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Abstract: Computing systems are becoming more and more dynamically reconfigurable or
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we are particularly interested in approaches where this feedback loop is considered as a case of
control loop where techniques stemming from Control Theory can be used to design efficient safe,
and predictable controllers. This approach is emerging, with separate and dispersed effort, in
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Commandes en boucle fermée pour l’informatique autonome
Résumé : Les systèmes informatiques deviennent de plus en plus reconfigurables, pour
s’adapter à leur environnement et pour automatiser leur gestion. Dans ce but le concept
d’informatique autonome repose sur des boucles de commande. Dans ce rapport nous nous
intéressons à des boucles de commande, issues de la théorie de l’Automatique, pour concevoir
des contrôleurs de systèmes informatiques efficaces, sûrs et prédictibles. Cette approche émerge
au travers d’efforts dispersés, dans le domaine de l’informatique reconfigurable et adaptative, au
niveau de logiciels et d’architectures.

Ce rapport passe en revue ces approches du point de vue de la commande des systèmes, con-
tinus et discrets, appliquée aux systèmes informatiques. On y interprète, au travers d’exemples,
des boucles informatiques de type MAPE-K comme des commandes en boucle fermée au sens de
l’Automatique.

Mots-clés : Informatique autonome, boucle d’administration, théorie de la commande
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1 Feedback loops in computing systems

1.1 Adaptive and reconfigurable computing systems

Computing systems are becoming more and more dynamically reconfigurable or adaptive. The
motivations for this are that, on the one hand, these systems should dynamically react to changes
on their environment or in their execution platform, in order to improve performances and/or
energy efficiency. On the other hand, complex systems are too large to continue being admin-
istrated manually and must be automated, in order to avoid error-prone or slow decisions and
manipulations.

This trend can be observed at very diverse levels of services and application software, middle-
ware and virtual machines, operating systems, and hardware architectures. The automation
of such dynamical adaptation manages various aspects such as computing and communication
resources, quality of service, fault tolerance. It can concern small embedded systems like sensors
networks, up to large-scale systems such as data-centers and the Cloud. For example, data-
centers infrastructures have administration loops managing their computing resources, typically
with energy-aware objectives in mind, and possibly involving management of the cooling system.
At a lower level, FPGA-based architectures (Field-Programmable Gate Arrays) are hardware
circuits that can be configured at run-time with the logics they should implement: they can be
reconfigured dynamically and partially (i.e. on part of the reconfigurable surface) in response to
environment or application events; such reconfiguration decisions are taken based on monitoring
the system’s and its environment’s features.

1.2 Autonomic computing

Analyse

Sensor Actuator
Managed element

Plan

ExecuteMonitor Knowledge

Figure 1: Autonomic manager for administration loop.

Autonomic computing [42] proposes a general feedback loop structure to take this into ac-
count. In this closed loop, systems are instrumented with monitors of sensors, and with reconfig-
uration actions or actuators; these two have to be related by a control and decision component,
which implements the dynamic adaptation policy or strategy. It can be defined as shown in
Figure 1 with the MAPE-K approach, with sub-components for Analysis of Monitored data,
Planning of response actions, Executions of these actions, all of them based on a Knowledge rep-
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4 Rutten & Marchand & Simon

resentation of the system under administration. Autonomic computing has now gained a large
audience [46].

Such autonomic loops can be designed and developed in many different ways, relying on
techniques from e.g. Artificial Intelligence, but an important issues remains in that it is generally
difficult to master the behavior of the automated closed-looped systems with precision.

1.3 Need for control

We are therefore particularly interested in an approach where this feedback loop is considered as
a case of a control loop, where techniques stemming from control theory can be used to design
efficient, safe, and predictable controllers. Control theory provides designers with a framework
of methods and techniques to build automated systems with well-mastered behavior. A control
loop involves sensors and actuators that are connected to the process or “plant” i.e., the system
to be controlled. A model of the dynamical behavior of the process is built, and a specification
is given for the control objective, and on these bases the control is derived. Although there are
approaches to the formal derivation of software from specifications, such as the B method [2],
this methodology is not usual in Computer Science, where often a solution is designed directly,
and only then it is analyzed and verified formally, and the distinction between the process and
its controller is not made systematically.

We observe that this approach of using Control Theory methods and techniques for com-
puting systems, although well identified [36, 67], is still only emerging. Works are scattered in
very separate and dispersed efforts, in different areas of the field of reconfigurable or adaptive
computing, be it at software or architecture level, in communities not always communicating
with each other. Some surveys are beginning to be offered, some offering a classification [57], or
concentrating on Real-Time computing systems [17, 5] but a synthesis of all these efforts is still
lacking. The community begins to structure itself, notably around the only workshop focused
specifically on the topic: Feedback Computing [16].

1.4 Outline.

This paper proposes interpretations of the MAPE-K loop from Autonomic Computing in terms
of control models and techniques.

We first consider this from the point of view of continuous control in Section 2, starting with
the classical PID up to more elaborate nonlinear and event-based control.

Discrete control is then considered in Section 3, where discrete event systems are modeled by
transition systems e.g., Petri nets or labelled automata.

Then some illustrative case studies are presented in Section 4, showing how these concepts
can be put into practice in the framework of real-world computing systems.

Finally, Section 5 provides discussions and perspectives.

2 Continuous control for autonomic computing

2.1 Brief basics of continuous control

The basic paradigm in control is feedback, or closed-loop control, as depicted in Figure 2. The
underlying idea is that control signals are continuously computed from the error signal, i.e. the
difference between the actual behavior of the plant (measured by its outputs) and its desired
behavior (specified by a reference signal). The loop is closed through the controlled plant,

Inria
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Figure 2: The control loop for continuous control.

and control actions are computed indefinitely at a rate fast enough with respect to the process
dynamics [6].

The behavior of the controlled process, whatever its nature (e.g. electro-mechanical or chem-
ical for physical devices, but also digital for schedulers, databases and other numerical com-
ponents) is never perfectly known. It is known only through a dynamic model, which aims to
capture the main characteristics of the process and is most often given as of a set of difference
equations where the continuous time is sampled (usually periodically) at instants tk, tk+1, ... :

xk+1 = f(xk,uk), x(t = 0) = x0
yk = g(xk)

(1)

Here x is the state vector of the process able to describe its behavior over time, x0 is its value
at the initialization of the system. y is a vector of outputs measured on the process via sensors
and f(.) and g(.) are respectively the state evolution function and the output function of the
plant model. u is the vector of control signals sent to the actuators, it is repetitively computed
by a controller, e.g. by a state feedback as:

uk = K(x̂k, rk) (2)

where x̂ is an estimate of the state vector, r is a set of reference signals to be tracked and K(.) is
a function (which can be static or dynamic) of the state (or outputs) and of the reference signals.

Remember that (1) is a model of the plant, i.e. an abstraction of reality where the structure
is simplified and the value of the parameters may be uncertain. However, compared with open-
loop control (which rely on a perfect knowledge of the plant), the closed-loop structure brings
up several distinctive and attractive properties:

Stability It is a crucial property of a dynamic system, ensuring that the trajectory of the
system is kept close of the desired behavior. In particular well designed controllers are
able to improve the stability of marginally stable plants, and even to stabilize naturally
unstable systems. Anyway the stability of a control system must be assessed, as poor
design or tuning can drive the system to unstability;
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6 Rutten & Marchand & Simon

Adaptability As control actions are continuously computed from the tracking error signals, the
controller is able not only to regulate the plant output around a constant reference, but
also to track moving objectives over a large range of values and dynamics, without need
for on-line re-tuning;

Performance shaping As the controller amplifies and adjusts the tracking error before feeding
the actuators, it is able to shape the performance of the controlled plant. For example, the
closed-loop system can be tuned for a response faster than the open-loop behavior, and
disturbances can be rejected in specified frequency bands;

Robustness The control actions are repeated at a rate which is fast compared with the system
dynamics, hence the increments of tracking errors due to imperfect modeling are small, and
they are corrected at every sample. Indeed, besides the main directions of the dynamics,
the model does not need to capture the details of the process dynamics. Most often, poorly
known high frequencies components are discarded, and exact values of the parameters are
not needed. Therefore, feedback is able to provide precise and effective control for systems
made of uncertain components.

2.2 The MAPE-K loop as a continuous control loop

x̂k

Sensor Actuator

Managed element

State estimation

uk = K(x̂k, rk)

uky
xk+1 = f (xk, uk)

Control

yk = g(xk)

Figure 3: The continuous control loop as a MAPEK diagram

The MAPE-K description corresponding to the model (1) with control (2) is as shown in
Figure 3. The Monitor phase of the MAPE-K loop corresponds to the sampling of the system,
typically, it defines the frequency at which the data must be acquired. It is usually related to
sampling theory (Shannon theorem). The Analyse phase is in our description represented by the
hat over x. This notation is commonly used to denote that the exact value of x is not known,
either because of noise that requires a filtering action or because it can not be measured directly
from the system. It is for instance the case of energy consumption that must be estimated
using other variables like CPU or disk usage. The analyse phase would in that case include the
signal estimation/reconstruction or more simply the filtering. The Plan phase corresponds to the
computation of the control law using the Knowledge of the system held in the model. Finally,
the Execute phase consist in changing the value of the actuator at a frequency which is most
often identical to the sampling frequency of the monitor phase.

Inria



Feedback Control as MAPE-K loop 7

2.3 Continuous feedback computing
Let us now examine how feedback can be applied to computing system administration, resource
management or network management. Although feedback control was first developed to control
physical devices like steam engines, factory lines or various kind of vehicles [6], the closed-loop
concept has been adapted for the control of digital devices such database servers, e.g. [51] and
[36], or real-time schedulers as in [53]. However, compared with usual control applications, the
nature of the controlled process deeply differs in the case of control for computing devices, and
the usual components of the control loops must be adapted for the particular technology.

Models Usual models for the control of continuous process are given as a set of differential equa-
tions, which are further discretized as difference equations for numerical control purpose. In
contrast, at a detailed level, digital objects can be often described by large FSMs which are
not well suited for closed-loop control. However, thanks to robustness, a feedback-control
compliant model only needs to capture the essential of the plant dynamics. For example,
computing devices can be approached by “fluid modeling” where, e.g., flow equations de-
scribe flows of input requests and levels in tanks represent the state of message queues [36].
Using such abstractions leads to quite simple difference models, where for example queues
behave as integrators and provide the basic dynamics in the model. Besides metrics related
to performance, as computation loads or control bandwidth, some relevant properties of a
software are related to reliability. For example, the failure probabilities of software com-
ponents may lead to a reliability formal model given as a Discrete Time Markov Chain,
further used for the design of a predictive feedback control law [27].

Sensors Sensors provide raw measurements from the controlled process, they are provided by
hardware or software probes in the operating system or in the application code. Basic
measurements record the system activity such as the CPU use, deadlines misses or response
times of individual components. Raw measurements are gathered and pre-processed to
provide compound records and quality of service clues to the controller. Note that the
CPU use is always of interest, as CPU overloading is a permanent constraint. However, it
is only meaningful when estimated over windows of time: the size of these measurement
windows and associated damping filters provide a second main source of dynamics in the
plant.

Actuators In software control, the actuators are provided by function calls issued by the operat-
ing system, or by other software components with enough authority. Scheduling parameters
such as clock rates, deadline assignments and threads priorities can be used to manage mul-
titasking activities. Admission control can be used to handle unpredictable input request
flows. The frequency scaling capability of modern chips is also an effective tool to optimize
the energy consumption due to high speed calculations in mobile devices.

Controllers Potentially all the control algorithms found in the existing control toolbox can be
adapted and used for the control of digital devices [57]. Most often, thanks to the usually
simple dynamic models considered for software components, simple and cheap controllers
can be effective as detailed in section 2.4. Anyway some more complex control algorithms
have been worked out to better handle the complexity of QoS control for computing systems
(section2.5).

2.4 Basic control
PID (Proportional, Integral, Derivative) control algorithms are widely used, as they are able to
control many single input/single output (SISO) systems through a very simple modeling and
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Sensor Actuator

Managed element

uk = uk−1 +K[ek − ek−1] +
K·Ts
Ti

ek+
K·Td
Ts

[ek − 2ek−1 + ek−2]

ukek

Control

knowledge

Figure 4: The PID continuous control loop as a MAPEK diagram

tuning effort. In that case the control input u is written as a function of the error signal -that
is the difference between a desired output and its measure on the real system- e(t) = r(t)− y(t)
as:

u(t) = Ke(t) +
K

Ti

∫ t

0

e(τ)dτ +KTd
d

dt
e(t) (3)

Here the proportional term K · e(t) controls the bandwidth and rising time of the control
loop, the derivative term KTd

d
dte(t) damps the oscillations and overshoots and the integral term

K
Ti

∫ t
0
e(τ)dτ nullifies the static errors, that is the value of the error e(t) when t goes to the infinite.

Indeed, the ideal continuous PID must be discretized for implementation purpose. For ex-
ample, using a backward difference method (with Ts the sampling period) yields

uk = uk−1 +K[ek − ek−1] +
K · Ts
Ti

ek +
K · Td
Ts

[ek − 2ek−1 + ek−2] (4)

The MAPEK diagram of the PID controller then follows as in Figure 4. Tuning the PID is
made using the knowledge of the system. This knowledge can take the form of a state space or
transfer function model but can also reside in an empirical tuning of the parameter of the PID
controller.

2.5 Advanced modeling and control
Besides PID controllers which have been used in pioneering works (e.g. [50]), other simple/linear
control schemes were also implemented in the context of computer science. [36] is an emblematic
example of a black-box modeling in order to derive a controller using classical linear control theory
aiming to maximize the efficiency of Lotus Notes. Other linear approaches were also implemented
for periods rescaling [14] or to control elasticity of distributed storage in cloud environment [56].
All linear systems share the same superposition property and can be analyzed and assessed using
well established mathematical tools. Unfortunately, their use to real systems that are most of
the time nonlinear is possible only on a limited range of the state space for which linearization
is meaningful. Unfortunately, many classical nonlinearities of computer systems (limited range
for variables, limited bandwidth, etc.) can hardly be taken into account with these tools.

Inria



Feedback Control as MAPE-K loop 9

Therefore, in addition to the linear control theory, the control toolbox now contains a rich
set of advanced control algorithms, which have been developed over years to supplement the
shortage of simple linear control in specific cases.

For example, early models of servers were simple linear fluid models and the corresponding
linear controller as [36]. However, handling trashing in servers needs to model the overhead due
to parallel operations: the ressources needed by a serveur to serve requests is not proportional to
the number of requests. Nonlinear models and control are needed in that case detailed in section
4.2 [53].

In another case study [58], handling the static input and output non-linearities of a software
reservation system is made by the combination of linear and non-linear blocks in a Hammerstein-
Wiener block structure. Then, the corresponding QoS controller is designed in the predictive
control framework. Note that even when these more elaborated non-linear models are considered,
the resulting controllers remain simple with a very small run-time overhead and a moderate
programming effort.

Other nonlinear, switched, hybrid, hierarchical and cascaded schemes were implemented on
various computing systems (see for instance [66, 68] and the references therein).

Indeed it appears that, considering the quite simple dynamics of the controlled system, the
time devoted to modeling is by far larger than the time devoted to control design. Models
well suited for control purpose must be simple enough to allow for the synthesis of a control
algorithm, while being able to capture the essence of the system behaviour. Typically, modeling
for the control of autonomic computing systems needs to consider trade-offs between the control
objectives and the cost needed to reach them through the execution of parallel activities running
on shared hardware and software resources [47].

For example, it has been shown in [52] that a game theoretic framework allows for the
decoupling between the resource assignment and the quality setting, finally leading to a resource
manager with a linear time complexity in the number of applications running in parallel. Once
the resources and concurrent activities has been suitably modeled, the control decisions can
be implemented as a hierarchy of layered controllers ranging from the control of elementary
components up-to QoS optimization, e.g., as in [48].

Finally, the execution cost of the controller itself must be considered. Traditionally control
systems are time triggered, allowing for a quite simple stability analysis in the framework of
periodic sampling. However, the choice of the triggering period is an open issue, as reactivity
needs fast sampling leading to a high computing cost. However, fast reactions are not always
necessary, for example in case of slowly varying workloads. To avoid wasting the computing
resource, the event-based control paradigm has been proposed (e.g. [65]). With this approach,
the controller is activated only when some significant event acting on the system triggers an
event detector.

3 Discrete control for autonomic computing

3.1 Brief basics of discrete control

Figure 5 shows a control loop for the case of discrete control with a memorized state, a transition
function, and a supervisory controller obtained by discrete controller synthesis.

The characterization of Discrete Event Systems [13] is given by the nature of the state space
of the considered system: when it can be described by a set of discrete values, like integers,
or vectors of Booleans, and state changes are observed only at discrete points in time, then
such transitions between states are associated with events. In this section we very briefly and
informally summarize some essential notions.
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xk = x′k−1

raw data

yk ck xk

Figure 5: The control loop for discrete control.

The modeling of sequences of such events, like the sequence of values, at time k, of yk and
uk in Figure 5, can be approached by formal languages. They enable to specify structure in
the sequences of events, representing possible behaviors of a system, or desired behaviors in
the interaction with a system. Operations on languages can help composing them, or making
computations on the represented behaviors.

3.1.1 Automata

are formal devices that are capable of representing languages, in the graphical and intuitive form
of state and transition graphs, also called transition systems, or Finite State Machines (FSM).
As shown in Figure 5, they involve two main features. On the one hand there is a memorizing of
a state, the current value xk resulting from the previous transition at k− 1 (with an initial value
xi at time 0). On the other hand is a transition function T computing the next value of the state
x′k in function of the current observed value yk (we do not yet distinguish controllable variables
c) and current state xk. It can also compute values uk that can be used to send commands to
the controlled system. Figure 5 also shows possible pre-processing between raw data and yk, or
post-processing between uk and concrete actions, e.g corresponding to implementation-specific
filters.

(x′k,uk) = T (yk,xk)
xk = x′k−1
x0 = xi

(5)

Such automata can be associated with properties pertaining to their general behavior e.g.,
determinism, reactivity, or more specific like reachability of a state, and manipulated with oper-
ations e.g., parallel or hierarchical composition. The transitions are labelled by the events which
are recognized when they are taken. Such automata-based models are precisely the basic se-
mantic formalism underlying reactive systems and languages [35, 8]. Related models in terms of
transitions systems also include Petri nets, where the transitions are connecting places which are
associated with tokens: the marking of the set of places by present tokens defines the state of the
Petri net. The transitions can be labelled by events and their sequences define languages. The
relationship with automata is given by the graph of reachable markings of the net. Analysis of

Inria



Feedback Control as MAPE-K loop 11

such transition systems is made possible by algorithmic techniques exploring the reachable states
graph in order to check typically for safety properties (e.g., using model checking techniques and
tools), or concerning diagnosis of the occurrence of unobservable events from the observations
on the behavior of a system.

3.1.2 Control

of transition systems has then been defined as the problem of restricting the uncontrolled behav-
iors of a system, which can be described by an automaton G, so that it remains in a subset of
the language of G, defined by a control objective, describing the desired behavior. The notion of
supervisory control of discrete event systems has been introduced [60], which defines a supervi-
sor that can inhibit some transitions of G, called controllable (controllability of a system can be
partial), in such a way that, whatever the sequences of uncontrollable events, these controllable
transitions can be taken in order for the desired behavior to be enforced, and the undesirable
behavior avoided. Typical desired behaviors, or control objectives, are deadlock avoidance, or
invariance of a subset of the state space (considered good). A specially interesting property of
the supervisor is it should be restricting only the behaviors violating the desired objectives, or in
other terms it should be maximally permissive. As shown in Figure 5, the resulting synthesized
controller C gives values to controllable variables c, which are part of the parameters of the
transition function T :

(x′k,uk) = T (yk, ck,xk)
ck = C(yk,xk)
xk = x′k−1
x0 = xi

(6)

Tools available to users who wish to apply such automated controller synthesis techniques
include: TCT, based on languages models and theory [64]; Supremica, related to the manufactur-
ing languages of the IEC standard [3]; SMACS, which achieves Controler Synthesis for Symbolic
Transition Systems with partial information [39]; Sigali, which is integrated in the synchronous
reactive programming environments [54] , and in the compiler of the BZR language [18]. A new
tool, ReaX, extends the expressivity to Discrete Controller Synthesis for infinite state systems,
and treats logic-numeric properties [9].

(a)

sensor

state
inputs

actuator

managed element

outputs

transition
function

(b)

sensor

state
inputs

actuator

managed element

outputs

transition
function

control

Figure 6: The discrete control loop as a MAPEK diagram. (a): simple automaton-based
manager; (b): exhibiting observability and controllability.
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12 Rutten & Marchand & Simon

3.2 The MAPE-K loop as a discrete supervisory control loop
In the general framework for autonomic computing shown in Figure 1, discrete control can be
integrated as shown in Figure 6(a): it instantiates the general autonomic loop with knowledge
on possible behaviors represented as a formal state machine, and planning and execution as
the automaton transition function, with outputs triggering the actuator. As evoked in previous
Section, such models address properties on the order of events or the mutual exclusion of states,
with tool-equipped techniques for verification (e.g. model checking) and especially Discrete
Controller Synthesis (DCS). The latter is automated and constructive, hence we use it for the
logic control of autonomic systems, encapsulated in a design process for users experts of systems,
not of formalisms.

In the autonomic framework, in order to support coordination of several autonomic managers
by an upper layer, some additional observability can be obtained by having additional outputs,
as shown by dashed arrows in Figure 6(b) for a FSM autonomic manager, exhibiting (some) of
the knowledge and sensor information (raw, or analyzed); this can feature state information on
the autonomic manager itself or of managed elements below. At that level, additional inputs can
provide for controllability by an external coordinator.

3.3 Discrete feedback computing
As was noted by other authors, while classical control theory has been readily applied to com-
puting systems [36], applying Discrete Control Theory to computing systems is more recent. One
of the earliest works deals with controlling workflow scheduling [61]. Some focus on the use of
Petri nets [38, 37, 49] or finite state automata [59].

In the area of fault-tolerant systems, some works [45, 11] present notions similar to control
synthesis, not explicitly considering uncontrollables. In that sense, it resembles more open-loop
control, considering the internals of a computing system, to which we prefer closed-loop control,
taking into account events from its environment.

A whole line of work focuses on the computing systems problem of deadlock avoidance in
shared-memory multi-threaded programs. These work rely on the literature in Discrete Con-
trol Theory concerning deadlock avoidance, which was originally motivated by instances of the
problem in manufacturing systems. [63] is a programming language-level approach, that and
relies upon Petri net formal models, where control logic is synthesized, in the form of additional
control places in the Petri nets, in order to inhibit behaviors leading to interlocking. The Gadara
project elaborates on these topics [62]. They apply Discrete Control internally to the compila-
tion, only for deadlock avoidance, in a way independent of the application. Other works also
target deadlock avoidance in computing systems with multi-thread code [7, 24].

Another kind of software problem is attacked by [29, 30] : they consider run-time exceptions
raised by programs and not handled by the code. Supervisory control is used to modify pro-
grams in such a way that the un-handled exceptions will be inhibited. In terms of autonomic
computing, this corresponds to a form of self-healing of the system. Applications of the Ramadge
and Wonham framework to computing systems can also be found concerning component-based
systems reconfiguration control, enforcing structural as well as behavioral properties [43], and
more generally adaptive systems, as one of the decision techniques in a multi-tier architecture.
[23].

In an approach related to reactive systems and synchronous programming, discrete controller
synthesis, as defined and implemented in the tool Sigali, is integrated in a programming language
compiler. [22] describes “how” compilation works, with modular DCS computations, perform-
ing invariance control. This language treats expression of objectives as a first class program-
ming language feature. The programming language, called BZR, is used in works concerning
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component-based software [12]. It is extended to handle logico-numeric properties, by replacing,
in the modular architecture of the compiler, Sigali with the new tool ReaX [9]. Other previ-
ous work related to the synchronous languages involved some separate and partial aspects of
the problem, testing the idea in the framework of a more modest specialized language [20], and
particular methods and manual application of the techniques [28], and elaborating on the artic-
ulation between reactive programs and DCS [55, 4, 19], as well as application to fault-tolerance
[31, 25].

Some other related work can be found in computer science, in the notions of program syn-
thesis. It consists in translating a property on inputs and outputs of a system, expressed in
temporal logics, into a lower-level model, typically in terms of transition systems. For example,
it is proposed as form of liberated programming [33] in a UML-related framework, with the
synthesis of StateChart from Live Sequence Charts [34, 44]. Other approaches concern angelic
non-determinism [10], where a non-deterministic operator is at the basis of refinement-based
programming. These program synthesis approaches do not seem to have been aware of Discrete
Control Theory, or reciprocally: however there seems to be a relationship between them, as well
as with game theory, but it is out of the scope of this paper.

Also, interface synthesis [15] is related to Discrete Controller Synthesis. It consists in the
generation of interfacing wrappers for components, to adapt them for the composition into given
component assemblies w.r.t. the communication protocols between them.

4 Case studies

4.1 Video decoding and DVFS

Energy availability is one of the main limiting factors for mobile platforms powered by batteries.
Dynamic Voltage and Frequency Scaling (DVFS) is a very effective way to decrease the energy
consumption of a chip, by reducing both the clock frequency and the supply voltage of the
CPUs when high computation speeds are not necessary. Many chips used in embedded or mobile
systems are now fitted with such capabilities, and the computing speed is adapted on-the-fly
thanks to some estimated computing performance requirement.

Using feedback loops is an effective way to robustly adapt the chip computing speed even if the
incoming computation load is hard to predict, as in the example described in [26]. The problem
is to minimize the energy consumption of a H.264 video decoder by using the lowest possible
computing speed able to decode the frames w.r.t. the output display rate (25 frames/sec).

The computing speed is adapted thanks to the control architecture depicted in Figure 7a).
At low level, a computing speed controller -integrated in silicon- drives the DVFS hardware
with frequency and Vdd set points (see [26] for details). It is driven from estimates of the needed
computation load (i.e. the number of CPU cycles) and decoding deadline for the incoming frame.
These estimates are themselves computed by an outer frame control loop.

Measurements of decoding execution times (Figure 7b) show that, between noisy and almost
flat segments, the decoding times exhibit sharp and unpredictable isolated peaks when switching
between plans. Therefore, rather than trying to compute any prediction, the estimation of the
next frame computation load Ω̂i+1 can be simply taken equal to the last one, i.e. Ωi, recorded by
the instrumentation inserted in the H.264 decoder. Even better, it can be provided by smoothed
past values through a low pass filter :

Ω̂i+1 = αΩ̂i−1 + (1− α)Ωi (7)

where 0 ≤ α < 1 controls the filter damping.

RR n° 8827



14 Rutten & Marchand & Simon

Encoded

Bitstream

Quality cost model

Consumption model

Display parameters

Battery monitoring

Bitstream structure

Decoder
display rate

resolution

contrast

Filter

Skip

Frame

Controller

Timing patterns

Cycles estimator
R

eq
D

ea
d

li
n

e

V
h

ig
h

/V
lo

w
 r

at
io

timing tags

actual cycles

Req_Quality

actual quality

aggregated costs

T
im

in
g

 S
ta

tu
s

Controller
req. frequency/voltage

Operating system side

Layers

Computing

Speed

en
er

g
y

m
o

n
it

o
ri

n
g

Silic
on side

R
eq

C
y

cl
es

en
d

 o
f 

ta
sk

m
ax

 s
p

ee
d

Controller

Quality of Service

100 200 300 400 500 600 700 800 900 1000
30

35

40

45

50

55

60

65

70

Frame number

D
e
c
o
d
in

g
 t
im

e
 (

m
s
)

I frames

Figure 7: a) Control architecture – b) Frames computation times

This rough estimate is used by the frame controller to compute the ideal deadline for the
incoming frame using a simple proportional controller :

∆ri+1
= τi+1 + β δi, 0 < β ≤ 1 (8)

where δi is the observed overshoot for the last decoded frame. Indeed this controller aims at
driving the end-of-computation of frame i+ 1 towards τi+1, the theoretic timing of the periodic
video rate.

Despite the apparently overly simple computing load model (7), the very simple and low
cost frame controller (8) is able to regulate the decoding timing overshoot to very small values
(Figure 8a), thus keeping an fluid display rate. Computing a penalty function based on the
viewing quality (Figure 8b) shows that using these elementary feedback loops allow both for a
better viewing quality and up-to 24 % energy saving compared with the uncontrolled decoding
case.
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Hence, this example show that even very simple control loops with negligible computation
overheads, if carefully designed, may have a very positive impact on an embedded system adap-
tiveness and robustness against a poorly modelled environment.

4.2 Server provisioning

A classical technique used to prevent servers from thrashing when the workload increases consists
in limiting client concurrency on servers using admission control. Servers admission control has
a direct impact on server performance, availability, and quality of service (QoS). Modeling of
servers and feedback control of their QoS has been one of the first application domain targeted
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by feedback scheduling, first using linear models [51], [36]. However, it appears that to handle
trashing, the model must accurately capture the dynamics and the nonlinear behavior of server
systems, while being simple enough to be deployed on existing systems.

Based on numerous experiments and identification, a nonlinear continuous-time control theory
based on fluid approximations has been designed in [53]. It is both simple to use and able to
capture the overhead due to the parallel processing of requests responsible of trashing (Figure
9a).

AC

Figure 9: a) Fluid model – b) rejection rate

The request queue is considered as a fluid tank receiving client request flows M and N and
emitting a served requested flow with latency L for the served requests. The system state is
defined by the number of concurrently admitted requests Ne, the server throughput α and the
rejection rate α. The modelling effort leads to the following model for the input/output latency:

L(Ne,M, t) = a(M, t)N2
e + b(M, t)Ne + c(M, t) (9)

where the latency L is a non-linear function of the number of Ne, of the server mix load M and
of continuous time t.The rejection rate is given by

α̇(t) = − 1

∆

(
α(t)− Ne(t)

AC(t)
·
(

1− To(t)

Ti(t)

))
(10)

with ∆ the sampling rate, Ti the input flow and AC the admission control value.
Then two control laws could be derived for different control objectives:

• AC = Ne
1+γ

L
(L−Lmax)

maximizes the availability of the server, i.e. minimizes the rejection
rate;

• AC = αNe
α−γα (α−αmax)

maximizes the performance, i.e. minimizes the latency for the admit-
ted requests.

These simple control laws are cost effective and easy to tune, as they both use a single tuning
parameter γ

L
or γα .

Despite their simplicity, using these simple controllers allows for an efficient on-line manage-
ment of an Apache web server. For example, Figure 10 show that the rejection rate can be kept
close to a desired goal, or that the latency of the served requested can be regulated around the
requested value.
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Even more important, these controllers –with negligible computing cost– turns the nature of
the system into a safer behavior. Indeed, trashing is automatically avoided even in the case of
huge overloads with no need for an operator to manually re-tune the AC parameters.

4.3 Coordination of multiple autonomic administration loops
Real autonomic systems require multiple management loops, each complex to design, and pos-
sibly of different kinds (quantitative, synchronization, involving learning, ...). However their
uncoordinated co-existence leads to inconsistency or redundancy of action. Therefore we apply
discrete control for the interactions of managers [32]. We validate this method on a multiple-loop
multi-tier system.

Controllable managers as seen in Figure 6(b) can be assembled in composites, where the
coordination is performed in a hierarchical framework, using the possibilities offered by each of
them, through control interfaces, in order to enforce a coordination policy or strategy. We base
our approach on the hierarchical structure in Figure 11: the top-level AM coordinates lower-level
ones.

We consider the case study of the coordination of two administration loops for the manage-
ment of a replicated servers system based on the load balancing scheme. Self-sizing addresses
resource optimization, and dynamically adapts the degree of replication depending on the CPU
load of the machines hosting the active servers. Self-repair addresses server recovery upon fail-
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Figure 12: Managers models : self-sizing (left) and self-repair (right).

stop failure of a machine hosting a single or replicated server. Co-existence problems occur when
failures trigger incoherent decisions by self-sizing : The failure of the load balancer can cause
an under-load of the replicated servers since the latter do not receive requests until the load
balancer is repaired. The failure of a replicated server can cause an overload of the remaining
servers because they receive more requests due to the load balancing. A strategy to achieve an
efficient resource optimization could be to (1)avoid removing a replicated server when the load
balancer fails, and (2) avoid adding a replicated server when one fails.

Figure 12 shows the automata modelling the behaviors of the managers, in the BZR language
[21], abstracted to the relevant activity information. In the right of the Figure, the self-sizing
manager is composed of three sub-automata. In brief, the two external ones model the control of
the adding (resp. removal) of servers, with disU (resp. disD), which, when true, prevent transi-
tions where output add (resp. rem) triggers operations. The center one models the behaviors in
reaction to load variation, for which all detail is available elsewhere [32]. In the left of the Figure
are self-repair managers for the load balancer (LB) and the replicated servers (S). The right
automaton concerns servers, and is initially in OkS. When failS is true, it emits repair order rS
and goes to the RepS state, where repS is true. It returns back to OkS after repair termination
(Sr is true). Repair of the LB is similar. The automata in Figure 12 are composed in order to
have the global behavior model, and a contract specifies the coordination policy. The policies
(1) and (2) in Section 4.3 are enforced by making invariant, by control upon the controllable
variables Cu, Cd, the subset of states where the predicate holds : ((repLB => disD) and
(repS => disU))

This controller was validated experimentally on a multi-tier system based on Apache servers
for load balancing (with a self-repair manager) and replicated Tomcat servers (with both self-
sizing and self-repair managers), with injection of workloads and failures to which the system
responded properly, without overreacting, according to the objective.

5 Conclusions and perspectives
We propose a discussion of the problem of controlling autonomic computing systems, which
is gaining importance due to the fact that computing systems are becoming more and more
dynamically reconfigurable or adaptive, to be flexible w.r.t. their environment and to automate
their administration. We observe that one approach consists of using Control Theory methods
and techniques for computing systems : although it is well identified [36], it is still only emerging,
and works are scattered in separate areas and communities of Computer Science.
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We aim at conveying to Computer Scientists the interest and advantages of adopting a Control
Theory perspective for the efficient and predictable design of autonomic systems. Compared with
open-loop, closed-loop control provides adaptability and robustness, allowing for the design of
fault-tolerant systems against varying and uncertain operating conditions. However, there still
is a deep need for research in the problems of mapping from high-level objectives in terms of
Quality of Service (QoS) or Service Level Objectives (SLO) and abstract models towards lower-
levels effective actions on the managed systems. In the area of Computing Systems research,
there is an important topic in the design of architectures so that they are made controllable
[40], as self-aware software (adaptive, reflective, configuring, repairing...) needs explicitly built-
in sensing and acting capabilities [41]. On the other side, the kind of models usual in Control
Theory must be totally reworked to be useful for computing systems, and this is a research
challenge for the Control community. Also, an important issue is that complex systems will
involve multiple control loops, and their well-mastered composition and coordination to avoid
interferences is a difficult and hardly tackled question [1].

One lesson learned in this work is that the open problems are concerning both Control Theory
and Computer science, and that solutions going beyond simple cases require active cooperation
between both fields. As noted by other authors e.g., [27], this bi-disciplinary field is only be-
ginning, and the problems involved require competences in Control, as well as expertise in the
computing systems. There is a costly investment in time to build common vocabulary and un-
derstanding, for which the MAPE-K loop offers a common ground, and this investment opens
the way for better controlled autonomic computing systems, safer and optimized.
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