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Abstract - In this paper, we draw perspectives to endow
a humanoid robot with capabilities to reach known object
in an indoor environment by combining continuous moni-
toring and building using SLAM and visual tracking. We
integrates and exploits two key features: object recog-
nition using the toolbox BLORT, and a SLAM (Simul-
taneous Localization And Mapping) software, that uni-
fies volumetric 3D modeling and image-based key-frame
modeling to be used in tracking. Using these two mod-
ules, we show that it is possible to reach a given object
in the environment providing its model is registered and
known. Our integration software is exemplified using a
humanoid robot HRP-2, we present experimental results
that illustrates the performance of our approach.

Keywords - Humanoid Robots, SLAM, Autonomous
Navigation, Object recognition.

1. Introduction
In the frame of the RoboHow.Cog EU project1, we are

developing with different partners, technologies by which
service robots learn to achieve tasks from web-enabled
instructions or from observing humans on a daily basis.
The demonstrators of the project consists in having a hu-
manoid robot that operate tasks, in indoor environments
such as houses or offices. Examples such tasks in houses
are cooking in kitchen, arranging rooms, assisting trailed
persons, etc.; in offices the humanoid robot could serve
café to workers, or bring printed papers, replace printer’s
paper, prepare the meeting room, etc.

In order to do so, a humanoid robot shall first be able to
have a knowledge of the environment and be able to nav-
igate within it to retrieve objects of interest for a given
task. For example, in order for the robot to feed paper to
the printers or bring printed documents to owes, it has to
know where the printer is and reach it, despite its place
can change because of a new arrangement or cleaning
that may results in the position of the printer to change
slightly from its original pose. As far as humanoids are
concerned, it is well known that its localization, w.r.t the
environment can hardly be achieved solely by embedded
sensors such as accelerometers, encoders, etc. Indeed,
drifts in position estimation is unavoidable during walk-
ing inside the environment even when the walking path is
well predefined. Moreover, such a path cannot be static

1www.robohow.eu

and has to be adapted w.r.t to persons eventually met dur-
ing the walking.

SLAM (Simultaneous Localization and Mapping) [1]
provides recently a very mature technology [2] and al-
lows the robot to simultaneously and continually build
the map of the environments. Recent experiments con-
ducted on our humanoid HRP-2 and HRP-4 robots with
our colleagues’s software in [3], demonstrate an amaz-
ing precision in localization with real-time performances.
SLAM however builds a “rigid model” of the surround-
ing without semantics nor the possibility to distinguish
objects that composes the environment. SLAM can also
be used in closed-loop navigation to reach a given target
defined as desired 3D coordinate point in the model. If
previously mapped objects composing the entire scene as
moved w.r.t to their mapped position, they are considered
as outliers, yet the rigid map can be corrected to integrate
this change in the position, see recent work in [4].

In the other hand, recent advances in robotic visual
tracking [5] [6] is demonstrated in complex tasks that
are achieved in robust closed-loop fashion among which
reaching, manipulation, navigation, when targets of in-
terest are totally or partially in the field-of-view of the
robot’s embedded camera(s). However, closed-loop vi-
sual servoing is still difficult to solve with humanoid
robots due to many aspects: weak odometry, important
blur caused by rapid movements or the sway motion and
the feet impacts generated during walking movements [7]
[8] [9].

Our work in this paper is rather technical; we demon-
strate that by combining 3D SLAM developed in [3]
and the visual object recognition and tracking provided
by BLORT [10] we allow a humanoid robot to au-
tonomously retrieve and reach known objects in indoor
environment which model is build from SLAM. The in-
tegration scheme we present is simple yet effective and
shows a lot of promises for future extensions that will
allow to increase the complexity of the scene and incor-
porate the designated task of the robot within the naviga-
tion scheme. This is a first and important step to enable
robots to competently perform everyday manipulation ac-
tivities [11].

We first introduce the tools that are used to perform
the object localization and the navigation in an indoor
environment using a single commercially available cheap
Asus Kinect RGB-D. We then focus on the necessity to
integrate such tools and how we did it. Finally, we show
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some results that we obtained on the HRP-2 robot and
discuss future improvements to our method.

2. Technological bricks
In this section, we introduce the two key modules that

we aim to integrate in order to make the recognition of the
object and the navigation towards it possible: an object
recognition and tracking toolbox, BLORT, and the SLAM
software: D6DSLAM.

2.1 Object recognition
BLORT, the Blocks World Robotic Vision Toolbox, is

propose in [10]. It is a open source software that aims at
providing a set of tool for robotics to:
• recognize known objects in the environment, and
• track those objects over a sequence of images.

Therefore, it operates in two phases. First, using
Scale-Invariant Feature Transforms (SIFT) [12] associ-
ated to the objects, and learned prior to operation, it
tries to recognize the known objects. Then, the object
is tracked over a sequence of images, using a bootstrap
filter method [13]. A sample from the outcome of the
first phase can be seen in Figure 1a, while the Figure 1b
illustrates the result of the tracking phase.

2.2 Navigation in indoor environments
To navigate towards the object recognized by BLORT,

we initiate the SLAM software D6DSLAM that is pre-
sented in [3] and outlined in Figure 2. D6DSLAM uni-
fies volumetric 3D modeling and image-based key-frame
modeling, to provide and update a rich 3D map of an
unknown environment as well as provide accurate lo-
calization of the robot in its surrounding environment.
D6DSLAM proved to be very robust and accurate in
robotic scenarios, and in particular, it handles very well
the typical sway motion of a humanoid robot during
walking, that is usually problematic for visual servoing
applications [14]. We indeed tried using BLORT for vi-
sual tracking instead of D6DSLAM, but the latter appear
to be a more robust percept.

In order to provide information for navigation, the
software was augmented with a pixel tracker. It is pos-
sible to select a pixel in the current image obtained from
the camera. Once this pixel has been selected then its 3D
position will be tracked and streamed on the network con-
tinuously as the robot progresses and the software builds
a larger and more complex map.

3. Integration of object recognition and
mapping software

In this section we first discuss the limits of object
recognition from an autonomous navigation perspective,
and thus the need for an integrative scheme between ob-
ject recognition and autonomous mapping. We then de-
scribe our strategy to combine them.

3.1 Limitations of object recognition for navigation
A toolbox such as BLORT is not limited to object

recognition, but can provides tracking capabilities, as we

(a) Recognition result for a single object in the robot’s field-of-view.
The circles represent the SIFT features. Green circles represent match
with the cookbook of the object, yellow circles represent partial matches
and red circles represent non-matching features.

(b) Tracking result for a single object in the robot’s field-of-view. The
blue, red and green lines represent the object’s frame. Thus reflecting
the object’s position and orientation in the current view.

Fig. 1: Example of BLORT usage on a printer.

have mentioned previously. Thus, we might also rely on
the tracking capability of BLORT to navigate and reach
the object or spot of interest. This is however limited for
mainly two reasons:

1. On one hand, the tracker obviously requires the ob-
ject or the image of interest to be in the field-of-view of
the camera in order to operate. Unfortunately, in some
cases, e.g. fulfill a robotic or task constraints such as ob-
stacle avoidance, it may be necessary to have the object
temporarily out of the camera field-of-view.
It is also possible to recognize the object of interest
when it re-enters the image, by reinitializing the BLORT
tracker. However, this may require additional object
learning, since the recognition accuracy varies tremen-
dously with the distance to the object.
Therefore, the robot should navigate towards the object
by relaxing the field-of-view inclusion constraints when-
ever needed without jeopardizing the navigation robust-
ness.
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Fig. 2: A view of the environment map generated by the
D6DSLAM software and the robot’s localization within
this map. The nodes of the purple graph represents key-
frames while the blue line indicates the current disloca-
tion of the robot compared to the key-frame that is used
as a reference for localization.

2. On the other hand, an object tracker provides informa-
tion only about the object of interest. This is not sufficient
to provide a safe route in a changing environment com-
prised of obstacles, walls, doors, humans, etc.

Previously described causes, suggest that we use ob-
ject recognition and tracking to search and first retrieve
an object of interest in the environment, and eventually
updating this position if the latter changes, but we will
rely solely on SLAM for vision-based navigation.

3.2 Combining object tracking and SLAM
In order to retrieve known objects in the humanoid

surrounding environment, we propose to follow a two-
phases strategy:
1. The research phase consists in trying to first locate the
object within the environment
2. The object-oriented navigation phase where we au-
tonomously go towards the object of interest that was pre-
viously detected.

We now describe each of these phases: how the recog-
nition information is transmitted to the localization soft-
ware and finally, how the localization information is pro-
vided to the autonomous navigation scheme.

A. Search phase
The goal of this phase is to locate the object. The first

step is to query BLORT about the presence of the object
within the current field of view of the robot. If the object
has been detected by BLORT then we can retrieve the po-
sition of the object and dispatch it to the SLAM software.
If the object has not been detected, we have to search for
the object in another location. This constitutes the core
behavior of this ‘Search phase’.

In this first implementation, two cases are to be con-
sidered:
1. either the robot has not ‘seen’ everything around it.
Then it should rotate on itself and try to find the object in

its field-of-view; or
2. the robot has ‘seen’ everything around it, in which
case it will go towards other unexplored locations or re-
quest help from the human user. This location can be de-
termined either randomly or provided by the SLAM –for
example, an unknown part of the map behind a wall.

However, in our opinion the search phase shall be seri-
ously considered under a semantic SLAM search. Indeed,
if we are able to structure SLAM memory in a way where
objects are labeled and associated with SLAM data struc-
ture, then the object search can boils into a search within
the data structure which then provide (at least) a prelim-
inary guess of the location that BLORT would confirm.
This would then require the possibility for the robot to
plan and reach the presupposed location containing the
object of interest using only SLAM data structure. For
example, if we are starting at the entry of a corridor with
multiple rooms, the current implementation checks in the
room on the left, then the room on the right then continue
forwards into the corridor to check the following rooms.
However, this is definitely not the optimal way. In that
case, a semantical approach would allow the robot to first
search the rooms that are more likely to contain the object
thus saving time in the achievement of its mission [15].

B. From recognition to autonomous navigation
Once the object has been recognized, we determine

which pixel corresponds to the centroid of the object.
This pixel is then transmitted to the localization software
which then starts to track this pixel within the egocentric
frame of the robot, in real-time. This tracking informa-
tion is then used by the robot for autonomous navigation.

Note that if the object position is not conform to the
current SLAM memory –for example, in the case where
the robot had already processed the object of interest in a
previous mission as part of its current SLAM and mean-
while, the object has changed its position–, it is detected
as an outliers and the SLAM updated comfortably to its
current arrangement in the updated SLAM data. It is this
update that will be used for tracking.

C. Object-oriented navigation phase
Given the localization information, the robot starts

walking towards the object, using the navigation algo-
rithm described in [16]. This navigation scheme allows
us to set a navigation goal, but also to specify way-points
that should be reached prior to the destination, and are
used to avoid obstacles. Once the object is reached, the
task is achieved, and other tasks can be performed to in-
teract with the reached object.

4. Results
In this section, we present the experiments that were

conducted with the HRP-2 humanoid robot. We intro-
duce two kinds of experiments:
1. First, a simple experiment where the object is already
present in the scene as we start. The goal of this experi-
ment is to validate the use of SLAM in tracking and the
autonomous navigation algorithm that we developed.
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2. In the second experiment, the object is hidden from
the robot at the beginning and the robot must retrieve it
and then navigates toward it.

For each demonstration, we describe the actual situ-
ation of the experimental room (which is not provided
to the robot), the strategy that is devised by the robot to
search for the object, the initial configuration provided
by the recognition software and the final map built by
D6DSLAM. A video of the experiments can be down-
loaded at this url2. In the video, the upper-left corner
shows a third-person view of the robot executing the task,
the upper-right corner shows the output from the recog-
nition phase – note that this computation does not occur
in real-time since SIFT features computation and classifi-
cation requires heavy computations, the bottom-left cor-
ner shows the map being built by SLAM and finally, the
bottom-right corner shows the RGB and depth pictures
acquired from the embedded camera.

4.1 Experiment 1: object already in the scene

This experiment is the simplest of the two. The robot
starts in (x, y) = (0, 0) and the object to find is a printer
located on a table at roughly (x, y) = (1.7, 1.5), see Fig-
ure 3a. The object is not visible at the beginning. The
robot then turns on the left to ‘scan’ the room and BLORT
then ables to locate it, as seen in Figure 3b. Finally, once
the printer is caught by BLORT, its centroid is passed to
D6DSLAM which the humanoid robot uses to close the
loop and navigate autonomously toward the object. We
pre-programmed the robot to stop at a safe distance that
would allow further manipulations with the printer. The
final map produced in this demonstration is illustrated in
the Figure 3c.

4.2 Experiment 2: hide and seek

In the second experiment, the humanoid robot’s and
the printer’s initial positions are similar to the previous
experiment. However, a wall, as seen in Figure 4a, oc-
cludes the vision of the printer by the robot. By this
set-up, we aim to somehow mimic the corridor scenario
that we introduced earlier in this section. After looking
around for the object and not finding it in its immediate
surroundings, the humanoid robot decides to go forward
as hinted by the user in the beginning. Once this move
is completed, it starts looking around again until BLORT
is finally able to locate the object, as illustrated by the
Figure 4b.

Once the object found, and its centroid given to
D6DSLAM, the humanoid robot can then reach the ob-
ject relaying only on SLAM. It also stops at the same
safe distance defined in the previous experiment. The dis-
tance between the robot and the printer is computed with
respect to its embedded camera. The final map resulted
from this demonstration is visible on the Figure 4c.

2https://dl.dropboxusercontent.com/u/74372876/URAI-2014.mp4

(a) Starting condition in the ex-
perimental room.

(b) The printer found and caught
by BLORT.

(c) Final map of the scene once the object is reached.

Fig. 3: Results from the first experiment.

(a) Starting condition in the ex-
perimental room.

(b) The printer found and caught
by BLORT.

(c) Final map of the scene once the object is reached.

Fig. 4: Results of the second experiment.

5. Conclusion
In this paper, we show the benefits of integrating object

recognition and SLAM to find learned known objects of
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interest in the humanoid surrounding environment. This
integration was successfully demonstrated in an experi-
ment with an humanoid robot. This would allow us to
properly navigate towards an object before executing fur-
ther tasks.

The results are promising, however, many problems
are still to be tackled. In particular, the SLAM software’s
use can be further extended. For example, the informa-
tion provided by the map can be used to provide a col-
lision free path using various waypoints for navigation.
This information can also be used to improve the research
phase and ‘guess’ possible locations for the object we
are searching. Furthermore, we observed that when us-
ing D6DSLAM, rotation of the humanoid robot on it-
self are not very well handled by the localization. This
can be seen in the generated maps, on the Figure 3c and
Figure 4c. This problem can be resolved by extending
the integration between the D6DSLAM software and the
robot control system to provide supplementary informa-
tion about the robot’s attitude and hence improve its es-
timation while possibly prevent noisy inputs due to fast
movements of the camera.

Finally, labeling objects using D6DSLAM’s data
structure and planning paths based on this data can con-
stitute a complete solution for a humanoid robot to evolve
on a daily basis using a simple kinect motion solution.
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