
HAL Id: lirmm-01253539
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01253539

Submitted on 11 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuously satisfying constraints with contact forces
in trajectory optimization for humanoid robots

Benjamin Chrétien, Adrien Escande, Abderrahmane Kheddar

To cite this version:
Benjamin Chrétien, Adrien Escande, Abderrahmane Kheddar. Continuously satisfying constraints
with contact forces in trajectory optimization for humanoid robots. IROS: Intelligent Robots and Sys-
tems, Sep 2015, Hamburg, Germany. pp.3956-3961, �10.1109/IROS.2015.7353934�. �lirmm-01253539�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01253539
https://hal.archives-ouvertes.fr


Continuously satisfying constraints with contact forces in trajectory
optimization for humanoid robots

Benjamin Chrétien, Adrien Escande and Abderrahmane Kheddar

Abstract— Humanoid robots being underactuated, they need
to interact with their environment to move. When optimizing
trajectories, the contact forces must therefore be taken into
account. In this paper, we first highlight an issue encountered
when using parametrized functions in the presence of equality
constraints which need to be satisfied continuously over a time
interval. We then propose a parametrization of contact forces
and a formulation of the constraints which allow to write a
tractable optimization program whose solution verifies at any
instant all the constraints where those forces appear. We finish
by exemplifying the approach with preliminary results obtained
on a HRP-2 humanoid robot.

I. INTRODUCTION

Trajectory optimization is a powerful tool for generating
motions on a humanoid robot. It allows a large freedom in the
problem formulation while leveraging the capacities of state-
of-the-art optimization solvers. In control, it is typically used
on a reduced robot model to give rise to model predictive
control methods (see e.g. [1]). When used on a full model, it
becomes a planning tool. In this paper, we are interested in
the latter case. The trajectory optimization problem considers
a robot with a configuration space Q, and aims at finding a
C2 function q : [0, T ] 7−→ Q minimizing a given criterion,
and such that the robot realizes a set of goals expressed
as constraints. T is the duration of the movement. This
function must further obey physical laws and respect the
robot limitations at all times. The movement is thus subject
to the following set of constraints:

∀t ∈ [0, T ] ,

M(q(t))q̈(t) + n(q(t), q̇(t)) = Lτ (t) + J(q(t))Tf(t)
(1)

q(t) ∈ Qfree, q̇(t) ∈ V, q̈(t) ∈ A (2)
τ (t) ∈ T (3)
f(t) ∈ F (4)

where τ is the vector of torques and f is the concatenation
of force vectors f i applied on points pi of the robot1. Eq. (1)
is the fundamental equation of dynamics (FED) with M
the inertia matrix, n the nonlinear and gravity terms, L a
selection matrix mapping the torques to the active joints, and
J the Jacobian matrix of all points pi. Qfree is the subset

This work was partially supported by JSPS (Grant-in-Aid for
JSPS Fellows P13786) and by FP7 European project RoboHow.Cog
(www.robohow.eu).

B. Chrétien is with the CNRS-UM LIRMM, France, A. Escande is with
the CNRS-AIST JRL UMI3218/RL, Japan, A. Kheddar is with the CNRS-
AIST JRL UMI3218/RL, Japan and the CNRS-UM LIRMM, France.

1The number of points and forces might vary with time; f must be defined
for each time interval where this number is constant; same goes for F .

of Q where the robot is within its joint limits and free of
collision, V and A are the sets of acceptable joint speeds
and accelerations, T is the set of feasible torques, and F
is the product of the Coulomb cones of friction at each pi.
Because they must be valid for every t, eqs. (1) - (4) define
an infinite set of constraints.

Goal constraints are either of the form g(q, t0) = 0 (resp.
g(q, t0) ≥ 0) for a particular t0 ∈ [0, T ] or g(q, t) = 0 (resp.
g(q, t) ≥ 0) over a time interval [t1, t2] ⊆ [0, T ].

Given a cost function c, typically linked to the energy
consumption or duration minimization, we can write the
problem of finding q as the program

min.
q,τ ,f ,T

c(q, τ ,f , T ) (5)

subj.to goal constraints and eqs.(1)− (4)

Note that the duration T is part of the variables.
Such a program can be solved with the Pontryagin

maximum principle in the simplest cases, but is otherwise
intractable since some variables are functions. The classical
approach is then to restrict the search to classes of parametric
functions: the variables become the parameters of such func-
tions, and the search space has a finite dimension. Since the
number of constraints is still infinite, the resulting program
is coined semi-infinite program (SIP).

The most complete implementation of eq. (5) to date is
found in [2], building on the work of [3]. Several special-
izations of the problem have been considered. In [4], [5], q
is parametrized as a linear interpolation between keypoints,
and only the path is considered with no consideration of
time (and thus of dynamics). In [6], the path is given and
the unknown is the speed profile along it which needs to be
adjusted to satisfy the dynamic constraints. The duration T
is minimized.

The handling of SIP in trajectory optimization has usually
been done by only verifying the constraints at sampling times
rather than along the whole trajectory [3]. In [7], constraints
are verified continuously by the mean of interval analysis.
However, the formulation can be overly conservative, and
a tighter formulation is proposed in [2] based on Taylor
expansion on small time intervals.

A difficult issue in the trajectory optimization program is
the handling of contact forces. In [2], the authors compute
forces f(t) for a given trajectory q by solving analytically for
each time interval an equality-constrained quadratic program
in which the constraint (4) is incorporated as a weighted
least-square objective. The approach has two drawbacks: (i)
(4) is not guaranteed to be satisfied. It has to be checked



q1

q2

x=1
O

Fig. 1. A simple robot with two unit-length links, whose end effector must
stay on the line x = 1.

upon termination of the trajectory optimization and in case
of failure, a new optimization must be started with new
weights. (ii) Nothing prevents the solver from converging
to a trajectory q for which no feasible forces exist.

The two above problems are addressed by [8] where
f(t) is found by solving a linear program which includes
a discretized version of (4) as constraints, and uses a slack
variable to measure the possible infeasibility of a given
q(t) to drive the overall optimization to a feasible solution.
However, feasible forces are only found at sampling times.

To the best of our knowledge, there is no method which
finds forces that satisfy (4) continuously over a time interval.
The main contribution of this paper is to propose one. We
also discuss the problem of parametrization in the presence of
equality constraints, a problem that was empirically observed
in part, but not explained, in the 2D case in [9], and
provide an improvement of the inequality constraint handling
proposed in [2].

The remaining of the paper is organized as follows: in
Sec. II, we exemplify and discuss the interaction between
equality constraints and parametrization, in Sec. III we offer
a parametrization of contact forces specifically designed to
verify the FED at any instant and in Sec. IV we describe a
new way for satisfying continuously inequality constraints.
We then show some preliminary optimization results in
Sec. V before concluding.

II. EQUALITY CONSTRAINT AND PARAMETRIZATION

To solve problem (5), it is mandatory to discretize the
search space. This can be achieved by choosing a set of
parametrized functions. In this section we show how, in
presence of equality constraints, that choice can dramatically
reduce the number of possibilities.

Consider the 2-link arm in 2D shown in Fig. 1, and sup-
pose that we want to constrain its end effector to stay on the
line x = 1. At any instant, its configuration must satisfy the
constraint cos(q1) + cos(q2) = 1. If we chose to parametrize
q1 and q2 by polynomials of t, it is easy to show that the
only solutions to the satisfaction of this constraint over a
time interval are q1(t) = c and q2(t) = cos−1(1 − cos(c)),
for −π/2 ≤ c ≤ π/2, i.e. constant solutions. Clearly, this
is not satisfying as, physically, the robot has the freedom to
move its end effector. But here despite the constraint being

one-dimensional and while the robot has only 2 degrees of
freedom, there is no possible movement in the null space of
the constraint. This is due to the choice of parametrization:
the chosen parametric functions cannot correctly describe a
movement along the constraint. Note that with any other
choice of (piecewise) polynomial parametrization (splines,
Lagrange polynomials, . . . ), the same problem occurs.

This problem can be generalized: given a constraint
f(x(t), y(t)) = 0 over an interval, with x ∈ Rn, y ∈ Rm

and f a n-valued function, a poor choice of parametrization
will lead to only constant solutions, despite the constraint
letting m degrees of freedom to move.

In certain cases, it is possible to solve the constraint
explicitly, i.e. write y(t) = φ(x(t)). Then, we only need
to parametrize x with any parametrization, and replace y by
the composed expression. In our simple example above, we
would have q2(t) = cos−1(1 − cos(q1)), and the constraint
would be satisfied whatever the parametrization of q1 is,
provided we add constraints to enforce that −π/2 ≤ q1(t) ≤
π/2 over the interval. In the general case however, such a
solution is out of reach.

In the trajectory optimization problem, two main types
of equality constraints appear: the FED and the Cartesian
positions of given bodies (generally the hands and feet) over
time intervals. In the next section, we show how we chose
to parametrize the variables to avoid the issue caused by the
FED and one position constraint. For the remaining equality
constraints, the problem is still open and, for want of a better
alternative, we transform a constraint g = 0 into −ε ≤ g ≤ ε.
ε should not be too small, to avoid impeding the convergence,
but not too big either, to approximate correctly the original
equality. A typical value we take on the translation part of a
position constraint is 10−4m.

III. FED-COMPATIBLE FORCE PARAMETRIZATION

For robots with a free-flyer but otherwise fully actuated
joints, such as humanoid robots, the configuration space
writes Q = SE(3) × Q′, where Q′ is the space of joint
configurations, and the FED is decomposed accordingly as[
Mff Mfj

Mjf Mjj

] [
q̈f
q̈j

]
+

[
nf

nj

]
=

[
0
I

]
τ +

[
JT
ff JT

fj

JT
jf JT

jj

] [
ff

f j

]
(6)

with f and j denoting the (underactuated) free-flyer part and
internal joints part.

We restrict to movements where the robot has always at
least one body f fixed and in contact with its environment (in
particular we do not consider ballistic phases). We consider
this body as the root for kinematics and dynamics models.
Since contacting bodies can change over time, we might need
to choose different roots, and thus different representations,
over the movement duration.

Body f is fixed, so that q̈f = 0 and eq. (6) becomes[
Mfj

Mjj

]
q̈j +

[
nf

nj

]
=

[
0
I

]
τ +

[
JT
ff JT

fj

JT
jf JT

jj

] [
ff

f j

]
(7)

This approach has several advantages: it reduces the
number of variables, spares us from working with quantities



in SE(3), and solves exactly a position constraint for one
body. It was also adopted in [2]. Note that the forces applied
on body f still appear.
τ is uniquely defined by the lower part of eq. (7). There-

fore we do not need to parametrize it and can perform an
immediate variable reduction. On the contrary, q and f are
non-trivially related through the upper part of the equation so
that they must be parametrized carefully if we want eq. (7) to
be verified at all times while allowing non-constant solutions.

The upper part of eq. (7) is an expression of the 6
equations of Euler-Newton, up to a multiplication by a
nonsingular matrix depending on the choice of frame and
point to express the forces and moments [10]. If the moments
in the Euler equations are written at a fixed point, Jff is
independent of q. Furthermore, it is full row rank provided
the contact points of body f are not collinear, which can be
assumed for body f to remain fixed. These two properties
are pivotal in the following derivations.

Regrouping all the terms on the left, and insisting on the
dependencies w.r.t q, the upper part of eq. (7) can be written

df (q, q̇, q̈) = JT
ffff + Jfj(q)Tf j (8)

We now show that f =
[
fT
f fT

j

]T
can be written as

Y df (q, q̇, q̈) + Z(q)f̃ with Y df (q, q̇, q̈) a particular solu-
tion to eq. (8), Z(q) a basis of the null space of

[
Jff Jfj

]T
and f̃ a vector in this null space.

Because JT
ff is full rank, its QR decomposition is

JT
ff

[
Π1 Π2

]
= Q

[
R1 R2

]
with Q a 6 × 6 orthogonal

matrix and R1 6 × 6 full rank and thus invertible upper-
triangular matrix.

[
Π1 Π2

]
is a permutation matrix and R2

has no particular properties.
Denoting f1 = ΠT

1 ff and f2 = ΠT
2 ff , eq. (8) is rewritten:

QTdf (q, q̇, q̈) = R1f1 +R2f2 +QTJfj(q)Tf j (9)

which can be solved for f1:

f1 = R−11 QT (df

(
q, q̇, q̈)− Jfj(q)Tf j

)
−R−11 R2f2

(10)
Then

f =

[
Π1f1 + Π2f2

f j

]
=

[
Π1R

−1
1 QT

0

]
df (q, q̇, q̈)

+

[
Π2 −Π1R

−1
1 R2 −Π1R

−1
1 Jfj(q)T

0 I

] [
f2

f j

]
(11)

from which we deduce Y , Z and f̃ .
Note that only df and the upper-right part of Z depend

on the trajectory. Other quantities can be precomputed once
and for all for a given choice and position of a root body f .
This is what makes our approach tractable.

Choosing any parametrization of q and f̃ , eq. (11) gives us
a parametrization of f satisfying eq. (7) automatically. Note
that if k is the total number of contact points considered,
then f̃ is of size 3k− 6. In the following, we use B-splines
for q and f̃ .

IV. TIGHT INEQUALITY CONSTRAINT SATISFACTION

Contact forces need to be in their cones of friction, i.e.
Y df + Zf̃ ∈ F . This can be written as a set of inequality
constraints ∀t, g(q(t), f̃(t)) ≥ 0. q(t) and f̃(t) being
parametrized functions of the time, such constraints are
eventually expressed as

∀t ∈ [0, T ] , g(x, t) ≥ 0 (12)

where x is the vector of all parameters.
In this section, we explain how we handle general inequality
constraints to satisfy them continuously over a time interval.
We successively reformulate eq. (12) to ultimately obtain a
finite set of constraints over x only.

For the sake of simplicity, we consider hereafter that g
is real-valued. The following developments extend readily to
vector-valued functions by considering their elements one by
one.
First, we rewrite eq. (12) as

min
t∈[0,T ]

g(x, t) ≥ 0 (13)

Therefore, we get rid of the time dependency, but end up
having to compute the global minimum of a function over
an interval, which is intractable in the general case. We then
cut the time interval [0, T ] in N small intervals [ti−1, ti] with
0 = t0 < t1 < . . . < tN = T , where the ti are expressed
as fixed fractions of T and further rewrite eq. (12) as N
constraints:

min
t∈[ti−1,ti]

g(x, t) ≥ 0, i = 1..N (14)

Note that both reformulations are equivalent to the original.
If the interval i is small enough, we can accurately approx-

imate g on it by a low-order Taylor expansion g̃i around the
middle point (ti−1 + ti)/2. Since g̃i(t) is a polynomial in
t, we can apply root-finding techniques to its derivative to
locate its extrema and thus its global minimum over [ti−1, ti].
We note tmin

i (x) the corresponding minimizer. It is a very
good estimate of the minimizer of g over [ti−1, ti] and we
define gmin

i (x) = g̃(x, tmin
i (x)). The inequality constraint

eq. (12) is ultimately rewritten as

gmin
i (x) ≥ 0, i = 1..N (15)

This last reformulation is not equivalent to eq. (12) anymore,
but is an approximation of it that can be made as accurate as
necessary by adjusting the sizes of the intervals and the order
of the Taylor expansion, to the expense of the computational
speed. In our current implementation, we take time intervals
of about 0.2s and Taylor expansion of order 5. This last
choice let us use analytical formulae to find the roots of the
derivative of g̃i. Together with the interval size, we get a
maximum inaccuracy of magnitude 10−6 between g and g̃i.

The present constraint handling is an improvement
over [2], where the constraints are also split into small
intervals and a Taylor expansion is used, but then g̃i is
transformed into an equivalent B-spline, with coefficients
bi,j , and the constraint is rewritten ∀(i, j) bi,j ≥ 0, using



the fact that a B-spline lies in the convex hull of its control
points (a property also used in simpler settings in [11]).
This last step can be overly conservative. Our approach
is slightly more expensive, but approximates the constraint
more closely, giving more freedom to solve the problem.

The fastest state-of-the-art solvers not only require to
evaluate the constraints but also their derivatives w.r.t. the
optimization parameters. For the above constraint, the deriva-
tion goes as follows:

∂

∂x

(
gmin
i (x)

)
=

∂

∂x

(
g̃i(x, t

min
i (x)

)
=
∂g̃i
∂x

(x, tmin
i ) + ˙̃gi(x, t

min
i )

∂tmin
i

∂x
(16)

where ˙̃gi is the derivative of g̃i w.r.t. its time dependency.
We face 3 possibilities:
• tmin

i lies strictly in the interval [ti−1, ti] so that we have
˙̃gi(x, t

min
i ) = 0 since tmin

i is a critical point.
• tmin

i is on the boundaries of the interval, yet
˙̃gi(x, t

min
i ) = 0 (this is a pathological case).

• tmin
i is on the boundaries of the interval and
˙̃gi(x, t

min
i ) 6= 0, meaning that tmin

i would change if we
move the boundaries: tmin

i is independent of x and thus
∂tmin

i

∂x = 0.
The second term of eq. (16) is then always 0 and we simply
compute

∂

∂x

(
gmin
i (x)

)
=
∂g̃i
∂x

(x, tmin
i ) (17)

As usual with pointwise minimum, the issue of continuity
must be considered: tmin

i (x) is not a continuous function of
x as it can jump from one minimum to another when a local
minimum becomes the global minimum. However, tmin

i (x)
is piecewise C0, and from eq. (17) we get that gmin

i (x) is
piecewise C1.
Most solvers require that functions are at least C1 (every-
where), but they are robust to derivative discontinuities as
long as they do not occur at the optimum (a case which
can occur in robotics, see for example [12]). Our early ex-
periments did not show any problem with this discontinuity.
We however implemented and tested an alternative solution
which gets rid of most of the problem by considering not
only g̃i(x, tmin

i ) ≥ 0 but also all the constraints g̃i(x, tc) ≥
0 for all “critical” points tc: all (local) minimizers and
maximizers of g̃i over interval i as well as the real part of
complex roots of ˙̃gi. The possible robustness increase is not
worth the additional computational burden, but we can use
this solution as a backup if we encounter a problem one day.

V. EXAMPLES

A. Description

The following examples were implemented with the
RobOptim framework [13] using Python bindings, and the
resolution was achieved thanks to its IPOPT [14] plugin. The
model used here is the HRP-2 humanoid robot. In order to
isolate our approach within the whole optimization problem,
we fix the trajectory of the robot and only optimize on

Fig. 2. Single-support motion

Fig. 3. Double-support motion

the forces parameters. The free-flyer part of the FED and
the cone of friction constraints seen in eq. (4) need to be
satisfied continuously over the course of the motion. We do
not consider torque limits and thus can disregard the torque
variables and the lower part of the FED. The trajectories are
generated with our GPU-based whole-body dynamics motion
planner that will later integrate the proposed contact forces
formulation.

We consider two different examples: in the first one
(Fig. 2), a single contact surface is considered, and the
robot simply needs to lower its center of mass (CoM)
while keeping a constant orientation for its right wrist; in
the second example (Fig. 3), a double-support motion is
considered, and the robot also lowers its CoM from its initial
half-sitting posture. Here, we use 3k−6 cubic B-splines as a
parametrization of f̃ , and their control points will form the
optimization parameter vector. The contact points are taken
at the corner of the feet. Hence we have k = 4 in the first
case and k = 8 in the second.

B. Results

In both cases, the solver was able to find contact forces
control points such that the continuous constraints are satis-
fied throughout the motion in a few iterations.

In Fig. 6 and 7, we can indeed see that the contact forces
(expressed in the contact surface frame) are on the right side
of the contact surfaces (i.e. ∀t ∈ [0, T ] , fz(t) ≥ 0), while
Fig. 4 and 5 confirm that the contact forces remain within
the cones of friction (i.e. ∀t ∈ T, α(t)/µ < 1 where α is the
angle of the force with the normal to the contact and µ is
the friction coefficient). The FED is satisfied up to numerical
errors i.e. at any instant t, df −

[
Jff

T Jf j
T
]
f has no

components greater in absolute value than 10−13. Note that
time intervals are visible on the figures.

The examples were generated without any regard to
contact forces. If we slightly modify these movements to



Fig. 4. Normalized angular distance α(t)/µ of contact forces to the cone
of friction over time in the single-support case. Constraint limit is 1.

make them impossible from a contact forces perspective, the
solver will fail to converge, either after explicitly flagging
the problem as infeasible, or after reaching the user-defined
iteration limit. This is because the trajectory is imposed.
However, because our approach uses explicitly the forces as
optimization variables, it makes it possible to write tractable
optimization problems with both trajectory and forces as
variables. This is mathematically immediate and implemen-
tation is underway.

Currently, most of the constraints computation is done in
Python. While this made it easy to prototype and validate the
ideas presented here, it yields long computation times (espe-
cially due to the polynomial matrix manipulation in NumPy):
for the double-support example, with N = 11 intervals, 360
variables, 176 constraints, the whole optimization process
takes about 15 minutes. However, based on our experience on
porting such problems to C++ and in particular of exploiting
with GPGPU the important inherent parallelization potential
of constraints evaluation in such problems, we anticipate to
solve the whole optimization problem with both trajectory
and forces in a few seconds. This estimate comes from
the current computation times of our GPU-based motion
planning library: the joint trajectories used in these examples
were generated in less than a second on a laptop.

VI. CONCLUSION

This paper presented a parametrization of contact forces
paired with a constraint formulation designed for the resolu-
tion of optimization programs that need to ensure the con-
tinuous satisfaction of constraints for robotics problems. The
method relies on the QR decomposition of the free-flyer’s
Jacobian matrix, and allows to choose any parametrization
of contact forces that best suit the problem being solved.

In future work, we plan to implement this method in
our GPU-based motion planning library to efficiently treat
contact forces and torque constraints in addition to the
kinematics and simple dynamics constraints that it currently
handles.

Fig. 5. Normalized angular distance α(t)/µ of contact forces to the cone
of friction over time in the double-support case. Constraint limit is 1.

REFERENCES

[1] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online Walking Motion Generation with Automatic Foot
Step Placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737,
2010.

[2] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of
Whole-body Optimal Dynamic Multi-Contact Motions,” International
Journal of Robotics Research, Special Issue on Motion Planning for
Physical Robots Interaction, vol. 32, no. 9-10, pp. 1104–1119, Apr.
2013.

[3] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots-application to the kick motion of
the HRP-2 robot,” Robotics and Biomimetics, 2006.

[4] H.-D. R. in Dynamic Environments Using Incremental Trajectory Op-
timization, “Chonhyon park and jia pan and dinesh manocha,” Inter-
national Journal of Humanoid Robotics, vol. 11, no. 2, June 2014.

[5] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, August
2014.

[6] K. Hauser, “Fast interpolation and time-optimization with contact,”
International Journal of Robotics Research, vol. 33, no. 9, pp. 1231–
1250, August 2014.

[7] S. Lengagne, N. Ramdani, and P. Fraisse, “Guaranteed computation of
constraints for safe path planning,” Humanoid Robots (Humanoids),
2007 7th IEEE-RAS International Conference on, 2007.

[8] K. Hauser, “Fast Dynamic Optimization of Robot Paths under Actuator
Limits and Frictional Contact,” in ICRA, 2014.

[9] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, “Generation
of dynamic multi-contact motions: 2d case studies,” in IEEE-RAS
International conference on Humanoid robots, 2010, pp. 14–20.

[10] P.-B. Wieber, “Some comments on the structure of the dynamics of
articulated motion,” in Fast Motions in Biomechanics and Robotics,
Heidelberg, Germany, 2005.

[11] J. E. Bobrow, B. Martin, G. Sohl, E. Wang, F. C. Park, and J. Kim,
“Optimal robot motions for physical criteria,” Journal of Robotic
Systems, vol. 18, no. 12, pp. 785–795, December 2001.

[12] A. Escande, S. Miossec, M. Benallegue, and A. Kheddar, “A strictly
convex hull for computing proximity distances with continuous gra-
dients,” IEEE Transactions on Robotics, vol. 30, no. 3, pp. 666–678,
June 2014.

[13] T. Moulard, F. Lamiraux, K. Bouyarmane, and E. Yoshida, “RobOp-
tim: an Optimization Framework for Robotics,” in The Robotics and
Mechatronics Conference (ROBOMEC), 2013.

[14] A. Wächter and L. T. Biegler, On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming, Apr. 2005, vol. 106, no. 1.



Fig. 6. Evolution of the contact forces (expressed in the contact surface frame) over time in the single-support case.

Fig. 7. Evolution of the contact forces (expressed in the contact surface frames) over time in the double-support case.


	Introduction
	Equality constraint and parametrization
	FED-compatible force parametrization
	Tight inequality constraint satisfaction
	Examples
	Description
	Results

	Conclusion
	References

