
HAL Id: lirmm-01248591
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01248591

Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An intra-cell defect grading tool
Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri-Sanial, Stefano

Bernabovi, Paolo Bernardi

To cite this version:
Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri-Sanial, Stefano Bernabovi, et al.. An intra-cell
defect grading tool. DDECS: Design and Diagnostics of Electronic Circuits and Systems, Apr 2014,
Warsaw, Poland. pp.298-301, �10.1109/DDECS.2014.6868814�. �lirmm-01248591�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01248591
https://hal.archives-ouvertes.fr


978-1-4799-4558-0/14/$31.00  ©2014 IEEE

An Intra-Cell Defect Grading Tool  
 

A. Bosio, L. Dilillo, P. Girard,  
A. Todri-Sanial, A. Virazel 

LIRMM-UM2/CNRS 
France 

<lastname>.lirmm.fr 

S. Bernabovi, P. Bernardi 
Politecnico di Torino 

Italy 
<lastname>.polito.it

Abstract—With the continuous scaling down of the transistor 
size, the so-called intra-cell defects are more and more frequent. 
In this paper we propose a defect grading tool able to evaluate 
the efficiency of the applied test set. The test set efficiency is 
quantified w.r.t. the intra-cell defect coverage and the intra-cell 
diagnosis resolution.  
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I. INTRODUCTION 
The ever-increasing growth of the semiconductor market 

results in an increasing complexity of digital circuits. Smaller, 
faster, cheaper and low-power consumption are the main 
challenges in semiconductor industry. The reduction of 
transistor size and the latest packaging technology (i.e., 
System-On-a-Chip, System-In-Package, Through Silicon Via 
3D Integrated Circuits) allow the semiconductor industry to 
satisfy the latest challenges. Although producing such 
advanced circuits can benefit users, the manufacturing process 
is becoming finer and denser, making chips more prone to 
defects. In modern deep submicron technologies, systematic 
defects are becoming more frequent than random defects [1]. 

 Today, systematic defects appear not only in the cell 
interconnection, but also inside the cell itself (intra-cell defect). 
In literature, existing works prove that these defects can escape 
classical test solutions. In [2] a statistic carried out over 1 
million tested devices shown that a significant number of 
defects appear inside the standard cell (i.e., intra-cell defects). 
In [3] it is shown that those defects cannot be detected by using 
the approaches based on classical fault models (i.e., stuck-at 
fault model, transition fault model, bridging fault model). 
Some works targeted the intra-cell defect diagnosis. Basically 
in [4][5][6] a diagnostic approach taking into account the 
presence of such defects has been presented. 

Despite the fact that previous work already proved that 
classical test sets lead to a low coverage of intra-cell defects, 
none of them characterize the applied test set from the 
diagnostic point of view. Basically the question is how good is 
the applied test set to diagnose such defects. Moreover, to the 
best of our knowledge, only one work targets the intra-cell 
defects [3] fault simulation. 

This paper proposes a defect grading tool able to 
characterize a given test set w.r.t to the intra-cell defects 
coverage and diagnosability. This tool is composed of two 
main parts: (1) the library cell characterization and (2) the 
deductive fault simulator engine.  

The paper is organized as follows: Section 2 depicts the 
overall flow.  Section 3 and 4 detail the main steps of the flow, 
while section 5 presents the experimental results. Conclusions 
are given in section 6. 

II. OVERALL FLOW 
Fig. 1 sketches the overall flow that is composed of two 

steps. The first one is the technology library 
characterization. In this step an automatic tool extracts all the 
possible defect location for every library cell. Then, for each 
location a defect injection campaign is executed. It exploits a 
transistor-level simulator to determine the faulty behavior of 
each injected defect. The result is the Defect DataBase. Please 
note that this step is applied only one time for a given 
technology library. The details about the considered defects 
and the location extraction will be given in the next section. 

 
Fig. 1. Overall Flow 

The second step is the fault simulator. Three inputs are 
required: (i) the previous computed defect database, (ii) the 
applied test set and (iii) the gate-level circuit netlist. The fault 
simulator is based on the deductive fault simulation techniques 
[7]. It provides two main outputs: the defect coverage value 
and the defect dictionary. Thanks to the defect dictionary is 
possible to quantify the diagnosis resolution achieved by the 
simulated test set w.r.t. to the considered intra-cell defects. The 
details of the fault simulator will be given in section 4.  

III. TECHNOLOGY LIBRARY CHARACTERIZATION 
This step aims at characterizing the library cells by means 

of defects injection campaign. For each library cell, we have to 
determine all the possible defect location (i.e., where a defect 
can appear) and the type of defect. In our work the location can 
be any cell internal net. As already described in previous work 
[2][3][4], the defect location is guided by a cell layout analysis 
in order to identify the realistic defect locations. Then, for each 
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realistic defect location the defect injection is performed to 
evaluate if the behavior induced by the injected defect is 
covered or not by the applied set of stimuli. Finally the defect 
database is created. Any transistor-level simulator can be used 
to perform this analysis. 

IV. FAULT SIMULATOR 
The adopted fault simulator is based on the open source 

fault simulator presented in [9][10]. Here we modify the 
original tool by adding two new facilities: (i) the inclusion of 
the defect database for each library cell and (ii) the deductive 
fault simulation technique. The first facility is mandatory in 
order to address the intra-cell defects, while the second one is 
done in order to save time during simulation compared to the 
original serial fault simulation (i.e., speed up the simulation 
time).  

As already described, the simulator is based on the 
deductive fault simulator technique [7]. Basically, every time 
that a circuit gate is traversed we extract from the defect 
database the set of sensitized defects. Then, depending on the 
logic value applied to the gate, we propagate or not the list of 
sensitized defects. The lists reaching the circuit primary 
outputs contain the detected defects. Table 1 reports the basic 
defect lists propagation rules for the classical gates as detailed 
in [7]. The rules depend on the values applied to the gate 
inputs. La and Lb are the defect list coming from the previous 
gate while L is the list of defects sensitized in the current gate 
due to the application of the input pattern.  

TABLE I.  PROPAGATION RULES 

Gate 
type 

Inputs 
Output List 

a b 

AND 

0 0 ��� � �� �� � 

0 1 ��� � �� �� � 

1 0 ��� � �� �� � 

1 1 ��� � �� �� � 

OR 

0 0 ��� � �� �� � 

0 1 ��� � �� �� � 

1 0 ��� � �� �� � 

1 1 ��� � �� �� � 

NOT 
0   - ��� � � 

1 - ��� � � 

 

For the complex gates, the rules are determined by 
exploiting the knowledge of the gate structure.  

For example, Fig. 2 depicts the internal structure of a 
multiplexer (i.e., MUX). Thanks to the knowledge of the 
internal gate structure it is possible to determine the list of 
defects by applying the rules shown in Table 1. 

 

 
Fig. 2. Mux structure 

Fig. 3 gives an example of the simulation algorithm. The 
example circuit is composed of 6 gates, 11 primary inputs and 
2 primary outputs. It reports the simulated pattern. For each 
primary input, internal net and primary output the actual logic 
value is showed.  

 
Fig. 3. Simulation Example 

During the simulation, one gate per time is processed. 
During the gate process, the simulator determines the output 
values and the list of sensitized defects.  

TABLE II.  SIMULATION EXAMPLE 

Step Processed Gate Output Defect List 

1 P1 0 LP1= {Df1P1, … Df6P1} 

2 P2 1 LP2= {Df1P2, … Df4P2} 

3 P3 0 LP3= {Df1P3, … Df3P3} 

4 P4 0 LP4 = {Df1P4, … Df6 P4} U LP3 

5 P5 0 LP5= {Df1P5, … Df4P5} 

6 P6 1 LP6= {Df1P6, … Df5P6} 

Table 2 shows all the simulation steps. For each step it 
reports the processed gate, the output value and the defect list. 
The first three steps process gates P1, P2 and P3. These gates 
are directly connected to primary inputs, thus the associated 
defects list contains the sensitized defect of each gate. To be 
clearer, the defect list of gate P1 (i.e., LP1) contains the defects 
of P1 (an AND gate) when the input values are “000”. In our 
example these defects are 6 (i.e., from Df1P1 up to Df6P1).  The 
same for gate P2 and P3. 

During the step number four, the gate P4 is processed. In 
this case the defect list (i.e., LP4) contains the defects sensitized 
by the applied input values plus the defects coming from P3. 
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To obtain this defect list we applied the rules of table 1 to the 
internal structure of P4. To better clarify this point, we can 
simply consider the all defects from P3 can invert the logic 
value of P3 output. This effect will be propagated through P4 
due to its input configuration. 

In steps 5 and 6, the defects lists coming from previous 
gates are not propagated through gate P5 and P6. Let us 
consider the case of gate P5. The input configuration is “00”, 
thus the rule to be applied is �a� � �� �� � (i.e., from Table 
1). The list La corresponds to the list LP1 coming from gate P1, 
while Lb corresponds to LP2. The intersection between them is 
Ø because there are no common defects (i.e., defects coming 
from the same gate). At the end, the P5 defect list only contains 
the defects of the gate itself when “00” is applied. These 
defects are 4 as reported in the table. The same consideration 
can be done for gate P6. 

At the end of the simulation, the defect lists reaching the 
primary outputs contain the detected defects. For our example 
these lists are LP5 and LP6. Thus, the applied pattern detects 9 
defects: 4 defects of gate P5 plus 5 defects of gate P6. 

The defect coverage is the first metric used to measure the 
quality of the applied test set. The second metric is the 
capability of the applied test set to diagnose the defects. To 
better introduce the diagnosis metric let us continue the 
example of Fig. 3. First of all we define the applied test set. 
Table 3 gives the three applied patterns.  The first pattern TP1 
corresponds to the one used in the simulation example 
illustrated in the Fig. 3. 

TABLE III.  TEST SET 

Pattern Logic Values 

TP1 10101001000 

TP2 00111110000 

TP3 01110110111 

 

After the simulation of the complete test set, the simulator 
builds the detect dictionary shown in Fig. 4. The defect 
dictionary is the classical pass/fail dictionary ad defined in 
[11]. In our example the defect list contains 88 intra-cell 
defects. For each test pattern simulation, the defect list is 
divided in subsets depending on which defects are detected and 
which are non-detected by the simulated pattern. In Fig. 4 the 
root node contains the 88 intra-cell defects, then after the 
application of TP1, the initial defect set is dived in two small 
sets: the defects detected by TP1 are 9 (as already illustrated in 
the example of Fig. 3) and the un-detected defects that are 79. 
The process is repeated until all the input patterns have been 
simulated. At the end of the simulation, the leaves of the defect  
dictionary contain the so-called equivalent defects sets. A set of 
equivalent defects is a set of defects that shows the same 
behavior when the test set is applied. Please note that an 
equivalent defect set depends on the applied test set thus, if 
another test set is applied the equivalent defect set can change. 
Thanks to the knowledge of the equivalent defect sets is 
possible to measure the diagnosis capability of the test set. 
From the diagnosis point of view, the most important thing is 
to distinguish between all the detected defects. It means that in 

the ideal case all the equivalent sets contain only one defect. In 
our example, we have 8 leaves. One of them, the black one in 
the figures contains the 39 undetected faults. This leaf is not 
considered for the diagnosis, simply because logic diagnosis 
look for the root cause of observed failures. The leaf containing 
0 defects means that even after the application of the third 
pattern no more defects are distinguished. Therefore there are 6 
equivalent defect sets useful for the diagnosis. The average size 
of these sets is 8.16 meaning that the applied test set can 
identify ~8 possible defects as the root cause of observed 
failures. Finally, only one leaf contains one defect. Therefore 
the applied test set can identify one defect among the initial 88. 
The computed diagnosis capability for this example is very 
low; good diagnostic results are achieved by larger pattern sets 
as demonstrated in the next section. 

 

Fig. 4. Pass/Fail Defect Dictionary 

V. EXPERIMENTAL RESULTS 
In order to evaluate the effectiveness of the illustrated 

method, we perform several experiments on a set of ITC99 
full-scan circuit benchmarks. All the circuits were synthetized 
using a 90nm technology library composed of 9 logic cells. 
The characterization of the library gives a total number of 119 
defects. For each circuit we generate three test sets by using a 
commercial ATPG tool. The first test set has been randomly 
generated and then fault simulated targeting the stuck-at fault 
(SA). The second and the third are deterministic test sets. One 
targets the SA faults while the other target the Transition Fault 
model (TF).  Each deterministic test set has been generated by 
using the “ndetect = 10” option meaning that for each 
fault the ATPG generates 10 different test patterns to test it. 
We use this option in order to have test sets more likely to 
detect intra-cell defects as described in [3][4].  

Table 4 gives obtained results. The first column reports the 
circuit name, the second the number of faults (determined by 
the ATPG) and the third column the intra-cell defects number 
(determined by the proposed tool). Columns 4, 5 and 6 show 
the results obtained for the three test sets. For each test set we 
report the achieved fault coverage (FC%), the intra-cell defect 
coverage (DC%), the diagnosability (Diag%) and the test 
length. The simulation time varies from few seconds up to 
some hours. Please note that the simulation time is due to the 
implementation and it is not related to the applied simulation 
algorithm (i.e., the deductive fault simulation). 

The first comment about these results is that the achieved 
intra-cell defect coverage is lower compared to the fault 
coverage. This result was expected, however the gap between 
fault and defect coverage is quite high (up to about 35% for the 
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b09). In previous work [3] the gap was quite low about 5%. 
This difference is mainly due to the use of a different library. 
Thus proving once more the importance of the intra-cell 
defects and the need to generate meaningful test sets. 

The second comment refers to the applied test set. All of 
them have been generated targeting a classical fault model. 
Even if the generation exploits the ndetect option to increase 
the defect coverage, the result is very low (down to 33%). No 
significant differences between test sets have been found, 
meaning that independently on the targeted fault model and 
ATPG option, the intra-cell coverage is not enough. 

Finally, the last comment is for the diagnosability of the 
test sets. The reported values (in the Diag% column) 
correspond to the percentage of intra-cell defects that the test 
set is able to identify. As clearly reported, the diagnosability is 
very low, in the best case the 33% of detected defects can be 
identified. This also implies that the defect equivalent sets are 
very large. To the best of our knowledge this is the first 
analysis of a given test set concerning the diagnosability. The 
result proves once more the importance to target intra-cell 
defects especially for the diagnosis. 

VI. CONCLUSIONS 
In this paper we presented a defect grading tool able to 

simulate defects affecting the library cells. Results carried out 
on ITC’99 benchmark circuits show the importance of these 
defects from both test and diagnosis. Future works mainly 
focus on the analysis of the scan flip-flops in order to estimate 
the impact of intra-cell defects for the scan-chain test and 
diagnosis. 
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TABLE IV.  DEFECT COVERAGE & DIAGNOSABILITY 

Circuit #Faults #Defects 
SA Random SA Deterministic TF Deterministic 

FC% DC% Diag% #Patt FC% DC% Diag% #Patt FC% DC% Diag% #Patt 

b01 276 406 100.00 71.92 21.23 295 100.00 78.08 21.14 173 100.00 79.80 20.06 261 

b02 172 209 100.00 87.56 23.50 256 100.00 88.04 22.28 115 100.00 88.04 21.74 172 

b03 934 1174 100.00 69.25 30.38 360 100.00 68.74 30.61 213 100.00 67.71 30.69 360 

b04 5062 6753 89.82 33.48 26.08 608 89.82 33.56 25.42 527 89.78 33.08 25.96 931 

b05 4640 6799 99.35 69.85 28.39 871 99.35 69.85 28.38 657 98.64 69.85 32.37 1162 

b06 374 473 100.00 81.40 23.38 353 100.00 82.66 24.55 148 100.00 81.82 23.25 250 

b07 2870 3981 100.00 39.18 31.21 834 100.00 39.71 30.04 603 100.00 39.89 30.79 1101 

b08 1058 1443 99.53 60.85 31.44 396 99.76 60.91 33.53 255 99.76 63.13 30.96 521 

b09 1144 1353 100.00 65.19 29.02 295 100.00 65.19 29.02 189 100.00 65.11 30.19 326 

b10 1102 1431 100.00 77.43 29.06 565 100.00 79.32 29.96 356 100.00 78.33 29.97 611 

b13 1986 2645 100.00 68.54 30.00 617 100.00 68.54 30.23 359 100.00 68.36 30.20 686 
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