
HAL Id: lirmm-01248591
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01248591

Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An intra-cell defect grading tool
Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri-Sanial, Stefano

Bernabovi, Paolo Bernardi

To cite this version:
Alberto Bosio, Luigi Dilillo, Patrick Girard, Aida Todri-Sanial, Stefano Bernabovi, et al.. An intra-cell
defect grading tool. DDECS: Design and Diagnostics of Electronic Circuits and Systems, Apr 2014,
Warsaw, Poland. pp.298-301, �10.1109/DDECS.2014.6868814�. �lirmm-01248591�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01248591
https://hal.archives-ouvertes.fr

978-1-4799-4558-0/14/$31.00 ©2014 IEEE

An Intra-Cell Defect Grading Tool

A. Bosio, L. Dilillo, P. Girard,
A. Todri-Sanial, A. Virazel

LIRMM-UM2/CNRS
France

<lastname>.lirmm.fr

S. Bernabovi, P. Bernardi
Politecnico di Torino

Italy
<lastname>.polito.it

Abstract—With the continuous scaling down of the transistor
size, the so-called intra-cell defects are more and more frequent.
In this paper we propose a defect grading tool able to evaluate
the efficiency of the applied test set. The test set efficiency is
quantified w.r.t. the intra-cell defect coverage and the intra-cell
diagnosis resolution.

Keywords—intra-cell defect; test; diagnosis; fault simulation

I. INTRODUCTION
The ever-increasing growth of the semiconductor market

results in an increasing complexity of digital circuits. Smaller,
faster, cheaper and low-power consumption are the main
challenges in semiconductor industry. The reduction of
transistor size and the latest packaging technology (i.e.,
System-On-a-Chip, System-In-Package, Through Silicon Via
3D Integrated Circuits) allow the semiconductor industry to
satisfy the latest challenges. Although producing such
advanced circuits can benefit users, the manufacturing process
is becoming finer and denser, making chips more prone to
defects. In modern deep submicron technologies, systematic
defects are becoming more frequent than random defects [1].

 Today, systematic defects appear not only in the cell
interconnection, but also inside the cell itself (intra-cell defect).
In literature, existing works prove that these defects can escape
classical test solutions. In [2] a statistic carried out over 1
million tested devices shown that a significant number of
defects appear inside the standard cell (i.e., intra-cell defects).
In [3] it is shown that those defects cannot be detected by using
the approaches based on classical fault models (i.e., stuck-at
fault model, transition fault model, bridging fault model).
Some works targeted the intra-cell defect diagnosis. Basically
in [4][5][6] a diagnostic approach taking into account the
presence of such defects has been presented.

Despite the fact that previous work already proved that
classical test sets lead to a low coverage of intra-cell defects,
none of them characterize the applied test set from the
diagnostic point of view. Basically the question is how good is
the applied test set to diagnose such defects. Moreover, to the
best of our knowledge, only one work targets the intra-cell
defects [3] fault simulation.

This paper proposes a defect grading tool able to
characterize a given test set w.r.t to the intra-cell defects
coverage and diagnosability. This tool is composed of two
main parts: (1) the library cell characterization and (2) the
deductive fault simulator engine.

The paper is organized as follows: Section 2 depicts the
overall flow. Section 3 and 4 detail the main steps of the flow,
while section 5 presents the experimental results. Conclusions
are given in section 6.

II. OVERALL FLOW
Fig. 1 sketches the overall flow that is composed of two

steps. The first one is the technology library
characterization. In this step an automatic tool extracts all the
possible defect location for every library cell. Then, for each
location a defect injection campaign is executed. It exploits a
transistor-level simulator to determine the faulty behavior of
each injected defect. The result is the Defect DataBase. Please
note that this step is applied only one time for a given
technology library. The details about the considered defects
and the location extraction will be given in the next section.

Fig. 1. Overall Flow

The second step is the fault simulator. Three inputs are
required: (i) the previous computed defect database, (ii) the
applied test set and (iii) the gate-level circuit netlist. The fault
simulator is based on the deductive fault simulation techniques
[7]. It provides two main outputs: the defect coverage value
and the defect dictionary. Thanks to the defect dictionary is
possible to quantify the diagnosis resolution achieved by the
simulated test set w.r.t. to the considered intra-cell defects. The
details of the fault simulator will be given in section 4.

III. TECHNOLOGY LIBRARY CHARACTERIZATION
This step aims at characterizing the library cells by means

of defects injection campaign. For each library cell, we have to
determine all the possible defect location (i.e., where a defect
can appear) and the type of defect. In our work the location can
be any cell internal net. As already described in previous work
[2][3][4], the defect location is guided by a cell layout analysis
in order to identify the realistic defect locations. Then, for each

�����
��������

�����������
��
�����

������������
���

	������
	��������

��������

������
����������

	�������
���������

	�������
	��
������

	������
	��������	������
	��������

978-1-4799-4558-0/14/$31.00 ©2014 IEEE.

realistic defect location the defect injection is performed to
evaluate if the behavior induced by the injected defect is
covered or not by the applied set of stimuli. Finally the defect
database is created. Any transistor-level simulator can be used
to perform this analysis.

IV. FAULT SIMULATOR
The adopted fault simulator is based on the open source

fault simulator presented in [9][10]. Here we modify the
original tool by adding two new facilities: (i) the inclusion of
the defect database for each library cell and (ii) the deductive
fault simulation technique. The first facility is mandatory in
order to address the intra-cell defects, while the second one is
done in order to save time during simulation compared to the
original serial fault simulation (i.e., speed up the simulation
time).

As already described, the simulator is based on the
deductive fault simulator technique [7]. Basically, every time
that a circuit gate is traversed we extract from the defect
database the set of sensitized defects. Then, depending on the
logic value applied to the gate, we propagate or not the list of
sensitized defects. The lists reaching the circuit primary
outputs contain the detected defects. Table 1 reports the basic
defect lists propagation rules for the classical gates as detailed
in [7]. The rules depend on the values applied to the gate
inputs. La and Lb are the defect list coming from the previous
gate while L is the list of defects sensitized in the current gate
due to the application of the input pattern.

TABLE I. PROPAGATION RULES

Gate
type

Inputs
Output List

a b

AND

0 0 ��� � �� �� �

0 1 ��� � �� �� �

1 0 ��� � �� �� �

1 1 ��� � �� �� �

OR

0 0 ��� � �� �� �

0 1 ��� � �� �� �

1 0 ��� � �� �� �

1 1 ��� � �� �� �

NOT
0 - ��� � �

1 - ��� � �

For the complex gates, the rules are determined by
exploiting the knowledge of the gate structure.

For example, Fig. 2 depicts the internal structure of a
multiplexer (i.e., MUX). Thanks to the knowledge of the
internal gate structure it is possible to determine the list of
defects by applying the rules shown in Table 1.

Fig. 2. Mux structure

Fig. 3 gives an example of the simulation algorithm. The
example circuit is composed of 6 gates, 11 primary inputs and
2 primary outputs. It reports the simulated pattern. For each
primary input, internal net and primary output the actual logic
value is showed.

Fig. 3. Simulation Example

During the simulation, one gate per time is processed.
During the gate process, the simulator determines the output
values and the list of sensitized defects.

TABLE II. SIMULATION EXAMPLE

Step Processed Gate Output Defect List

1 P1 0 LP1= {Df1P1, … Df6P1}

2 P2 1 LP2= {Df1P2, … Df4P2}

3 P3 0 LP3= {Df1P3, … Df3P3}

4 P4 0 LP4 = {Df1P4, … Df6 P4} U LP3

5 P5 0 LP5= {Df1P5, … Df4P5}

6 P6 1 LP6= {Df1P6, … Df5P6}

Table 2 shows all the simulation steps. For each step it
reports the processed gate, the output value and the defect list.
The first three steps process gates P1, P2 and P3. These gates
are directly connected to primary inputs, thus the associated
defects list contains the sensitized defect of each gate. To be
clearer, the defect list of gate P1 (i.e., LP1) contains the defects
of P1 (an AND gate) when the input values are “000”. In our
example these defects are 6 (i.e., from Df1P1 up to Df6P1). The
same for gate P2 and P3.

During the step number four, the gate P4 is processed. In
this case the defect list (i.e., LP4) contains the defects sensitized
by the applied input values plus the defects coming from P3.

���

���

��

����

����

����

���

���

���

���

���

���

��
�
�

�

�

�
�

�
�

�

��

�

�

�

�

�

� �

�

�

�

�

�

�
���������������

���������������

���������������

���������������

����
��������
�

����
��

��
�
��

����
��

����
��

����
��

����
��

��	��� �������

To obtain this defect list we applied the rules of table 1 to the
internal structure of P4. To better clarify this point, we can
simply consider the all defects from P3 can invert the logic
value of P3 output. This effect will be propagated through P4
due to its input configuration.

In steps 5 and 6, the defects lists coming from previous
gates are not propagated through gate P5 and P6. Let us
consider the case of gate P5. The input configuration is “00”,
thus the rule to be applied is �a� � �� �� � (i.e., from Table
1). The list La corresponds to the list LP1 coming from gate P1,
while Lb corresponds to LP2. The intersection between them is
Ø because there are no common defects (i.e., defects coming
from the same gate). At the end, the P5 defect list only contains
the defects of the gate itself when “00” is applied. These
defects are 4 as reported in the table. The same consideration
can be done for gate P6.

At the end of the simulation, the defect lists reaching the
primary outputs contain the detected defects. For our example
these lists are LP5 and LP6. Thus, the applied pattern detects 9
defects: 4 defects of gate P5 plus 5 defects of gate P6.

The defect coverage is the first metric used to measure the
quality of the applied test set. The second metric is the
capability of the applied test set to diagnose the defects. To
better introduce the diagnosis metric let us continue the
example of Fig. 3. First of all we define the applied test set.
Table 3 gives the three applied patterns. The first pattern TP1
corresponds to the one used in the simulation example
illustrated in the Fig. 3.

TABLE III. TEST SET

Pattern Logic Values

TP1 10101001000

TP2 00111110000

TP3 01110110111

After the simulation of the complete test set, the simulator
builds the detect dictionary shown in Fig. 4. The defect
dictionary is the classical pass/fail dictionary ad defined in
[11]. In our example the defect list contains 88 intra-cell
defects. For each test pattern simulation, the defect list is
divided in subsets depending on which defects are detected and
which are non-detected by the simulated pattern. In Fig. 4 the
root node contains the 88 intra-cell defects, then after the
application of TP1, the initial defect set is dived in two small
sets: the defects detected by TP1 are 9 (as already illustrated in
the example of Fig. 3) and the un-detected defects that are 79.
The process is repeated until all the input patterns have been
simulated. At the end of the simulation, the leaves of the defect
dictionary contain the so-called equivalent defects sets. A set of
equivalent defects is a set of defects that shows the same
behavior when the test set is applied. Please note that an
equivalent defect set depends on the applied test set thus, if
another test set is applied the equivalent defect set can change.
Thanks to the knowledge of the equivalent defect sets is
possible to measure the diagnosis capability of the test set.
From the diagnosis point of view, the most important thing is
to distinguish between all the detected defects. It means that in

the ideal case all the equivalent sets contain only one defect. In
our example, we have 8 leaves. One of them, the black one in
the figures contains the 39 undetected faults. This leaf is not
considered for the diagnosis, simply because logic diagnosis
look for the root cause of observed failures. The leaf containing
0 defects means that even after the application of the third
pattern no more defects are distinguished. Therefore there are 6
equivalent defect sets useful for the diagnosis. The average size
of these sets is 8.16 meaning that the applied test set can
identify ~8 possible defects as the root cause of observed
failures. Finally, only one leaf contains one defect. Therefore
the applied test set can identify one defect among the initial 88.
The computed diagnosis capability for this example is very
low; good diagnostic results are achieved by larger pattern sets
as demonstrated in the next section.

Fig. 4. Pass/Fail Defect Dictionary

V. EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of the illustrated

method, we perform several experiments on a set of ITC99
full-scan circuit benchmarks. All the circuits were synthetized
using a 90nm technology library composed of 9 logic cells.
The characterization of the library gives a total number of 119
defects. For each circuit we generate three test sets by using a
commercial ATPG tool. The first test set has been randomly
generated and then fault simulated targeting the stuck-at fault
(SA). The second and the third are deterministic test sets. One
targets the SA faults while the other target the Transition Fault
model (TF). Each deterministic test set has been generated by
using the “ndetect = 10” option meaning that for each
fault the ATPG generates 10 different test patterns to test it.
We use this option in order to have test sets more likely to
detect intra-cell defects as described in [3][4].

Table 4 gives obtained results. The first column reports the
circuit name, the second the number of faults (determined by
the ATPG) and the third column the intra-cell defects number
(determined by the proposed tool). Columns 4, 5 and 6 show
the results obtained for the three test sets. For each test set we
report the achieved fault coverage (FC%), the intra-cell defect
coverage (DC%), the diagnosability (Diag%) and the test
length. The simulation time varies from few seconds up to
some hours. Please note that the simulation time is due to the
implementation and it is not related to the applied simulation
algorithm (i.e., the deductive fault simulation).

The first comment about these results is that the achieved
intra-cell defect coverage is lower compared to the fault
coverage. This result was expected, however the gap between
fault and defect coverage is quite high (up to about 35% for the

���

�� ���

�� �� ��� ���

�� �� �� �� ��� ��� ��� ���

����

����

����

��

�� ��

�� �� �� ��

�

� �

� � � �

b09). In previous work [3] the gap was quite low about 5%.
This difference is mainly due to the use of a different library.
Thus proving once more the importance of the intra-cell
defects and the need to generate meaningful test sets.

The second comment refers to the applied test set. All of
them have been generated targeting a classical fault model.
Even if the generation exploits the ndetect option to increase
the defect coverage, the result is very low (down to 33%). No
significant differences between test sets have been found,
meaning that independently on the targeted fault model and
ATPG option, the intra-cell coverage is not enough.

Finally, the last comment is for the diagnosability of the
test sets. The reported values (in the Diag% column)
correspond to the percentage of intra-cell defects that the test
set is able to identify. As clearly reported, the diagnosability is
very low, in the best case the 33% of detected defects can be
identified. This also implies that the defect equivalent sets are
very large. To the best of our knowledge this is the first
analysis of a given test set concerning the diagnosability. The
result proves once more the importance to target intra-cell
defects especially for the diagnosis.

VI. CONCLUSIONS
In this paper we presented a defect grading tool able to

simulate defects affecting the library cells. Results carried out
on ITC’99 benchmark circuits show the importance of these
defects from both test and diagnosis. Future works mainly
focus on the analysis of the scan flip-flops in order to estimate
the impact of intra-cell defects for the scan-chain test and
diagnosis.

REFERENCES

[1] B. Kruseman, A. Majhi, C. Hora, S. Eichenberger and J. Meirlevede,
“Systematic defects in deep sub-micron technologies”, IEEE
International Test Conference, 2005, pp. 290-299.

[2] S. Eichenberger, J. Geuzebroek, C. Hora, B. Kruseman, and A. Majhi,
“Towards a World Without Test Escapes”, IEEE International Test
Conference, 2008, paper 20.1.

[3] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour, S.
Eichenberger, C. Hora, and D. Adolfsson, “Defect-Oriented Cell-Aware
ATPG and Fault Simulation for Industrial Cell Libraries and Designs”,
IEEE International Test Conference, 2009, paper 1.2.

[4] F. Hapke, M. Reese, J. Rivers, A. Over, V. Ravikumar, W. Redemund,
A. Glowatz, J. Schloeffel, J. Rajski, “Cell-aware Production test results
from a 32-nm notebook processor”, International Test Conference, 2012,
pp. 1-9.

[5] A. Ladhar and M. Masmoudi, ‘‘Efficient and Accurate Method for Intra-
gate Defect Diagnoses in Nanometer Technology and Volume Data’’,
Design, Automation & Test in Europe Conference & Exhibition, 2009.
DATE ’09. pp 988-993

[6] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Todri, A. Virazel and E.
Auvray, “Effect-Cause Intra-Cell Diagnosis at Transistor Level”, 14th
International Symposium & Exhibits on Quality Electronic Design,
ISQED’13, pp. 476-483, 2013

[7] D. B. Armstrong, “A Deductive Method for Simulating Faults in Logic
Circuits”, IEEE Transaction on Computer, Vol. C-21, Issue 5, May
1972, pp. 464 – 471.

[8] J. C.-M. Li, “Diagnosis of Resistive-Open and Stuck-Open Defects in
Digital CMOS ICs” IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, 2005, Vol. 24, Issue. 11, pp. 1748-
1759.

[9] A. Bosio and G. Di Natale, "LIFTING: a Flexible Open-Source Fault
Simulator", IEEE Asian Test Symposium, 2008, pp. 35-40.

[10] A. Bosio, P. Girard, S. Pravossoudovich, P. Bernardi, M. S. Reorda, “An
efficient fault simulation technique for transition faults in non-scan
sequential circuits”, DDECS 2009, pp. 50 – 55

[11] P. Bernardi, M. Grosso, M. Rebaudengo, M. S. Reorda, “A pattern
ordering algorithm for reducing the size of fault dictionaries”, IEEE
VLSI Test Symposium, 2006, DOI: 10.1109/VTS.2006.9

TABLE IV. DEFECT COVERAGE & DIAGNOSABILITY

Circuit #Faults #Defects
SA Random SA Deterministic TF Deterministic

FC% DC% Diag% #Patt FC% DC% Diag% #Patt FC% DC% Diag% #Patt

b01 276 406 100.00 71.92 21.23 295 100.00 78.08 21.14 173 100.00 79.80 20.06 261

b02 172 209 100.00 87.56 23.50 256 100.00 88.04 22.28 115 100.00 88.04 21.74 172

b03 934 1174 100.00 69.25 30.38 360 100.00 68.74 30.61 213 100.00 67.71 30.69 360

b04 5062 6753 89.82 33.48 26.08 608 89.82 33.56 25.42 527 89.78 33.08 25.96 931

b05 4640 6799 99.35 69.85 28.39 871 99.35 69.85 28.38 657 98.64 69.85 32.37 1162

b06 374 473 100.00 81.40 23.38 353 100.00 82.66 24.55 148 100.00 81.82 23.25 250

b07 2870 3981 100.00 39.18 31.21 834 100.00 39.71 30.04 603 100.00 39.89 30.79 1101

b08 1058 1443 99.53 60.85 31.44 396 99.76 60.91 33.53 255 99.76 63.13 30.96 521

b09 1144 1353 100.00 65.19 29.02 295 100.00 65.19 29.02 189 100.00 65.11 30.19 326

b10 1102 1431 100.00 77.43 29.06 565 100.00 79.32 29.96 356 100.00 78.33 29.97 611

b13 1986 2645 100.00 68.54 30.00 617 100.00 68.54 30.23 359 100.00 68.36 30.20 686

View publication statsView publication stats

https://www.researchgate.net/publication/269272628

