectures.

Timing checks. are frequently introduced for temporal fault detection. They200

supervise the robot’s functionality liveness using timers and watchdog principles.

For example, they are used to manage the activity of RoboX9 [1], an autonomous

museum robot tour guide, or for a robot taking part in the robot Soccer 2005

World Cup [18]. Watchdogs are also systematically associated with each BIP

component used in the LAAS architecture [19].205

Reasonableness checks. are commonly used in robotics to verify the correctness

of system variables according to algorithm constraints or manufacturer specifi-

cations. Few examples are reported in the literature [1], although it is a basic

method that is probably often used in robotic codes. Reasonableness checks

could involve a simple test of data values in a dedicated interval, or a more210

complex assertion or property check, which could be named ”safety bag”, as in

the R2C controller component of the LAAS architecture [20].

Monitoring for diagnosis. has been covered in many publications (see [21] for

a survey), generally inspired from the control engineering techniques discussed

above. Analytical redundancy using model-based approaches is mainly dedi-215

cated to sensors and actuator fault detection and often used to detect a mal-

functioning. For example, in [22], [23] or [24], probabilistic models are used to

detect wheel and motion interference faults on mobile robots. Multiple-models

[25] like multiple-model Kalman filters [26] are often developed for detection

and diagnosis issues in mobile robotics.220

However, these FDD mechanisms have a set of limitations, which must be

overcome to develop efficient fault tolerance in robotics.

• Reasonableness and safety bag checks are essential for robotics issues.

However, their implementation is usually embedded into the code by the

9

developer without any visibility, architectural logic and coherent global225

view.

• Monitoring for diagnosis usually focuses only on sensor and actuator faults.

But other components faults, as well as linked, multiple and/or transient

faults, are not considered. Furthermore, more subtle faults, which are gen-

erally induced by external adverse situations, are not considered. More-230

over most of the research studies have focused mainly on the development

of a sophisticated detection technique without considering its connection

with the recovery part of the fault tolerance. Furthermore, the relevance

of the detected faults can sometimes be questioned with respect to the

real probability of occurrence.235

• The FDD diagnosis phase has never been addressed in robotic control ar-

chitecture publications. However, its accuracy may have a marked impact

on the fault tolerance capacity of the robot, especially in the presence of

complex faults when a global view or a sophisticated technique is needed

for diagnosis. In such cases, it is necessary to separate the detection phase,240

which generally highlights a failure (a consequence of fault propagation),

from the diagnosis phase which must detect the origin of this failure.

Once a fault is detected and diagnosed, recovery mechanisms must be de-

ployed to handle the problem and maintain the robot’s capacity to achieve its

goals.245

3.3.2. Recovery

As in computer science, recovery can be defined as the process which ”trans-

forms a system state that contains one or more errors (faults) into a state with-

out detected errors (faults) that can be activated again” [6]. In robotics, two

main approaches are implemented in control architectures, i.e. execution control250

and re-planning.

Execution control. , which is largely used in robotic architectures, supervises

the execution of the plan generated by the task planner. In case of malfunction

10

detection, the execution control tries to overcome the problem. Local or more

global reactions can be implemented. For example, in the CLARATY architec-255

ture [27], dedicated mechanisms are implemented locally within the functional

modules to react to known faults. In the same way, malfunctioning can be

resolved locally in the ORCCAD architecture [15] using robotic task reconfigu-

ration, or can be managed more globally using robotic procedures to adapt the

current task. The LAAS architecture [20] uses the dedicated R2C module at the260

decisional layer to deal with recovery. The modality switching principle, which

identifies and uses several different tasks to carry out the same action, can also

be proposed as in [28] or [29]. Execution control allows a pertinent and reactive

fault detection response. However, to be efficient, it must be based on in-depth

and deliberate analysis of the system’s faults and corresponding severities. If it265

fails to ensure the current task execution, a more global solution must be found

using the task planner capacities.

Re-planning. leads to the drawing up of a new plan, ensuring the mission ob-

jectives from the current situation, and solving the detected problem. It is

developed, for example, into the LAAS and CIRCA architectures [30, 31]. Re-270

planning, which is highly time consuming, can sometimes be replaced by a

plan-repair. This technique supposes that a part of the current plan remains

valid and can be executed while re-planning. This approach is developed into

the LAAS architecture using the IXTET module [32], whereas in CLARATY

[33], iterative planning is managed using CASPER (Continous Activity Schedul-275

ing, Planning, Execution and Re-planning). Unfortunately, this high-level and

time-consuming fault handling cannot be adopted when dynamic environments

requiring reactive behaviors must be considered.

If the robot cannot recover autonomously from a fault detection using exe-

cution control or re-planning, it is usually turned off in a safe state, terminating280

the current mission. For now, this is the most current consequence of a fault

occurrence. We think that distant human interaction is another way to poten-

tially recover from an untreated fault and enable the mission to complete [34].

11

According to the decisional relation between the robot and the operator, there

are several classes of human-robot interactions, ranging from teleoperation, su-285

pervisory control [35] to full autonomy [36]. Rarely used for fault tolerance,

adjustable autonomy could, however, be a solution for systems where sporadic

human intervention is conceivable. For example, this recovery strategy is used

for urban search and rescue robots via shared control [37] or an error handler

[38], allowing human-robot interactions to solve the problem in the SFX-EH290

architecture [39].

3.4. Conclusion

This analysis highlights some strong points used to develop fault tolerance

into robotic control architectures:

• Modular architectures are well adapted for implementing the flexible, re-295

active and adaptive behaviors needed for fault tolerance.

• Detection mechanisms could be easily used to detect specific faults such

as sensor or actuator faults.

• Fault recovery mechanisms can be addressed, including executive control,

re-planning or human-robot interactions.300

Unfortunately, this analysis also revealed many important drawbacks which

must be overcome to develop efficient fault tolerant control architectures:

• During the architecture design phase, a detailed analysis of the main faults

that can affect the robot during its mission, and their corresponding sever-

ity, has to be carried out. This preliminary fault analysis step has never305

been addressed in robotics.

• Detection mechanisms are embedded into the code by the developer with-

out any global development logic.

• The diagnosis phase has hardly ever been addressed to allow the detection

of more complex and subtle failure origins. Proposed diagnosis mech-310

anisms are too simple, based on too simple fault hypotheses (unique,

12

independent or permanent faults, for example), and could thus lead to

erroneous recovery actions.

• Executive control and re-planning are efficient recovery mechanisms but

Human-Robot interactions could also be considered as a way to implement315

fault tolerance to compensate for a lack of robot autonomy.

• Independent design of FDD techniques without considering recovery, and

vice versa, will lead to a lack of efficiency for both parts.

• There is currently no existing approach to structure fault tolerance mech-

anism integration into robotic control architectures.320

• Globally, there is a lack of a framework to guide the development of a fault

tolerance architecture while considering all fault tolerance fields from a

robotic standpoint.

To overcome some of these limitations, hereafter we present our approach,

which structures and guides the development of robotic fault tolerant control325

architectures.

4. An Approach to Develop a Robotic Fault Tolerant Control Archi-

tecture

Here, it is important to specify the type of control architecture considered

in this paper. It is assumed to be a two layered and component oriented archi-330

tecture. The decisional layer, implementing the execution control mechanisms,

manages the mission objectives and sub-objectives according to the robot’s state

and the detected faults. Each sub-objective describes a robotic task and corre-

sponds, in the functional layer, to a set of software components (modules) that

implement the concerned robotic functionalities. These software components335

are managed at the functional layer with real-time control of their execution.

This decomposition is usually employed in robotic architectures. The mission

planning layer is not considered in the present work.

13

The proposed fault tolerant architecture design approach can be decomposed

into four main steps, which are presented in figure 1. First, fault forecasting340

must be conducted to evaluate the system behavior with respect to fault oc-

currence, and to produce a database with all information concerning the pos-

sible system failures. Based on this analysis, the three fault tolerance phases

-detection, diagnosis and recovery- must be clearly integrated into the archi-

tecture structure. The detection step determines which architecture modules345

could be faulty. Then, according to the fault forecasting and fault identification

information, the diagnosis phase diagnoses the faults and updates the state of

the architecture modules (faulty or not) and determines the most severe fault.

Finally, depending on the operational modules and the failure severity, the most

adapted fault recovery action is engaged.350

RECOVERY

DIAGNOSIS

DETECTION

Fault
forecasting
 data base

Set of
faulty modules

Most
severe fault

Detection
information

!"#"$%

Control architecture

Figure 1: Fault tolerance diagram

4.1. Step 1: Fault forecasting using a fault tolerance oriented FMECA

This phase is essential for fault tolerance implementation because, before

reacting, the failure affecting the system must first be identified before the

active recovery treatment. A detailed analysis of the different possible failures

and their consequences on the system’s behavior must therefore be conducted.355

14

FMEA and FMECA [40] are classical techniques of fault forecasting, which

can be used to analyze failure modes, identify the potential causes of the failure

and evaluate the corresponding effects and severity on the system’s behavior.

These approaches are largely used in different industrial fields such as aviation,

automotive, chemical or aerospace domains. However, in robotics, only FMEA360

is sometimes employed to find hardware answers to material malfunctioning [41,

42, 43], but never used for software issues. This risk analysis technique, which

takes multiple experts’ viewpoints into account, is broken down into several

steps, from identification of the system’s limits to failure severity estimation

and solution suggestions.365

4.1.1. Identification of the system’s limits

The FMECA process identifies the system’s limits to consider for analysis. A

global viewpoint must be integrated in a mobile robotic context: an autonomous

mobile robot must carry out a given mission which is broken down into a set

of concurrent and/or sequential objectives, which in turn correspond to differ-370

ent sub-objectives and robotic tasks. A first approach is thus to consider that

each sub-objective constitutes a particular system, which must be individually

analyzed from a FMECA perspective. Overcoming a failure can lead to a modi-

fication of the current sub-objective, or to a change of the robot autonomy level

in an adjustable autonomy context. In that case, a sub-objective can be adapted375

into several functioning modes, depending on the available (non-faulty) func-

tionalities. This can lead to the emergence of new system limits, which have not

been yet assessed. Finally, a set of different sub-systems is identified depending

on the concerned functioning mode.

FMECA methods are then used to list these sub-systems, their functioning380

and failure modes. The origin of each of these failure modes must be identified,

as well as the importance of each failure on the basis of the severity of the

consequences on the system. A complete FMECA analysis also involves an

analysis of the fault occurrence probability, but our method does not yet use

this information.385

15

Figure 2 describes a mission that can be decomposed into n sequential sub-

objectives. Alternative functioning modes for the different sub-objectives can

potentially be identified and executed, depending on the impact of a considered

failure, with or without changing the autonomy level.

Mission
execution

Fct. Mode (1,i)

Autonomy level

Autonomous

Teleoperated

Fct. Mode (1,1)

Start End

Fct. Mode (1,k)

Failure

Failure Failure
Failure

Sub-objective n Sub-objective 1 Sub-objective 2

Fct. Mode (2,1)

Fct. Mode (n,i)

Fct. Mode (n,1)

Fct. Mode (n,k)

Failure

Failure

Figure 2: Identification of the limits of the sub-systems

4.1.2. Functional decomposition390

In the FMECA method, the functional analysis is carried out to deter-

mine the different functionalities composing the analyzed system. For example,

SADT/IDEF0 [44] is a classical methodology which allows a top-down hierar-

chical decomposition of system’s functions and of the data associated with those

functions.395

To conduct this process in our context, it is important to map this decompo-

sition in an architectural point of view based on the modular organization of the

architecture. The decomposition process is carried out for a given functioning

mode until each identified function can be merged into a software module.

4.1.3. Failure modes400

Once the different functionalities and their corresponding architectural com-

ponent modules have been identified, the following phase of the FMECA ap-

proach concerns the failure mode identification. A failure mode characterizes

the availability and quality of the service delivered by a component module.

16

In our context, we consider two main Classes of failure modes:405

• a failure mode is Complete when the concerned service can no longer be

delivered. A motor breakdown can be an example.

• a failure is Partial when the service remains available but with a loss of

quality. A network overload can illustrate this failure mode.

Furthermore these two classes can be split into two Types according to the410

activation duration of the failure mode:

• a failure mode is Permanent when the service quality is definitively af-

fected.

• a failure mode is Transient if the service quality can be recovered.

4.1.4. Failure cause identification415

The aim is now to determine the potential causes (faults) of the detected

failures. To achieve this goal and guide the analysis of each component module

belonging to a given functioning mode, we propose to use a classical effect-cause

methodology based on the Ishikawa diagrams [45].

The Ishikawa diagrams are causal diagrams developed to identify potential420

factors contributing to a failure. Causes are usually grouped into major domains

of potential sources of the failure. These major domains or analysis axes depend

on the applicative domain. For fault tolerance related to the control architecture

in mobile robotics, these domains can be inspired from different fault taxonomies

[3, 6]. We then propose the following analysis axes (Figure 3):425

• Sensor: if the fault concerns the hardware sensors or their interface de-

vices.

• Actuator: if the fault concerns the hardware actuators or their interface

devices.

• Energy: if the fault is linked up to energy devices and management430

problems.

17

• Design: if the fault is due to a problem of design or control algorithm

implementation.

• Environment: if the fault is a problem of perception of the environment

by the robot.435

• Control architecture: if the fault relates to a software management

problem, e.g. a scheduling problem.

 M
odule Failure

Actuator Sensor Environment

Control architecture Design Energy

Fault 1

Fault 3

Fault 2

Fault 4

Sub-objective N – Functioning Mode K

Figure 3: An Ishikawa diagram structure

4.1.5. Failure severity

Conventionally, in the FMECA approach, the notion of risk estimation is

used by considering the probability of the failure occurrence (criticality) and440

its effects on the system (severity). Nevertheless, during the first design of

a mobile robot and mission, it is impossible to have any statistical data to

enable evaluation of the probability that a specific fault will occur. Even if

some information could be obtained (such as the failure probability depending

on the wear state, etc.), we decided to not yet consider failure criticality in our445

methodology, although it could easily be added in the future.

On the contrary, determination of the component failure severity is essential

for fault tolerance efficiency. Its accuracy is strongly connected to the relevance

of the recovery mechanism management. Firstly, note that the severity depends

on the performance goals that are expected for the robotic mission. For example,450

18

the goal could be just to finish the mission (without constraining requirements

such as time or precision), and then only faults that abort the mission are seri-

ous, whereas if a safe behavior for the robot and/or its environment is imposed,

the severity of the different failures must be refined. Moreover, timing or preci-

sion constraints can still be added. Secondly, the failure severity definition also455

largely depends on the availability of redundancy. The functional redundancy

can compensate for the failure of a module if an alternative functionality is oper-

ational. This is usually an embedded redundancy when alternative hardware or

software resources are available. However, without any embedded alternative,

distant functional redundancy involving human assistance can be engaged.460

Like many existing studies [46, 47], we define four levels of failure severity

according to the available recovery capacities (Figure 4):

• Weak when the mission can continue using the same functioning mode

while adapting some sub-objective parameters.

• Medium when the mission can continue using an alternative (potentially465

degraded) sub-objective while remaining at the current autonomy level.

• Serious when the robot cannot continue the mission with the current

autonomy level.

• Fatal when the mission can no longer be continued.

Sometimes, an identified failure can be neglected within a specific experi-470

mental context. In this case, the failure is considered to be Ignored and is

supposed to have no impact on the mission progress.

4.1.6. FMECA table

At the end of the FMECA process, all the collected information is usually

summarized in a dedicated table. Moreover, this table specifies some potential475

recovery actions to address the identified faults.

Then we propose to establish, for each functioning mode, a FMECA ta-

ble (Table 1) involving the name and failure modes for each module. Then, for

19

!"#$%&'#%()*+,-#%.')/0#%&'#%
.,--#/&%(,/.1"/*/0%2"3#%4%

!"#$%&'#%()*+,-#%.')/0#%&'#%
.,--#/&%),&"/"25%+#6#+%4%

7'",+3%&'#%2*$$*"/%
8#%$&"99#3%%4%

:'#%()*+,-#%$#6#-*&5%
*$%;#)<%

:'#%()*+,-#%$#6#-*&5%
$%2#3,2%

:'#%()*+,-#%$#6#-*&5%
$%$#-",$%

:'#%()*+,-#%$#6#-*&5%
*$%()&)+%

Figure 4: Determination of the failure severity

each failure mode, the potential failure causes (information on the fault) and the

corresponding severity level are given. To facilitate the diagnosis phase for po-480

tentially related failures (failure of a component could trigger other component

failures), information on the logical relations between failures are also given as

a failure cause element. Moreover, more dedicated information is added (in the

Actions column), which can be used to guide the fault tolerant process deploy-

ment within the control architecture. First, for the detection phase, this table485

identifies what kind of detection techniques can be used to detect the associated

fault. Secondly, information related to the recovery phase are also specified.

Module

name

Failure mode Failure causes
Severity

Actions

Class Type Fault

identifier

Logical

relation

Detection Recovery

Table 1: Basic structure of our FMECA table

This table is used to integrate fault tolerance principles into the robotic

control architecture according to Figure 1: the FMECA tables are used by the

diagnosis component to identify the fault and its corresponding severity, thus490

allowing the recovery component to engage the best adapted recovery action.

20

4.2. Step 2: Failure detection

The detection process (when exists) is now embedded in the control algo-

rithm code. Our proposal is to defined dedicated modules to monitor robotic

functionalities and material, thus reifying the detection process. Only a few495

studies have implemented this kind of detection mechanism, e.g. [18] for real-

time faults.

Several types of detection modules (DM) can be identified (in grey in Figure

5): DM1 which monitors only one data stream (inputs or outputs of a module),

implementing reasonableness and safety bag checks; DM2 or DM3 which monitor500

one or a set of modules by model-based detection mechanisms; finally, one DM

is dedicated to real-time fault detection (not represented in the figure).

Sensor A

Sensor B

Actuator Guidance Control Navigation

DM3

DM2 DM1

Figure 5: Detection module types

The use of detection modules to implement fault detection has two main ad-

vantages. Firstly, the most relevant one is that this method structures and reifies

the detection process in a flexible manner. Detection could then be adapted de-505

pending, for example, on the reliability goals or the embedded resources, for the

most relevant faults. Secondly, the use of independent modules provides more

observation access, allowing the detection of faults that could not be detected

inside the code. Furthermore, adding specific detection points will facilitate the

diagnosis process. Finally, these new detection modules will naturally be sched-510

uled into the robotic control loop. So their integration must verify the imposed

real-time constraints. Their integration thus has some drawbacks. Firstly, exe-

cution of these new component modules is time consuming, so detection must be

21

controlled to fulfill the real-time constraints. Fortunately, detection tasks like

reasonableness and safety bag checks are easy to implement and require little515

execution time. Secondly, these new detection modules must also be monitored

and fault tolerant. We could consider that, with the exception of complex de-

tection (model based checks), the simplicity of the code could be assumed to be

free of design faults. The only relevant faults for these modules are real-time

faults, which are monitored to ensure non-blocking execution of these modules.520

Detection modules allow real-time evaluation of the robotic system identi-

fying the operational and potentially defective functionalities. The detection

module output is a set of Boolean data, called residuals, reflecting the correct

or incorrect behavior of the monitored function. This information is used in the

diagnosis process to identify faults affecting the robot and its control architec-525

ture.

4.3. Step 3: Fault diagnosis

We propose to base the diagnosis phase on detection residuals and fault

signature analysis [48]. This choice enables us to use a simple, efficient, flexible

and classical approach, which can be easily implemented whatever the modular530

control architecture. Furthermore, this diagnosis technique is a good tradeoff

between efficiency and resource consumption, which is a decisive element in our

embedded and real-time context.

4.3.1. Residuals and incidence matrix

The incidence matrix structure is given in Figure 2 for one functioning mode.535

The rows correspond to detection residuals, the columns represent the module’s

fault identifiers (those identified in the FMECA table, see Table 1). A given

column corresponds to a fault signature, i.e. a specific set of residuals, which

corresponds to the detection of a specific fault.

Since the detection modules are specifically designed to detect identified540

faults, most of the signatures are strongly isolating, i.e. they immediately isolate

a fault. But detection is not always very easy and could be weakly isolating,

22

Sub-objective X, Functioning mode Y

Residual
Module 1 Module 2

...
Module N

IdF1 IdF2 IdF3 IdF4 IdF5 IdFk-1 IdFk

R1

..

Rm

Table 2: Incidence matrix structure

i.e. the signature could correspond to several faults. However, in all cases,

the incidence matrix is based on the FMECA table, and thus should cover all

relevant faults that can affect the robot. Consequently the diagnosis process545

should always converge and isolate the original fault(s).

If this is not the case, i.e. if there is a detected problem for which the

origin could not be identified, this could correspond to either an incomplete

FMECA analysis, and the original fault has not been identified, or an insufficient

detection process, and there are not enough nor relevant residuals. In both cases,550

a backup solution must be found to stop the mission and put the robot in a safe

state.

4.3.2. Fault identification

Based on the detection module information, the residual values of a func-

tioning mode are updated during each execution cycle. The diagnosis logic555

presented in Figure 6 allows determination of the faulty modules, using the in-

cidence matrix and information on the logical relation between failures specified

in the FMECA table. Depending on the isolating properties and logical rela-

tions, unique or multiple faults could be diagnosed as being the origin of one or

several failures.560

The identification process also defines the severity associated with the di-

agnosed fault. The severity is used to guide the recovery process. In case of

multiple fault (or failure) configurations, this severity depends on the most rele-

vant diagnosed fault and failure (the final severity is either the worst one, in case

23

Strongly isolating
signature?

Signature =
! {Strongly isolating signatures

without Logical relations}?
Signature =

Strongly isolating signature
with Logical relations?

Signature =
! {Strongly isolating signatures

with Logical relations}?

Unique fault "
Unique failure

Multiple faults "
Multiple independent failures

Unique fault "
Multiple failures

Multiple faults "
Multiple failures

Figure 6: Diagnosis process logic

of independent failures, or one of the initial failures, in case of linked failures).565

4.3.3. Updating the module state

At the beginning of the mission, all modules that can be employed in a

functioning mode are considered to be in an operational state. When a module

is diagnosed as being faulty, its corresponding state will be modified, depending

on the duration of the fault (its type). If the failure mode is considered to be570

permanent, then the module state becomes non-operational and the module

will never recover its associated functionality. If the failure mode is transient,

the module state is considered to be reversible and the module may eventually

recover its functionality.

The module state database is permanently updated according to the diag-575

nosis process results. This information will be useful for making the recovery

decisions.

4.4. Step 4: Fault recovery

The final step of fault tolerance is the fault recovery process. The most

adapted recovery behavior must be selected from the identified fault and its580

associated severity information produced in the diagnosis phase. We implement

24

the modality switching principle, which is a reactive, flexible and efficient way

to implement recovery.

The fault recovery must take into account: the severity associated with the

detected fault; the robot’s current state, i.e. its autonomy level, sub-objective585

and functioning mode, and the available resources, i.e. the module state (oper-

ational or not, or reversible).

The state machine shown in Figure 7 illustrates, for a given autonomy level,

the proposed recovery principles (supposing there are only two functioning

modes). According to the severity associated to the fault, there may be five590

generic reactions:

• Reconfiguration (severity = weak): Troubleshooting just locally affects

one module, which only requires adaptation of its parameter values. The

current functioning mode, sub-objective and consequently autonomy level

are preserved.595

• Adaptation (severity = medium): A module is out of order and the current

functioning mode cannot be maintained at all, but an alternative solution

can be found while preserving the current autonomy level. This alternative

solution generally leads to degradation of the robot performance, changing

the functioning mode but keeping the same sub-objective (i.e. robotic600

task) and autonomy level.

• Autonomy Adjustment (severity = serious): The faulty functionality is

essential for the mission success but cannot be recovered autonomously.

Human interaction is needed to locally (detect, understand and solve the

problem) or definitively (an operator provides the faulty service) resolve605

the problem and continue the mission. This reaction requires operational

communication.

• Safety Waiting (severity = serious): The fault is serious but the communi-

cation functionality is unavailable. No alternative sub-objective function-

ing mode can be immediately considered, but some essential functional610

25

modules are in a reversible state. The mission is interrupted and the robot

is safety parked, awaiting hypothetical recovery of its key functionalities

(including communication) to continue its mission.

• Definitive Stop (severity = fatal): No alternative solution can be planned

and some of the necessary functionalities are permanently non-operational.615

The mission must be aborted and the robot safety parked.

At any time, if some modules again become operational via the reversibility

principle, the best and most efficient autonomy level and functioning mode

will be engaged. The reversibility possibilities are shown with dashed lines in

Figure 7.620

Nominal
Fct. Mode

New
Autonomy

level

Less
Performant
Fct. Mode

WAIT

STOP

W
ea

k

Weak
Medium

Serious with potential
recovery solution

S
erious w

ith recovery solution

Serious with recovery solution

Fatal Fatal

Recovery anew
available

End Serious

End Medium

Fatal

Serious with potential
recovery solution

E
nd S

erious

Recovery anew
available

Recovery anew available

Figure 7: Recovery principle management

Some implementation and experimental results of our fault tolerance ap-

proach are summarized hereafter.

5. Fault Tolerant Control Architecture Implementation

The proposed approach was implemented in the COTAMA (COntextual

TAsk MAnagement) control architecture [49].625

26

Basically, this modular and component oriented architecture supports mid-

dleware which manages the real-time constraints and module interactions. Each

module has specific ports used to convey the data and control flows.

COTAMA involves two main layers (white boxes in Figure 8). The execu-

tive layer pools the low-level modules implementing robotic and communication630

functionalities (sensing, control, actuating, etc.). Moreover, it also integrates

the scheduler module, which controls the module’s execution according to the

current sub-objective functioning mode and the real-time constraints. The de-

cisional layer manages the execution of the mission progress using global and

local supervisors. The global supervisor decomposes the mission into a set of635

objectives. A local supervisor splits an objective into sub-objectives that are

controlled by the scheduler.

Mission

Module Module Module Module

Sensors
Module

Actuators
Module

Sensors
Module Sensors

Module

SCHEDULER

LOCAL SUPERVISOR

GLOBAL SUPERVISOR

Mission

Objective

Sub-objective

Detection
Module

Detection
Module

Diagnosis Module

Adaptation
Events ADAPTER SUPERVISOR

Functioning Mode Update Event : Modules status

Events
Local Events

Global Events

RECOVERY
SUPERVISOR

FMECA
Data
Base

EXECUTIVE LAYER

DECISIONAL LAYER

Figure 8: Fault tolerant COTAMA architecture

Based on the previous elements, the COTAMA architectural organization

was adapted to integrate fault tolerant principles (grey boxes in Figure 8). In

the executive layer, detection modules are added to implement fault detection.640

27

Then the diagnosis module, using the detection information, diagnoses the orig-

inal fault(s) and the corresponding faulty modules. According to the FMECA

database, it also identifies the associated severity of the most relevant fault.

Finally, at the decisional layer, the recovery supervisor handles the recovery re-

action. According to the robot’s state, operational functionalities and severity645

of the failure, it determines the supervisor to engage depending on the chosen

recovery action:

• Reconfiguration is done directly by setting the parameters of one module.

• Adaptation is done by the adapter supervisor, a new supervisor introduced

in the control architecture for the functioning mode management.650

• Autonomy adjustment corresponds to a change of the current sub-objective

by the local supervisor.

• Safety waiting is done using a specific objective; it is managed by the

global supervisor.

• Definitive stop is also done by the global supervisor, stopping the current655

objective and/or aborting the mission.

6. Experimental results

6.1. Experimental context

A conventional office delivery mission using a mobile robot was used to val-

idate the proposed approach. The mission was carried out in a known environ-660

ment: a map of the experiment area was available. However, the environment

was dynamic and unforeseen obstacles could be encountered during the robot’s

movements.

Experiments were performed with a Pioneer-3DX from MobileRobots with

two driving wheels using reversible DC motors. The robot has the following665

embedded sensors to perceive the environment: sonar and bumpers arrays, and

a camera. An embedded laptop hosts the control architecture COTAMA, under

28

a Linux RTAI real-time operating system, and communicates with the robot

microcontroller through a serial connection. It also communicates through a

WiFi network with a remote PC, which manages the overall mission, including670

delivery ordering, path generation and human-robot interactions.

The experimental tests for fault tolerance were conducted using HIL (Hard-

ware In the Loop). This allowed us to control, in a useful and flexible way, the

fault injection process, and then to validate all the fault tolerant mechanisms

of our architecture under a broad range of fault types, severities and date of675

occurrence. Indeed, some faults could be difficult to obtain, and it was almost

impossible to obtain all of the desired faults in a limited-duration mission. For

example, a DC motor problem will be hard to trigger during a mission because

its occurrence probability is very low in a protected environment (indoor). Thus

the robot actuators were really controlled, but some of the sensors were simu-680

lated (e.g. the odometric values were the real ones but the sonar values were

simulated).

Figure 9 presents a simplified Petri net (human-robot interaction not speci-

fied) describing the autonomous mission progress. It is implemented within the

global supervisor through rules using a dedicated logico-temporal vocabulary.685

A typical sequence of objectives cycle is as follows. Once a delivery mission

has been received from the remote PC, the robot moves to the reception point,

receives the object to deliver, moves to the delivery point and delivers the ob-

ject. Throughout the mission, the robot must adapt its behavior according to

the encountered problems. Each objective can be carried out in different ways690

according to the available functionalities. If no alternatives can be found while

some modules remain in a reversible state, a wait objective is engaged until an

operational state can be recovered (e.g. waiting for the WiFi communication

recovery). This behavior was not considered for the reception and delivery ob-

jectives due to the associated simplicity. Regardless of the current objective,695

when a fatal error occurs, the mission must be definitively aborted.

When developing the mission, we principally focused on the moving objec-

tive. Three autonomy levels were defined. The first one is the autonomous level,

29

WAIT

WAIT

WAIT

STOP

W
A

ITIN
G

M

ISSIO
N

Reception
acknowledge

Mission

RECEPTION

DELIVERY

Delivery
acknowledge

Temporary
stop event

Temporary
stop event

Temporary
stop event

Mission
resumption

Mission
resumption

Mission
resumption

Final
breakdown

event

Final
breakdown

event

Final
breakdown

event

Final
breakdown

event Final
breakdown

event

Final
breakdown

event

Delivery point
reached

Reception point
reached

MOVING TO THE
RECEPTION POINT

MOVING TO THE
DELIVERY POINT

Final
breakdown

event

Final
breakdown

event

Figure 9: Simplified Petri net of the global supervisor for autonomous behavior

30

when the robot is able to reach its objective itself and overcome the encoun-

tered faults. The two others are teleprogrammed and teleoperated, when the700

robot needs some human assistance to overcome a fault or compensate for a

non-operational functionality. In teleprogrammed mode, human intervention is

sporadic, giving the robot a solution, whereas in teleoperated mode it replaces

the missing functionality itself.

6.2. Mission implementation: focus on the moving objective705

The moving objective consisted of two sub-objectives: path generation, and

path following. We focused on this last one. For its implementation, a set of

control modules (Table 3) had to be developed for: sensor and actuator man-

agement, navigation, guidance (obstacle avoidance) and control; and a set of

detection modules for fault detection. The executive layer of the control archi-710

tecture then consisted, for this sub-objective, of 11 modules implementing the

robotic control algorithms (e.g. probabilistic approach for localization with the

Monte-Carlo approach or obstacle avoidance using a Deformable Virtual Zone

(DVZ) approach or some embedded functionalities (e.g. communication man-

agement). One specific module was also integrated to simulate sonar sensors715

for the HIL experiments, and another one for remote PC communication to al-

low supervision and the human-robot interaction (HRI). Moreover, 9 detection

modules were developed for the detection of one of the 30 different faults iden-

tified during the FMCEA analysis. Real-time error detection using the timing

check principle predominated (17 of the 30 identified faults were detected with720

this mechanism). Reasonableness check was also largely developed for sensor,

environment perception or energy problems detection (9/30). These two check

methods were sometimes used in association with an historical analysis of the

data values. With this simple robot, monitoring for diagnosis principle using a

model based approach was only developed for DC motor wheel malfunctioning725

with MMKF (Multiple Model Kalman Filter) (2/30) and particle dispersion de-

tection (1/30). No safety bag checking safety properties were implemented. The

last fault was associated with a classical transmission error detection method.

31

Control

module
Role

Detection

module
Role

P3D
Robot / control architecture

communication interface
BKF

Wheel fault monitoring:

Kalman filter [26]

UST Sonar management LOC
Localization quality moni-

toring

ODO
Robot’s odometry manage-

ment
RTC Real-time fault monitoring

MCL
Monte-Carlo localization

(adapted from [50])
OWF LAN quality monitoring

NAV Robot’s state computing OSM
Quality monitoring of the

SMZ path following

GUI Path following ODV
Quality monitoring of the

DVZ path following

CTL
Asymptotic control with ac-

tuator velocity saturation
ACT

Actuator information moni-

toring

DVZ
Obstacle avoidance using

DVZ [51]
SNS

Sonar information monitor-

ing

SMZ
Obstacle avoidance using

SMZ [52]
OP3

Bumpers, robot energy and

internal communication

monitoring

UDP
Robot / remote PC commu-

nication interface

SIM Sonar simulator for HIL

Table 3: Modules for the autonomous path following sub-objective

According to the existing functional redundancy, many functioning modes

can be defined for the autonomous path following. The robot’s movement can730

be safe or not if an obstacle avoidance approach is employed. Moreover, the

localization scheme can be based on the probabilistic approach or on odometer

information.

32

6.3. Example of a fault tolerant mission

Figure 10 shows an example of an HIL scenario where a robot initially waits735

for a mission at point A, must recover an object at this point, and must deliver

it to office B. All along the recorded trajectory, several points (numbered from

1 to 9) identify relevant events.

Figure 10: Delivery mission scenario

The control loop execution constraint is set at 0.1 s. When moving, the

robot speed is 0.3 m/s in autonomous configuration. The mission duration is740

4.68 min and the length of movement is approximately 75 m.

Table 4 summarizes the most relevant information describing the mission

from the reception to the destination point. The left part explains, for each

point of the mission the robot’s current sub-objective and functioning mode

and the corresponding autonomy level. The right part describes the normal745

mission events (normal type) or the fault tolerant events (italic type) leading to

the current robot task. In the fault tolerant event cases, the table also specifies

the associated characteristics of the detected faults and failures (C: class, T:

type, S: severity) and the corresponding recovery action.

33

!"

Aut. Level : Autonomy level

F/F char : Fault / Failure characteristics

C : Class

T : Type

S : Severity

Relevant event
F/F char

Phase
:

Point

Sub-objective
(functioning

mode)

Aut.
level Event

 C T S

Recovery and
reversibility

1 : A Reception AUT Reception
acknowledge

2 : A-1 Moving (using SMZ
and MCL) AUT Real-time

error P T Weak MCL
Reconfiguration

P T Medium
3 : 1-2 Moving (using SMZ

and MCL) AUT Localization
error P T Ignored

Local adaptation

4 : 2-3 Moving (using SMZ
without MCL) AUT Important

backward step C T Serious Autonomy
adjustment

5 : 3 Human decision HRI Teleoperation
choice

6 : 3-4 Teleop.
(using DVZ) TOP Teleoperation

7 : 4 Human decision HRI Teleprogrammation
choice

8 : 4 Human localization TPG Teleprogrammation

9 : 4 Human decision HRI Autonomous choice

10 : 4-5 Moving (using SMZ
and MCL) AUT Sonar blind P T Medium Local adaptation

11 : 5-6 Moving (using SMZ
without MCL) AUT Sonar default

recovery End of medium fault:
Local adaptation

12 : 6-7 Moving (using SMZ
and MCL) AUT Sonar

out of order C P Medium Local adaptation

13 : 7-8
Moving

(without obstacle
avoidance)

AUT Bumper crash
detection P T Serious Autonomy adjustment

14 : 8 Human decision HRI Tele-operation
choice

15 : 8-9
Teleop

(without obstacle
avoidance)

TOP Loss of WiFi link P T Serious Autonomy
adjustment

16 : 9 Waiting AUT WiFi link recovery End of serious fault:
Autonomy adjustment

17 : 9-B
Teleop

(without obstacle
avoidance)

TOP
Destination point

reach
(Human decision)

Table 4: Mission description: relevant information

The mission run is also explained below:750

• Phase 1: reception of the object to deliver at point A.

• Phase 2: the robot starts to move autonomously to the destination point.

All its actuators, sensors and software modules are operational, thus the

34

most efficient functioning mode can be employed (using SMZ-type obsta-

cle avoidance and particle filter stochastic localization (MCL)). However,755

at point 1, a real-time fault of weak severity is encountered due to an

excessively high particle number in the localization algorithm. The MCL

module needs to be reconfigured, while reducing the number of particles.

• Phase 3: The mission continues until point 2, where a marked difference

between the MCL localization and the odometric measurements is ob-760

served. This deviation is due to an unforeseen obstacle, which completely

blocks the robot’s course. Due to its obstacle avoidance functionality, the

robot avoids the obstacle and the MCL localization finally loses the real

localization. In fact, the diagnostic module identifies two potential origins,

i.e. either MCL malfunctioning due to a weak environment disturbance765

(mismatch between the map and the actual sensor information) or false

odometric information induced, for example, by sliding wheels. Since this

last fault is supposed to be neglected for short distances within the labora-

tory, MCL malfunctioning is the more severe fault. Then a sub-objective

adaptation is engaged where localization is now based on odometric data.770

• Phase 4: Unfortunately, this new position (point 3) is very different from

the previous one and an important and unwanted backward step in the

path following functionality is detected. The robot is lost and cannot

handle the situation itself. The detected fault is thus considered to be

serious and a human analysis (human-robot interaction - HRI) is required.775

• Phases 5-9: To analyze the situation, the operator chooses to change the

autonomy level, teleoperating (TOP) the robot, to observe the environ-

ment using the embedded camera. Once the unforeseen obstacle is ob-

served, the operator decides, at point 4, using teleprogrammed (TPG)

sequences, to give new information to the robot: the correct localization780

and a new path to follow. The human also updates the module status

database (MCL is operational again). Finally, the operator again starts

the nominal moving sub-objective in autonomous mode.

35

• Phases 10-11: At point 5, a new problem is encountered: due to a too wide

corridor configuration, the sonar’s range is not sufficient to correctly model785

the robot environment. So the sonars are considered to be transiently blind

for distant objects, but still useful for close obstacles. This transient fault

with medium severity makes it necessary to use an adapted moving sub-

objective based only on odometric information. Once point 6 is reached,

the new corridor configuration makes it possible to detect that the sonars790

are operational. Thanks to this reversibility, the optimal moving sub-

objective can be retried.

• Phase 12: A permanent sonar breakdown is simulated at point 7. Faced

with this serious and permanent fault, a local adaptation is engaged where

an unsafe displacement without obstacle avoidance is proposed.795

• Phases 13-14: The risk is, like at point 8, that the robot bumps into an

obstacle. This is a serious fault: no autonomous solution exists so far for

the moving sub-objective. An operator decision is needed and an HRI

is begun. The operator decides to complete the mission in teleoperation

mode without obstacle avoidance.800

• Phases 15-17: During teleoperation, a loss of WiFi link is simulated for a

few seconds (at point 9). This fault is serious but with a potential recovery

solution. Then the architecture switches to the waiting sub-objective,

awaiting signal recovery. Once the link is back, the robot’s teleoperation

is reinitiated until the destination point is reached at point B.805

These results demonstrate the efficiency, flexibility and adaptability of the

developed fault tolerant control architecture. Throughout the mission, all fail-

ures severities and then all recovery mechanisms were investigated (except the

hard severity leading to definitive mission abortion), included the treatment

of multiple failure occurrences and functionality reversibility. three autonomy810

levels, two specific modes (HRI and waiting) and five functioning modes (three

autonomous and two teleoperated) were successively used to successfully com-

36

plete the mission.

7. Conclusion

This article investigates a central and critical issue encountered in the devel-815

opment reliable robotic systems - the fault tolerance paradigm. Fault tolerance

is conventionally based on three main principles: fault detection, fault diagnosis

and recovery. An analysis of existing studies demonstrates that fault tolerance

is seldom considered in robotic control architectures. Furthermore, in spite of

numerous existing results, the basic fault tolerance principles are usually em-820

bedded into the architecture and generally empirically considered. Finally, the

different steps (forecasting, detection, diagnosis and recovery) are seldom con-

sidered together, while a common design enhances the efficiency of each.

A structured approach to develop a fault tolerant architecture is presented to

overcome these limitations. Based on a fault forecasting phase obtained with a825

FMECA analysis, each fault tolerant principle is reified within the control archi-

tecture: dedicated detection modules are added for failure detection, signature

analysis is developed for fault diagnosis, and finally fault recovery mechanisms

are implemented based on modality switching, while integrating autonomy level

adaptation.830

Systematization of the FMECA analysis is essential for fault tolerance effi-

ciency. Even if it could be considered as a heavy phase, the advantage of our

solution is that the FMECA tables are developed at the module level. The

module codes and module FMECA tables could be kept on the shelf to be read-

ily available. Our detection concept allows adaptation of the observation load,835

while executing or not the detection modules. A tradeoff must be obtained de-

pending on the embedded resources and the reliability needed. The diagnosis

phase is also well adapted to the embedded and real-time context: the signa-

ture method is simple and efficient. Furthermore, we complete it with specific

mechanisms to manage the multiple fault and failure configurations. Finally,840

we proposed and implement a wide range of recovery solutions with execution

37

control and human interaction, while also integrating automatic recovery of the

nominal behavior in case of transient faults.

This approach was successfully validated on a mobile robot for a delivery

mission. The executive layer includes twelve control modules and nine detec-845

tion modules, and five high level modules are dedicated to mission and fault

tolerance management. The experimental mission allows validation of all fault

tolerance mechanisms detecting and diagnosing all possible types of faults and

engaging all possible recovery solutions. But the validation work is not finished:

it is now necessary to test our methodology and architecture in more complex850

and realistic missions, and in a more unstructured environment, as encountered

outdoor.

Indeed, fault tolerance makes it possible to identify and react to relevant

faults that can affect autonomous systems. Most usual sensing, software or

hardware faults can be reasonability anticipated. However, it is more difficult855

to consider the environment non-determinism through robot action or interac-

tion. Using robots in the field means being able to cope with harsh experimen-

tal conditions. The development of more effective detection techniques is thus

crucial. Moreover, to deal with fault uncertainty, statistical identification meth-

ods should certainly be considered. Such an analysis of occurrence probability860

could also help to refine the detection load accuracy. Furthermore, to extend

the recovery efficiency and try to overcome the modality principle limits of the

execution control, it would be interesting to integrate re-planning capacities in

the fault tolerant approach. Multi-robot approaches could also be considered,

using different robots as functional redundancy for fault tolerance.865

Finally, fault tolerance needs could be dynamically adapted, depending on

the embedded resources and reliability needs. Our fault tolerant architecture

disposes of mechanisms that allow this adaptation. It is however necessary to

develop an adaptation strategy, with resource estimation techniques, and with

specific metrics to evaluate the exact reliability of a fault tolerant system within870

a given environment.

38

References

References

[1] N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, R. Sieg-

wart, Design and system integration for the expo.02 robot, in: proc. of the875

Workshop on Robots in Exhibitions, IEEE/RSJ International Conference

on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.

[2] G. Griffiths, N. Millard, S. McPhail, P. Stevenson, P. Challenor, On the

reliability of the autosub autonomous underwater vehicle, International

Journal of the Society for Underwater Technology 25 (4) (2003) 175–184.880

[3] J. Carlson, R. Murphy, How UGVs physically fail in the field, IEEE Trans-

actions on Robotics 21 (3) (2005) 423 – 437.

[4] D. T. Phuoc-Nguyen Nguyen-Huu, Joshua Titus, G. Ulsoy, Reliability and

failure in Unmanned Ground Vehicle (ugv), Tech. Rep. GRRC Technical

Report 2009-01, Ground Robotics Research Center, University of Michigan885

(2009).

[5] Coordination action for robotics in europe (CARE) and european robotics

technology platform (EUROP), Robotic visions to 2020 and beyond, the

strategic research agenda for robotics Europe (2009).

[6] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and890

taxonomy of dependable and secure computing, IEEE Transactions on De-

pendable and Secure Computing 1 (1) (2004) 11–33.

[7] V. Verma, R. Simmons, Scalable robot fault detection and identification,

Robotics and Autonomous Systems 54 (2) (2006) 184 – 191.

[8] Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant895

control systems, Annual Reviews in Control 32 (2) (2008) 229 – 252.

[9] R. Isermann, Fault-Diagnosis Systems : An Introduction from Fault De-

tection to Fault Tolerance, Springer, 2006.

39

[10] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, A review

of process fault detection and diagnosis: Part I: Quantitative model-based900

methods, Computers and Chemical Engineering 27 (3) (2003) 293–311.

[11] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, A review of pro-

cess fault detection and diagnosis: Part II: Qualitative models and search

strategies, Computers and Chemical Engineering 27 (3) (2003) 313–326.

[12] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, K. Yin, A review905

of process fault detection and diagnosis: Part III: Process history based

methods, Computers and Chemical Engineering 27 (3) (2003) 327–346.

[13] R. J. Patton, Fault-tolerant control: the 1997 situation, in: proc. of the

IFAC Symposium on Fault Detection, Supervision and Safety of Technical

Processes, Vol. 2, Kingston Upon Hull, UK, 1997.910

[14] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, H. Das, The claraty

architecture for robotic autonomy, in: proc. of the 2001 IEEE Aerospace

Conference, Big Sky Montana, USA, 2001.

[15] J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard-Gibollet,

D. Simon, N. Turro, The ORCCAD architecture, International Journal of915

Robotics Research 17 (4) (1998) 338–359.

[16] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An architecture

for autonomy, International Journal of Robotics Research 17 (1998) 315–

337.

[17] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M.-O. Killijian,920

D. Powell, Fault tolerance in autonomous systems: How and how much ?,

in: 4th IARP/IEEE-RAS/EURON Workshop on Technical Challenges for

Dependable Robots in Human Environments, Nagoya, Japan, 2005.

[18] G. Steinbauer, M. Mörth, F. Wotawa, Real-time diagnosis and repair of

faults of robot control software, in: RoboCup 2005, Springer-Verlag, Berlin,925

40

Heidelberg, 2005, Ch. Real-Time Diagnosis and Repair of Faults of Robot

Control Software, pp. 13–23.

[19] A. Basu, M. Gallien, C. Lesire, T. H. Nguyen, S. Bensalem, F. Ingrand,

J. Sifakis, Incremental component-based construction and verification of

a robotic system, in: 18th European Conference on Artificial Intelligence,930

ECAI, Patras, Greece, 2008.

[20] F. Py, F. Ingrand, Real-time execution control for autonomous systems., in:

proc. of the 2nd European Congress ERTS, Embedded Real Time Software,

Toulouse, France, 2004.

[21] Z. Duan, Z. Cai, J. Yu, Fault diagnosis and fault tolerant control for935

wheeled mobile robots under unknown environments: A survey, in: proc.

of the IEEE International Conference on Robotics and Automation, ICRA,

Barcelona, Spain, 2005.

[22] M. Brandstötter, M. W. Hofbaur, G. Steinbauer, F. Wotawa, Model-

based fault diagnosis and reconfiguration of robot drives, in: proc. of the940

IEEE/RSJ International Conference on Intelligent RObots and Systems,

IROS, San Diego, USA, 2007.

[23] J. Mendoza, M. Veloso, R. Simmons, Mobile robot fault detection based on

redundant information statistics, in: IROS Workshop on Safety in Human-

Robot Coexistence and Interaction, Vilamoura, Portugal, 2012.945

[24] J. Mendoza, M. Veloso, R. Simmons, Motion interference detection in mo-

bile robots, in: proc. of International Conference on Intelligent Robots and

Systems, IROS, Vilamoura, Portugal, 2012.

[25] A. Aguiar, Multiple-model adaptive estimators : Open problems and fu-

ture directions, in: proc. of the European Control Conference, ECC, Kos,950

Greece, 2007.

[26] S. I. Roumeliotis, G. S. Sukhatme, G. A. Bekey, Fault detection and iden-

tifcation in a mobile robot using multiple model estimation, in: proc. of

41

the IEEE International Conference on Robotics and Automation, Vol. 3 of

ICRA, Leuven, Belgium, 1998.955

[27] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, H. Das, Claraty:

Coupled layer architecture for robotic autonomy, Tech. rep., NASA - Jet

Propulsion Laboratory (2000).

[28] A. Ranganathan, S. Koenig, A reactive robot architecture with planning

on demand, in: 2003 IEEE/RSJ International Conference on Intelligent960

RObots and Systems, IROS, Las Vegas, Nevada, USA, 2003.

[29] B. Morisset, G. Infantes, M. Ghallab, F. Ingrand, Robel: Synthesizing and

controlling complex robust robot behaviors, in: proc. of the 16th European

Conference on Artificial Intelligence, ECAI, Valencia, Spain, 2004.

[30] S. Lemai, F. Ingrand, Interleaving temporal planning and execution:965

IXTET-EXEC, in: Workshop on Plan Execution, ICAPS, Trente, Italie,

2003.

[31] R. P. Goldman, D. J. Musliner, M. S. Boddy, K. D. Krebsbach, The circa

model of planning and execution, in: Working Notes of the AAAIWorkshop

on Robots, Softbots, Immobots : Theories of Action, Planning and Control,970

Providence, Rhode Island, USA, 1997.

[32] S. Lemai, F. Ingrand, Interleaving temporal planning and execution in

robotics domains, in: proc. of the 19th National Conference on Artifical

Intelligence, AAAI’04, San Jose, California, USA, 2004.

[33] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, S. Chien,975

Decision making in a robotic architecture for autonomy, in: proc. of the In-

ternational Symposium on Artificial Intelligence, Robotics and Automation

for Space, i-SAIRAS, Montreal, CA, 2001.

[34] A. Avizienis, Toward systematic design of fault-tolerant systems, Computer

30 (4) (1997) 51–58.980

42

[35] S. Mercier, F. Dehais, C. Tessier, Adjustable autonomy without levels,

in: NATO SCI-202 Symposium on Intelligent uninhabited vehicle guidance

systems, Neubiberg, Germany, 2009.

[36] C. Miller, H. Funk, P.Wu, R. Goldman, J. Meisner, M. Chapman, The

playbook TM approach to adaptive automation, in: proc. of the Human985

Factors and Ergonomics Society’s 49th Annual Meeting, Orlando, FL, USA,

2005.

[37] D. J. Bruemmer, D. D. Dudenhoeffer, J. L. Marble, Dynamic autonomy

for urban search and rescue, in: AAAI Mobile Robot Competition and

Exhibition (technical report), no. WS-02-18, 2002.990

[38] B. C. Zimmel, M. T. Long, J. Carlson, R. R. Murphy, Distributed error han-

dling and hri, in: proc. of the IEEE International Conference on Robotics

and Automation, ICRA, 2004.

[39] R. R. Murphy, D. Hershberger, Handling sensing failures in autonomous

mobile robots, International Journal of Robotics Research 18 (4) (1999)995

382–400.

[40] Guide to failure modes, effects and criticality analysis (FMEA and

FMECA), British Standards Institution Group - BS 5760-5, 1991.

[41] V. Selvaraj, Failure mode analysis of an autonomous guided robot us-

ing JDBC, Master of science thesis, College of Engineering, University of1000

Cincinnati (2000).

[42] J. Guiochet, C. Baron, UML based risk analysis - application to a medical

robot, in: proc. of the 5th International Conference on Quality Reliability

and Maintenance, Oxford, UK, 2004.

[43] Y. Maddahi, A. Maddahi, S. M. H. Monsef, Design improvement of wheeled1005

mobile robots: Theory and experiment, World Applied Sciences Journal

16 (2) (2012) 263–274.

43

[44] Integration definition for function modeling (IDEF0) (December 1993).

[45] K. Ishikawa, What is Total Quality Control? the Japanese Way, Prentice-

Hall, 1985.1010

[46] M. BARBIER, J.-F. GABARD, D. VIZCAINO, O. BONNET-TORRS,

ProCoSA: a software package for autonomous system supervision, in: proc.

of the 1st National Workshop on Control Architectures of Robots, Mont-

pellier, France, 2006.

[47] X. Olive, FDI(R) for satellites: How to deal with high availability and1015

robustness in the space domain?, International Journal of Applied Mathe-

matics and Computer Science 22 (1) (2012) 99–107.

[48] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, CRC

Press, 1998.

[49] A. E. Jalaoui, D. Andreu, B. Jouvencel, Auv control architecture with man-1020

agement of embedded instrumentation, in: proc. of the 4th IFAC Sympo-

sium on Mechatronic Systems, Heidelberg, Germany, 2006.

[50] L. Zhang, R. Zapata, P. Lépinay, Self-adaptive Monte Carlo localization

for mobile robots using range finders, Robotica 30 (2) (2012) 229–244.

[51] L. Lapierre, R. Zapata, P. Lépinay, Combined path following and obstacle1025

avoidance control of a wheeled robot, The International Journal of Robotics

Research 26 (4) (2007) 361–375.

[52] L. Lapierre, R. Zapata, A guaranteed obstacle avoidance guidance system:

The safe maneuvering zone, Autonomous Robots 32 (3) (2012) 177–187.

44

Crestani Didier is Professor in the French University of Montpellier 2. He

belongs to the Explore team of the robotic Departement of the LIRMM labora-

tory. He obtained his PhD in computer science in 1991. His areas of interest are

software real-time control architecture and fault tolerance for mobile robotics

and environment exploration.

1

BiographyDC

Lionel Lapierre received his Ph.D. degree in Robotics, from the University

of Montpellier 2, Montpellier, France, in 1999. Then, he joined the team of

Professor A. Pascoal within the European project FreeSub for three years. Since

2003, he has been with the Underwater Robotics Division of the EXPLORE

team, Laboratoire d’Informatique, de Robotique et de Microelectronique de

Montpellier (LIRMM), Montpellier, France.

1

BiographyLL

Karen Godary-Dejean received her PhD degree in Computer science from

INSA of Lyon, France, in 2004. This thesis was an industrial collaboration with

the Renault Technocentre research center (Guyancourt, France). She joined the

LIRMM (UMR 5506) in 2005 to be an Assistant Professor at the University of

Montpellier 2. She currently belongs to the EXPLORE team of the Robotics

Department and collaborates with the INRIA DEMAR team. Her research

interests are related to dependability for embedded systems, including fault

tolerance for robotics control architecture and formal modeling and validation

for critical discrete event systems.

1

BiographyKGD

Photo_DC

Photo_LL

Photo_KGD

