
HAL Id: lirmm-01250850
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01250850v1

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on security features in modern FPGAs
Rémy Druyer, Lionel Torres, Pascal Benoit

To cite this version:
Rémy Druyer, Lionel Torres, Pascal Benoit. A survey on security features in modern FPGAs.
ReCoSoC: Reconfigurable Communication-centric Systems-on-Chip, Jun 2015, Brême, Germany.
�10.1109/ReCoSoC.2015.7238102�. �lirmm-01250850�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01250850v1
https://hal.archives-ouvertes.fr

A Survey on Security Features in Modern FPGAs

R. Druyer, L. Torres, P. Benoit

LIRMM, UMR 5506, Université de Montpellier,

161 rue Ada, Montpellier, France

P.V. Bonzom, P. Le-Quere

ATOS SAS

68 rue Jean Jaurès, Les Clayes-Sous-Bois, France

Abstract— Security is a major challenge for the design on

FPGAs. This one applies to different levels: IP protection,

information confidentiality and denial of service. To assist the

application designer in this purpose, FPGA vendors provide

dedicated features, which address potential security breaches of

their devices. In this paper, after setting up a complete FPGA

threat model, we compare relevant functionalities of the most

advanced products of Altera, Microsemi and Xilinx. The goal of

this paper is to evaluate whether the security features embedded on

the current FPGAs address the threat model.

Keywords—FPGA, Security, Application, Altera, Microsemi,

Xilinx

I. INTRODUCTION

FPGA market keeps growing years after years and these

circuits stay an attractive solution not only for ASIC prototyping

but also for application fields that take benefits of its advantages

compared to ASIC. Briefly, its reasonable cost for a low- and

mid-range volume, and its reconfiguration capability allows an

easier debugging process. Automotive, avionics or military are

critical application fields in which the FPGA has a large place

and where the security issue is of a paramount importance.

FPGA vendors try to address security threats by providing a set

of features protecting the device and the user application

availability, confidentiality and integrity. In the first section of

this paper, we introduce a model including all the main security

threats that may be encountered by application designers when

working on FPGA. Then we draw up a table summarizing the

security features currently provided by the FPGA vendors:

Altera, Microsemi and Xilinx. Finally, we analyze the adequacy

of these security features according to the threat model.

II. FPGA THREAT MODEL

The motivations of an attacker targeting FPGAs are just a

few. He may desire to clone or analyse the configuration loaded

into the FPGA, which is called intellectual property (IP) theft.

Or, he may want to compromise the integrity or confidentiality

of data processed by the running application.

A. Intellectual Property Theft

A first motivation is the IP theft. Concerning the industrial

aspect, vendors protect the internal hardware architecture of

their chips to avoid that a third-party can steal their IPs. But in

the case of a FPGA application designer, to secure its

intellectual property, his goal is to ensure that the bitstream

configuration file generated to program the FPGA with the

application is protected. An application designer is exposed to

two types of IP theft threats: cloning and reverse engineering

and both require the bitstream.

This configuration file contains the value of each

programmed cell of the targeted chip. As each FPGA is different

in terms of programmable resources, a given bitstream is

generally compatible with a single device type. The bitstream

file is unintelligible for someone without the knowledge of the

hardware implementation of the programmable cells. However

to achieve cloning only the plaintext bitstream extraction is

needed to configure any FPGA devices with the same

characteristics.

If an attacker wants to go further, analyses and modifies the

application, he has to perform reverse engineering of the

bitstream [22]. His goal is to rebuild the netlist (file describing

how the logic elements within the device are connected with

each other) or the Register Transfer Level (RTL) file. The

exploitation of one of these files, allows extracting specific

design parts, to improve the application and to use it for other

circuits, whatever the technology (FPGAs or ASICs). However,

bitstream format are now kept confidential by the vendors [6]

[11], [3], coupled with an average design size and complexity

increase, this makes the bitstream reversing a laborious and

challenging task. However, this is not considered as impossible.

Furthermore, attacks on the software development kits or FPGA

hardware can be used to facilitate the intellectual property theft

[19].

1) FPGA Technology

The technology has a large impact on the device security and

performances, it refers to the memory type used for the

configuration cells in the FPGA. Since there is no perfect

choice, we will present the characteristics and specificities of

each technology provided by the three vendors.

SRAM-FPGA is by far the most used and sold FPGA type. It

takes benefits of the popularity of CMOS manufacturing process

that is at least of 2 to 3 generation ahead of the others, providing

a greater integration density, a better power efficiency and faster

memory access times. However this memory is volatile,

meaning that the device must be programed at each start-up. The

bitstream must be stored in a non-volatile memory that typically

located in an external chip and it is sent through the

programming interface to the configuration cells, creating the

opportunity for an attacker to probe the programming channel

(e.g. JTAG) in order to extract the bitstream. Whether an

attacker wishes to extract the value from the configuration cells

within the FPGA using invasive attacks and reverse engineering,

it is practically unfeasible due to the volatile nature of the

SRAM [4]. Removing the package and the metal layers to access

to the configuration cells will cause the FPGA configuration

blanking. In one hand, since all FPGA technology types are

resilient to invasive attacks, SRAM-based ones are considered

the less secure due to the start-up reconfiguration requirement.

In the other hand, SRAM-based FPGAs are the only choice

possible for the most performance hungry applications.

The second type of FPGA technology is flash memory-

based. It is an interesting choice in security application field

thanks to its non-volatile nature. Thus, removing the start-up

reconfiguration requirement and eliminating opportunities for an

attacker to probe the bitstream. In terms of performances, flash

memory is a low-power technology since no energy is required

to maintain the cell value. Nevertheless, as we said before, the

SRAM manufacturing process of the SRAM is more advanced

and has better overall performances. Even if the flash memory is

non-volatile, invasive reverse engineering is not an easy task.

The flash cells are distributed all over the chip making the

physical probes positioning difficult, as well as reconstructing a

bitstream or a netlist with gathered values. Furthermore, micro-

probing flash cell can destroy the charge on the floating gate and

removes the contained value [2]. All these parameters make the

configuration flash cells reverse engineering a very challenging,

time consuming and costly task. In this case, an attack has no

sense since it cost more than what you get in return. Be careful

not to confuse flash-based FPGA with SRAM-based FPGA

containing an internal flash memory. For example, the

Spartan3AN [16] is a SRAM-based device including an internal

flash able to store few bitstreams loadable at start-up. It is

almost secure as flash-based FPGAs since the reconfiguration

channel is not accessible from the outside of the chip. To

conclude about flash FPGAs, when using external

reconfiguration in order to update the application or fix some

bugs, it is vulnerable to bitstream probing just as SRAM FPGAs.

Antifuse FPGA is also a technology claimed for its

advantages in terms of security. The antifuse cells are

programmed using a large current that definitively set a logic

value. The device is programmed once and retains the

configuration indefinitely, meaning that there is no need to

reprogram the device at each power cycle. However, with this

FPGA type reconfiguration becomes completely impossible, a

device configured with flawed application cannot be updated. In

terms of reverse engineering, this technology is very resistant to

attacks. The electrical short circuit giving the value of the

antifuse cannot be viewed from the top, thus to observe, it a

cross-section of the antifuse is necessary [10] and state of a

programmed antifuse is very hard to distinguish from an

unprogrammed one [2]. Moreover a device counts millions

antifuse and just a small percentage of it is programmed. The

cost of a successful an attack on antifuse using current reverse

engineering techniques must be astronomical.

To resume, antifuse is considered as the most secure

technology due to its one-time programmable feature, however a

flawed application cannot be updated, that can be critical if it

contains security breaches. Concerning flash memory, the real

benefit in terms of security is its non-volatile nature but using

reconfiguration may exposes a flash device to the same

vulnerabilities as a SRAM one. For the latest, SRAM is a

suitable choice for high-performance applications.

2) Bitstream Probing

The bitstream stored in an external memory can be easily

intercepted with an electrical probe during its transfer to FPGA

through the programming interface. An attacker having a

physical access to a SRAM or flash FPGA during the

reconfiguration process can implement this attack. The

advantage of antifuse is whether the programming step takes

place in a trusted environment, even if the FPGA is then

employed in an untrusted location the bitstream is practically

impossible to extract. SRAM seems more vulnerable to

bitstream probing because typically, the bitstream is loaded

when the device is turned on. Thus, it is easier for an attacker

who controls the power supply to trigger a reconfiguration.

Flash FPGA must meet more specific conditions before

triggering a reconfiguration.

3) Bitstream Decryption Key Stealing

Actually the solution chosen by the FPGA vendors to protect

the bitstream confidentiality is the encryption (details in section

IV). This do not prevent the bitstream to be stolen but in the case

where the attacker has only retrieved the encrypted bitstream, he

will not be able to reverse it. Moreover, the cloning is

impossible if both the attacked and the cloned FPGA do not

share the same key. At this point, the bitstream security lies on

the key confidentiality, the application designer needs the

insurance that the key cannot be extracted by any means. In this

section, we give on overview of the potential threats related to

decryption key during the different design phases.

The first threat concerning the decryption key takes place

during its loading to the FPGA. The attacker must not have

physical access to the channel used to load the key to FPGA

during this phase. If the application designer wants to update the

key on the field it must be transferred in an encrypted form.

Microsemi set a secret factory key during the FPGA

manufacturing and gives the factory keys database to the buyer.

This database must be stored in a safe place because it may be

easier for an attacker to target a poorly protected server to

retrieve FPGA factory keys than attack the secure device

directly. Within the FPGA, the internal key storage have to be

protected from readback attacks. It consists of using a debugging

interface to read the internal FPGA data. Most of the time,

FPGA vendors claim to provide read-protected bitstream

decryption key storage. But for instance some researchers [18]

have found an undocumented command into the JTAG interface

of the Microsemi high-level security FPGA. This command gave

a complete access to a set of security features including the

bitstream decryption key.

One of the most important threat occurs during the bitstream

decryption. The circuit leakages (power consumption, EM,

temperature or timing variations) which reflect the activity

during the decryption are correlated with the input data to

reconstruct the key value, it is called the side-channel analysis

(SCA). Some successful side-channel attacks have be reported

for Altera Stratix-II and Stratix-III [19], Microsemi ProASIC3

[20] and Xilinx Virtex-II [21] that used bitstream AES-128

encryption. These papers demonstrate that SCA techniques are

incredibly efficient with an affordable cost. We can note that for

the attacks against the Stratix-II and Stratix-III [19], weaknesses

residing within the development software Quartus are exploited.

By decompiling the Quartus DLL files, the researchers have

found which key derivation technique is used for generating the

real bitstream decryption key. Furthermore, they have identified

the mode of operation of AES used for the bitstream decryption

inside the device. This highlights the fact that the security of the

development software has also a crucial importance and FPGA.

4) Bitstream Readback Attacks

Programming interfaces like the Join Test Action Group

(JTAG) work as small microcontrollers, actually a set of

commands can be sent to the interface to achieve different

programming or debugging functions. Generally, one command

allows to retrieve the bitstream from the FPGA. It is intended to

verify the bitstream integrity to see whether it contains error

once the device is programmed. Nevertheless, if this command

has not been deactivated before the device is on the field, it is a

wonderful opportunity for an attacker to easily extract the

bitstream.

5) FPGA Genuineness

The risk of buying a counterfeited FPGA is non-zero. Old

FPGAs relabeled and sold as new were found in US Navy

aircraft [23]. A counterfeited FPGA may seem to work like an

authentic one, but a hardware Trojan or a backdoor may be

present into it and open any sort of security breaches. We can

imagine that a compromised device can leak any kinds of data or

create an internal shortcut that causes the chip destruction.

But even if a vendor can guarantee the authenticity of the device

being bought, nowadays the issue concerning the device

confidence is of a crucial importance. Microsemi claims to have

the most secure devices on the market and possesses a certain

numbers of certificate (e.g. coming from the U.S. Department-

of-Defense [1]). Their FPGAs are particularly used in military

and aerospace critical applications. But the revelation of a

probable backdoor in the JTAG interface of Microsemi

ProASIC3 FPGA [18] illustrates the fact that even with

certifications, the confidence granted to a device cannot be total.

In fact, the better way for a company to be confident of a final

product is to be proprietary of all the technology employed for it

and to control all the flow from the design to the fabrication, but

for most of them it is unconceivable. Starting from that, a

company can increase its confidence in a device thanks to

certifications coming from its government and features

implemented by the vendor that aim to make a device the most

secure possible.

B. User Application Data Compromise

The second part of our threat model gathers the attacks used

to steal confidential information or modify user application

performances. We gathered these two different goals in one

section because most of the time attacks can be used to complete

both purposes. Concerning denial of service (DOS) attacks, it is

nonsense to study complex threats requiring a physical access to

the circuit since a FPGA chip is far from indestructible.

Nevertheless it is interesting to study how an adversary may

attempt to deactivate a circuit using a distant access.

If an attacker is able to modify the FPGA configuration, it

can reach different goals following its knowledge about the

application and its mastery of the employed attack. Whether it

can modify random configuration bits, we can imagine that

some parts of the final application will be defective. In the case

where of the modifications are located in critical application

parts or their number is too important, the application will

completely crash. Now if we assume that an adversary can

precisely locate which bits he must target and he is able to

modify their value, he can expect to extract secret information

from the chip. The attacks targeting the FPGA configuration can

take place during three separate phases described below.

1) Before the Configuration

For the sake of clarity, the post-configuration phase includes

all the attacks occurring during the FPGA manufacturing

process or user application design. Threats during these phases

are mainly related to Trojan insertion. Firstly concerning this

type of attacks on the FPGA architecture itself, if the integrated

circuit is counterfeit it may contain a malicious part. In the case

where the device is genuine, it may have a backdoor that is

known by the vendor or not [18]. Secondly, a Trojan can be

inserted into the user application. The increasing systems

complexity makes the design verification process a costly task

and the fast time to market encourages designers to shorten this

phase. Third-party IPs became common, thus the application can

contain a small code giving a privileged access to the system,

leaking secret data or generating malfunctions.

2) During the Configuration

The configuration phase takes into account all the attacks

that occurs while the bitstream is loaded into the FPGA. The

bitstream snooping is an important threat. It can be used for IP

theft purpose as we seen in previously, but not only. Once the

bitstream is reversed to a netlist or high-level description (HDL)

files, it can contains exploitable secret information. Moreover, it

gives a strong knowledge on the application contents and its

mapping into the FPGA and allows to perform additional

attacks. FPGA may be part of a greater system and its hijacking

may give access to even important data for secrecy extraction or

denial of service. Considering the configuration phase, in some

cases it is preferable that an attacker cannot load its own

bitstream into the device, particularly if the FPGA is included

into global system. Another threat is the back tracking. It

consists of loading an old bitstream version of the same

application, including security breaches that have since been

fixed. This kind of attacks is effective to pass through

authentication process whether the authentication code has not

been modified after an important application update.

The bitstream integrity can be compromised during its

transmission to the FPGA. If an attacker is able to modify the

value of the bits transmitted to the FPGA, he can empirically

observe the effects on the application and in the case where he

has enough knowledge on the bitstream format or its contents,

he will be able to deactivate important security functionality,

disturb the application or extract secret information. Bitstreams

have a particular format following the FPGA device

characteristics and the details are not anymore public. Generally,

a bitstream file has a header that contains programming

information. When an attacker modifies an encrypted bitstream,

he cannot know which bits will be affected after the decryption.

Thus the bitstream format may become invalid and cannot be

programmed into the device.

3) After the Configuration

Once the FPGA has been configured with the user

application, hardware Trojan contained in the application or in

the physical circuit architecture can be triggered to achieve

malicious intents. Briefly, we can imagine that the malicious

system part waits a certain time amount or a specific data

sequence before it triggers. Then the Trojan can force the

application to crash or the FPGA to burn with a shortcut. It can

also send data to a specific interface in order to leak secret

information. It can also modify random, specific configuration

or application data to generate malfunctions. The Trojan can

also be a backdoor that gives a privileged access to the system

[18].

Fault attacks are another important threats that take place

after the configuration. Fault sources are multiple. It can be fault

injection from industrial laser or an antenna emitting

electromagnetic (EM) waves targeting specific circuit parts.

External condition like temperature, supply voltage or the clock

source can be pushed out of their ranges to provoke multiple

kinds of unexpected behaviors. Mainly, the goals of all these

fault attacks are to change the value of memory cells (e.g. bit-

flip or SEU/MEU). Since most of them necessitate a physical

access, we assume that their main goal is to extract secret

information from the target device or modify its behavior to a

specific one. If the goal is just to destruct the circuit, there is

much simpler way to do it.

The last threat that we see in this paper is the side-channel

attacks. We have seen that they are mainly used against

cryptographic operation to extract the secret key (e.g. during the

bitstream decryption). Since a FPGA vendor ignores what kind

of applications will be programmed into their device

(cryptographic or not), it is hard to propose countermeasures

against this kind of attacks.

III. SECURITY FEATURES ANALYSIS

All the security features presented in this paper, including

the TABLE I. were gathered using the latest datasheets and

information that we could find on each vendor website. We only

introduce the mechanisms provided by each company and this

does not mean that a user cannot integrate its own security

mechanisms. Since there are numerous security features and

some are very complex, we have done our best to give a correct

and precise summary of it. However you are encouraged to

consult the original datasheets if you want more information

about the security mechanisms and to ensure whether no mistake

has been made in this paper.

A. IP Protection

1) FPGA Technology

The advantages of each technology have already been

detailed in the section II, thus in this section we just detailed

what type of FPGAs are provided by each vendor.

Xilinx and Altera lead the market with SRAM FPGAs and

do not offer other alternative. For their devices the flash memory

is only used as bitstream storage and typically as an external

memory. But once, Xilinx have proposed a FPGA with a

different architecture, the Spartan-3AN. It comprises an internal

flash memory that can contain few bitstreams. This particularity

makes the Spartan-3AN secure against bitstream probing

because the configuration file storage is integrated within the

FPGA circuit. Concerning the bitstream decryption key memory,

both vendors have the same approach by providing two

solutions. One-time programmable fuses or battery-backed

RAM (BBRAM). In one hand, the fuses are quite resistant

against reverse engineering, but since the decryption key count

only 256 bit, the reverse engineering is more feasible than for

the 50 million of configuration antifuses that count the IGLOO2.

The fuses make the key snooping impossible since the value is

kept permanently and not modified. In the other hand, BBRAM

requires a constant energy supply from a battery to keep the key

value. And the key loading must be done in a trusted place to

avoid probing. The main advantage is that the key value is not

permanent and can be modified. The key can be cleared by

removing the power supply and used as a countermeasure.

Microsemi chooses for its IGLOO2 a 65nm flash-based

technology that is oriented for low-power application. A range

of antifuse FPGA is also available but they do not embed as

many security features as the IGLOO2.

TABLE I. Security features provided by FPGA Vendors (for their higher security level FPGA model)

 Altera (Cyclone III LS) Microsemi (IGLOO2) Xilinx (7-series)

.bit encryption/decryption AES-256 AES-256 (anti-DPA) AES-256

.bit authentication/integrity
Authentication using an

external memory device.
Tag based on SHA-256 HMAC-SHA-256

.bit backtracking prevention No Yes (with versioning) No

.bit readback deactivation
Yes (readback not supported

by the device).
Yes

Yes (hardened triple-

redundant protection logic).

Programming interface

monitoring and disabling

JTAG command restriction

(only with MAX-II CPLD)

JTAG monitoring and

disabling. Disabling only

for SPI external flash

interface.

JTAG monitoring and

disabling.

Configuration memory integrity

checking
Continuous CRC-32.

Exportable keyed digest

(Certif.-of-Conformance).
Continuous CRC.

.bit key encrypted loading No Yes No

.bit key storage memory type

Battery-backed RAM

(BBRAM) or eFUSE (key

stored in a scrambled form).

Flash BBRAM or eFUSE.

.bit key zeroization Yes Yes Yes (BBRAM)

.bit secret factory decryption key None Yes None

FPGA memory type SRAM (60nm) Flash (65nm) SRAM (28nm)

Supply chain assurance None
Device ID and X.509

device certificate.

57-bit device ID set in

fuses. 32-bit eFUSE user

dedicated.

Internal integrity tests

Continuous CRC-32 on the

embedded RAM (only with

MAX-II CPLD).

SHA-256 on the ROM

(configuration fabric,

security settings, keys and

declared NVM pages).

SECDED on eSRAM,

eNVM and DDR

controller).

Only on configuration

memory.

External condition monitoring

Internal oscillator watchdog

(only with MAX-II CPLD).

Temperature sensor (on

Arria V and Stratix IV, V).

Dual internal clocks

monitoring, active metal

mesh.

Temperature, voltage and

internal clock monitors.

Active countermeasures

Key zeroization. Registers

zeroization (configuration

memory, user memory).

Device lockdown, complete

device zeroization (with

post verification), I/Os set

to ‘Z’ state

Configuration memory

zeroization, user flip-flop

reset and outputs set to ‘Z’

state.

Hardware accelerators and

security services
None

AES-128/256 (ECB, OFB,

CRT, CBC), SHA-256,

HMAC, ECC (anti-DPA),

Keytree derivation

algorithm (anti-DPA),

Quiddikey™ PUF key

storage, AMBA bus

hardware firewalls.

None

Isolation/partitioning tool Design Separation Flow No Isolation Design Flow

2) Bitstream Encryption

The countermeasure employed against bitstream probing is

the encryption. Using a symmetric algorithm like the AES to

cipher the configuration file sent to the FPGA makes the

programming interface probing ineffective, since the extracted

data are unintelligible. Currently the bitstream encryption

algorithm proposed for the most secure devices of the three

FPGA vendors studied is the same, namely the AES-256. In

addition to that, Xilinx and Microsemi devices require a

complete device configuration erasure before loading a new

configuration. This is intended to prevent that a previously

loaded bitstream can compromise the following one.

3) Bitstream Decryption Key Protection

When bitstream encryption is used, the cryptographic key

protection is of a paramount importance. The AES algorithm

when used with a sufficient key length has been proved resistant

to brute-force attacks achieved with current computing resource

(available for the common people). This is the reason why the

key confidentiality is an important concern.

For the moment Altera and Xilinx devices only propose a

single 256-bit loaded user-programmed key for bitstream

decryption and does not offer encryption for it [4][13].

Concerning key storage, for most of the devices two choices are

available: volatile battery-backed RAM (BBRAM) or non-

volatile embedded fuses (eFUSEs), note that Altera Cyclone III

LS only provides BBRAM. The BBRAM offers key updating

possibility. And the power removing can be used to clear the key

as a tamper event response. However, this technique requires a

short power disconnection to clear the RAM content. The

eFUSEs ensure that the data is kept even without power. It is a

practical advantage in terms of maintenance but even if it is a

challenging task, an attacker has all the time he needs to conduct

a physical attack. Moreover a device keeps the same key value

during all its lifetime. Using Cyclone III LS, the key cannot be

read out through any interfaces, and the key is scrambled for

storage. In this case key scrambling can just delay an attack, but

it is not considered as a strong security mechanism. To ensure

the key confidentiality during the transmission to the chip, in

function of the Altera FPGA device, the user must supply one or

two keys to the programming software [19]. The software

applies a key derivation function giving the real key used for the

bitstream encryption. The one or two keys given by the user are

sent to the FPGA using the same derivation function as the

software. This technique is not yet flawless, since researchers

were able to found the key derivation function that was used for

the Stratix-II and Stratix-III by reversing the programing

software Quartus II [19].

An interesting point about Xilinx storage is that any read or

write access to the key BBRAM causes its content to be cleared

with the entire FPGA configuration.

Typically, when encryption is not used, key loading shall

never be done in an untrusted location. As the best of our

knowledge, Microsemi is the only FPGA vendor to provide an

encryption mechanism for user keys loading; moreover it is

mandatory for the IGLOO2 [8]. The Key-Loading Key (KLK) is

used by default for loading user keys. Since this key is similar

for a large number of devices it is not recommended to use it.

Furthermore, the KLK is not usable for bitstream decryption. To

load encrypted user keys or the encrypted bitstream it is

preferable to use the Derived Factory Key (DFK). This key is

automatically derived from the unique per device Factory Key

(FK) loaded in Microsemi factory. The key derivation algorithm

is anti-DPA patented. Another factory key provided by

Microsemi is only integrated in larger devices. It is a random

ECC private key associated with an Elliptic Curve Cryptography

(ECC) hardware accelerator. The factory key (FK) and the user

keys are symmetric (i.e. the same key is used for encryption and

decryption), but this one is asymmetric (e.g. data encrypted with

the public key can only be decrypted with the private key and

vice versa). The public ECC key is automatically computed

using the ECC engine, which is certified in the X.509 device

certificate. This key pair can be used for establishing a shared

symmetric key using Elliptic Curve Diffie-Hellman (ECDH)

protocol for bitstream decryption or authentication. Microsemi

supplies a unique database containing all the factory keys to the

client. And all this factory keys can be used for loading the two

user keys UEK1 & UEK2. User keys can serve for bitstream

decryption or authentication and all the keys (except the KLK)

can independently encrypt a bitstream part that configures only

the FPGA fabric or the embedded Non-Volatile Memory

(eNVM) contents. Concerning user keys storage into Microsemi

FPGAs, a SRAM-PUF technology called Intrinsic-ID™ from

Quiddikey is provided. This technology does not work like a

classic memory. It does not store the key value “directly” but it

uses a Physical Unclonable Function (PUF) to reconstruct the

keys on the fly when powered. An enrolment phase is necessary

to initialize the key value into the PUF engine. This technology

is assumed to be resistant against invasive attacks since the key

values are not directly contained in it. Furthermore, the PUF

based on the SRAM process variations, makes the component

unique for each device and not reproducible. For key

verification, a challenge protocol is implemented and allows

checking if a device possesses a specific key without exposing

it. This mechanism can be deactivated in the FPGA security

settings.

The key encryption makes the key loading process more

secure in an untrusted location because a simple snooping attack

become ineffective. With Microsemi devices, to ensure that

decryption keys cannot be modified by anyone, a 256-bit

passcode must be set during the first key injection process. This

passcode is then mandatory to unlock the write access to the

security settings, including the keys. The researcher, who has

found the backdoor in the Microsemi ProASIC3, considers this

mechanism strong against DPA attacks [18]. To be used in an

untrusted location one-time-use passcodes should be

implemented in future Microsemi development software version.

Care must be taken using this feature because the security

settings remain completely accessible until the device or the

JTAG reset. An optional passcode only unlocking the second

user key is also available. The weak point concerning the

Microsemi FPGAs, is the discovery of a backdoor [18] in the

JTAG of the ProASIC3. We do not have found recent

information concerning backdoors in current Microsemi devices.

In the section II, we saw that DPA attacks were successfully

performed against the AES-128 decryption key of the previous

generation FPGA from each vendor. Microsemi is for the

moment the one and the only FPGA Company to integrate DPA

patented countermeasures from CRI for bitstream decryption.

However, no successful DPA attack has been reported in the

literature for the last FPGA generation: V and 10-series for

Altera, IGLOO2 for Microsemi and 6 and 7-series for Xilinx.

4) Readback deactivation

Readback is initially a verification mechanism used to read

out the FPGA configuration and verify if it has not been

corrupted during the programming or after. Removing this

function makes the verification process harder but it avoids that

an attacker can easily read the entire FPGA configuration. The

Altera MAX-II CPLD can be used with the Cyclone III LS [3]

[4], to restrict the JTAG commands set and makes the

configuration readback impossible. To recover all the JTAG

commands, a reset of the interface is necessary but it makes the

MAX-II triggers the FPGA reset (configuration and volatile

keys). In Microsemi devices, the debugging features can be

deactivated using security settings called lock-bits. These lock-

bits are configurable only if the right 256-bit passcode is sent to

the device [8]. To verify the device configuration, a hash of the

configuration fabric is generated and keyed with the bitstream

encryption key and exported out of the FPGA to the user. It is

called the “Certificate-of-Conformance” and it can be switched

off using a specific lock-bit. When using bitstream encryption

with Xilinx devices, the readback circuitry for all interfaces is

automatically disabled. This mechanism is integrated in a

hardened triple-redundant logic. All the vendors provide

readback deactivation but only Microsemi offers an alternative

verification mechanism.

5) Guarantee of FPGA Genuineness

This feature tends to prove the device genuineness. Altera

does not seem to provide any numeric ID or signature in their

FPGAs. Microsemi IGLOO2 contains a 128-bit serial number

and a 256-bit user design ID. Furthermore it stores a X.509

device certificate containing the device serial number, date code,

device number and secret factory keys which are bound and

signed by Microsemi. This certificate ensures that the

specifications of a given FPGA, match with the specifications

provided by the vendor. Xilinx provides a unique 57-bit Device

DNA for each 6-series and 7-series FPGAs [14]. It is

implemented in one-time programmable (OTP) fuses, making

the number not modifiable. The DNA is accessible internally by

the design and externally via JTAG. A dedicated 32-bit user

eFUSE is also accessible within the FPGA fabric. These user

identification mechanisms can be used by the application

developer as a strong bitstream anti-cloning countermeasures,

linking each configuration file to specific devices.

B. User Application Data Protection

1) Before the Configuration

As we said before, application data-based attacks during this

phase are mainly related to Trojan insertion. A malicious

function like a backdoor or a logic bomb may be inserted into

the device manufacturing process or during the user application

design. We have seen in the previous section, how some vendors

prove that a device is not counterfeit. If the device is genuine, it

can contains a backdoor anyway, due to negligence or by choice

[18]. Since you don’t have a complete knowledge on the

hardware you are forced to believe a vendor when he pretends

that no such things exist. We can hope that researchers continue

to work on this subject to improve the general hardware security

level. About logic bomb, if it triggers when it detects a specific

bit sequence, the encryption of the data transmitted on the

different application communication medium may reduce the

chance of triggering. In addition of being a very expensive

security mechanism, no FPGA vendors propose embedded bus

data encryption mechanisms. Microsemi proposes hardware

firewalls to manage AMBA bus masters. Read and write right

accesses to embedded volatile/non-volatile FPGA memory and

some external memory controllers can be restricted. Note that

security firewalls can be directly designed by the user.

2) During the Configuration

The bitstream encryption used to avoid bitstream theft

protects also the design against reverse engineering.

Backtracking attacks can be avoided by modifying the bitstream

encryption keys at each major application update. To ensure the

bitstream integrity during its loading to the FPGA, hash

algorithms like the SHA-256 are efficient. They have been

studied to resist against reversing, meaning that it is practically

impossible to reconstruct an input bit sequence from its hash.

Altera does not seem to provide any bitstream hashing

mechanism. Since an encrypted bitstream that is modified during

its transmission may be totally corrupted after the decryption, it

is quite likely that the Altera FPGA refuses it for programming,

thus protecting it against a malicious modification. Microsemi

programming software generates a SHA-256-based hash of the

configuration transmitted with the encrypted bitstream. Then the

FPGA can verify bitstream integrity. A similar mechanism is

used in Xilinx devices, except that the SHA-256 hash is keyed,

giving a Hashed Message Authentication Code (HMAC).

Typically the key is transmitted with the hash into the encrypted

bitstream. For this reason, we don’t see the advantages of using

HMAC rather than a simple SHA-256. In FPGA-based design,

to avoid that everyone can program the device with its own

bitstream, an authentication procedure is necessary. This is

provided with the bitstream encryption key, because it is

assumed that only a trusted party has it.

3) After the Configuration

Concerning fault injection attacks, mechanisms are provided

by vendors to detect and correct unexpected system behaviors.

For Altera, the MAX-II CPLD can be used to monitor the

Cyclone III LS internal oscillator to detect an interruption.

MAX-II can be also configured to continuously compute a Cycle

Redundancy Check (CRC) of the configuration RAM and spot

unexpected value modifications. A temperature sensor is

embedded in the Arria V, Stratix IV & V to detect out of range

environmental conditions [5]. Microsemi IGLOO2 integrates a

set of integrity tests, SHA-256 for the security settings and

declared eNVM pages. Single Error Correction and Dual Error

Detection (SECDED) is used for eSRAM, eNVM and DDR

controller. The clock behavior is checked and an active metal

mesh detects invasive attacks. Xilinx FPGAs integrate a CRC

for the configuration memory. Clock, temperature and voltage

are monitored.

Whenever a tamper event is detected, active

countermeasures can be automatically triggered. All the vendors

provide device zeroization. Microsemi FPGAs can be totally

lock while conserving data as tamper evidences. Both Altera and

Xilinx provide the possibility to physically isolate region inside

the FPGA with unused logic fences, providing a strong

insurance for fault-tolerant and reliable applications [6] [15].

For the moment, Microsemi is the only company to provide

cryptographic hardware accelerators inside their FPGAs.

Namely AES-128/256, SHA-256, HMAC, anti-DPA patented

ECC engine and Keytree key derivation algorithm engine. These

hardware accelerators are valuable for cryptographic

applications. To protect the FPGA application during runtime,

Microsemi provides security settings known as lock-bits which

are unlockable using a 256-bit anti-DPA patented passcode.

These lock-bits can disable read/write accesses of the majority

of memory areas, hardware accelerators and programming

interfaces. An irreversible lock-bits can turn the device to a one-

time programmable one.

IV. CONCLUSION

FPGAs are used in critical systems and the value of the

applications keeps growing causing increases of attacks

targeting these devices last years. Now nearly all FPGA vendors

propose high-level security devices. We have studied the

security features provided by market leading companies Altera

and Xilinx. And also Microsemi who claims to lead the market

of secure FPGAs. To evaluate the relevance of the security

solutions, we drawn up a large FPGA threat model including the

most popular attacks. To resume our study, Altera FPGAs

embed countermeasures against the most current attacks like

bitstream snooping or readback, but we can notice the absence

of real encryption mechanism for key loading making this

process unsecure in untrusted location. The necessity of the

MAX-II CPLD for advanced security features (e.g. clock

monitoring or CRC) may be incompatible with some designs. In

addition to all Altera’s security mechanisms, Xilinx provides

anti-counterfeiting device ID, voltage and temperature external

monitors. Xilinx’s offer is fairly complete for the moment but

Microsemi has the largest FPGA security features offer. Most of

them are unique for the industry like anti-DPA patented

hardware accelerators, factory keys, X.509 device certificate and

encrypted key loading. However, unlike the other two firms,

physical isolation tools and voltage/temperature monitors are not

provided.

REFERENCES

[1] Altera – “Whitepaper: Protecting the FPGA Design From Common
Threats”, 2009.

[2] Altera – AN 593: “Anti-tamper Protection for Cyclone III LS Devices”,
2009.

[3] Altera – AN512: “Using the Design Security Feature in Stratix III
Devices”, 2009.

[4] https://www.altera.com/products/fpga/features/stx-design-security.html

[5] Altera – UG01074: “Altera Temperature Sensor IP Core User Guide”,
2014.

[6] Altera – AN567: “Quartus II Design Separation Flow”, 2009.

[7] Altera – AN556: “Using the Design Security Features in Altera FPGAs”,
2015.

[8] Microsemi – “IGLOO2 FPGA Security and Reliability User’s Guide“,
2014.

[9] Microsemi – “Security FAQs”, 2015.

[10] Microsemi – “Secure Architecture in Microsemi FPGAs and SoC FPGAs-
an Overview”, 2013.

[11] Microsemi – “Specify and Program Security Settings and Keys with
SmartFusion 2 and IGLOO2 FPGAs”, 2013.

[12] http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/military-
aerospace-certifications

[13] Xilinx - WP365: “Solving Today’s Design Security Concerns “, 2012.

[14] Xilinx – XAPP1084: “Developing Tamper Resistant Designs with Xilinx
Virtex-6 and 7 Series FPGAs”, 2013.

[15] Xilinx - “Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000
AP SoCs (ISE Tools)”, XAPP1086, 2015.

[16] http://www.xilinx.com/products/design_resources/config_sol/s3/config_s3
e.htm

[17] S.M. Trimbergern J.J. Moore “FPGA Security:Motivations, Features, and
Applications”, Proceedings of the IEEE | Vol. 102, No. 8, pp 1248-1265,
August 2014.

[18] S. Skorobogatov, C. Woods, “Breakthrough silicon scanning discovers
backdoor in military chip”, 2012.

[19] P. Swierczynski, C. Paar, “Physical Security Evaluation of the Bitstream
Encryption Mechanism of Altera Stratix II and Stratix III FPGAs”, ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
volume 7 issue 4 article No. 34, January 2015.

[20] S. Skorobogatov, C. Woods, “In the blink of an eye: There goes your AES
key”, IACR Cryptology ePrint Archive 2012/296, 2012.

[21] A. Moradi, T. Kasper, “On the Vulnerability of FPGA Bitstream
Encryption against Power Analysis Attacks”, Cryptology ePrint Archive,
Report 2011/390, 2011.

[22] J-B. Note, E. Rannaud, “From the bitstream to the netlist”, Proceedings of
ACM FPGA’08, 2008

[23] http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-
chopshop-electronics, 2013.

https://www.altera.com/products/fpga/features/stx-design-security.html
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/military-aerospace-certifications
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/military-aerospace-certifications
http://www.xilinx.com/products/design_resources/config_sol/s3/config_s3e.htm
http://www.xilinx.com/products/design_resources/config_sol/s3/config_s3e.htm
http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics
http://spectrum.ieee.org/semiconductors/processors/the-hidden-dangers-of-chopshop-electronics

