
HAL Id: lirmm-01255921
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01255921

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A trace-driven approach for fast and accurate simulation
of manycore architectures

Anastasiia Butko, Rafael Garibotti, Luciano Ost, Chris Adeniyi-Jones,
Vianney Lapotre, Abdoulaye Gamatié, Gilles Sassatelli

To cite this version:
Anastasiia Butko, Rafael Garibotti, Luciano Ost, Chris Adeniyi-Jones, Vianney Lapotre, et al.. A
trace-driven approach for fast and accurate simulation of manycore architectures. ASP-DAC: Asia
and South Pacific Design Automation Conference, Jan 2015, Chiba, Tokyo, Japan. pp.707-712,
�10.1109/ASPDAC.2015.7059093�. �lirmm-01255921�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01255921
https://hal.archives-ouvertes.fr

A Trace-driven Approach for Fast and Accurate Simulation of Manycore

Architectures

Anastasiia Butko, Rafael Garibotti, Luciano Ost, Chris Adeniyi-Jones
Vianney Lapotre, Abdoulaye Gamatie and Gilles Sassatelli ARM Ltd.,

LIRMM (CNRS and University of Montpellier 2), Montpellier, France Cambridge, United Kingdom

e-mail: {firstname.lastname}@lirmm.fr e-mail: Chris.Adeniyi-Jones@arm.com

Abstract— The evolution of manycore sytems, forecasted to

feature hundreds of cores by the end of the decade calls for

efficient solutions for design space exploration and debugging.

Among the relevant existing solutions the well-known gem5 simu-

lator provides a rich architecture description framework. How-

ever, these features come at the price of prohibitive simulation

time that limits the scope of possible explorations to configura-

tions made of tens of cores. To address this limitation, this paper

proposes a novel trace-driven simulation approach for efficient ex-

ploration of manycore architectures.

I. INTRODUCTION

To achieve efficient exploration of emerging manycore sys-

tems, flexible and scalable simulators are mandatory. Such

simulators should combine efficient modeling, debugging and

simulation capabilities for verifying the software development,

while meeting the expected functionality and performance ob-

jectives of the platform. Available industrial and academic sim-

ulators differ in terms of simulation speed/accuracy tradeoffs,

and their adoption is usually defined by desired exploration

level. Quasi-cycle accurate simulators [1] are popular and at-

tractive for architectural exploration. The gem5 environment

is a popular open-source quasi-cycle accurate simulator [2] [3]

that supports a rich set of instruction set architectures (ISAs).

It has an active development and support community.

Even though enabling flexible and detailed microarchitec-

ture evaluation, gem5 entails slow simulation speeds, thereby

limiting its scope of applicability to systems with hundreds of

cores. This calls for alternative approaches capable of provid-

ing high simulation speed while preserving accuracy that is cru-

cial to architectural exploration.

The presented work aims at proposing a novel scalable trace-

driven simulation approach for event-driven computer architec-

ture simulators such as gem5. The fundamental principle of the

approach lies in decreasing simulation complexity by abstract-

ing away core execution into traces, as follows:

1. core execution traces, i.e. incoming/outgoing memory

transactions, are captured in a full-system simulation;

2. these traces are augmented with synchronization seman-

tics, then replicated into so-called augmented vector

traces to simulate systems made of a higher core count;

3. augmented vector traces are replayed into a final gem5

simulation through traffic injectors; only interconnect and

memory subsystem are actually simulated thereby result-

ing in significant performance boost.

This approach is implemented in gem5 and validated on

ARM ISA (it operates however on other ISAs). Known limita-

tions lie in the trace-driven nature of the approach: threads are

pinned to cores and run-time features such as load-balancing

are not modeled any further. Our solution advances state-of-

the-art in trace-driven simulation through its ability to accu-

rately simulate a computer architecture made of M cores based

on traces captured in a reference simulation on a system com-

prising N cores, with M ≥ N , thanks to trace replication.

In the rest of this paper, Section II discusses related work.

Section III provides the fundamental concepts of proposed

trace-driven approach with its development and integration into

gem5. Section IV gives an extensive evaluation of speedup, ac-

curacy and cost of our simulation approach. Finally, Section V

points out conclusions and future work.

II. RELATED WORK

Several techniques have been investigated for efficient sys-

tem simulation, and we classify them in three main families.

The first family concerns simulators relying on just-in-time

(JIT) dynamic binary translation, e.g. OVP [4] and QEMU

[5]. Such simulators can achieve speeds close to thousands

MIPS [6] at the cost of limited accuracy. They often focus on

functional validation rather than those of architectural explo-

ration. However, some efforts to apply them to architecture ex-

ploration have been conducted in [7]. These approaches miss

expressive modeling supports such as those related to cache hi-

erarchies and coherence protocols.

The second family emphasizes the distribution of the simu-

lation over multiple host machines [8]. Graphite [9] is a dis-

tributed simulator dealing with functional behavior. It mini-

mizes synchronization overhead by abstracting away events or-

dering along the simulation. So, while decreasing simulation

costs, such a relaxed synchronization vision limits architec-

tural explorations such as communication bottlenecks. ZSIM

[6] improves simulation speed by parallelizing the simulation

on x86 multicore hosts. Authors claim about 2/3 and 4 orders

of magnitude speedup than respectively Graphite and gem5.

More generally, the use of distributed simulators is delicate in

the sense that users have to carefully deal with simulation parti-

tioning and synchronization among available CPUs, which lim-

its simulation speedup.

The third family concentrates on optimizing component de-

scriptions (e.g. CPUs, interconnect infrastructure) following

the transaction-level modelling (TLM) [10] or by using trace-

driven simulation [11]. While reducing the number of sim-

ulation events, the use of TLM for architecture exploration

is strongly penalized by the lack of accurate microarchitec-

ture modeling capabilities. Trace-driven modeling on the other

hand, is a relevant approach in high-performance and embed-

ded computing for reducing simulation cost. In [12], a trace-

driven simulation for systems with 64-cores achieves in av-

erage 150x simulation speed w.r.t the reference Simics-based

simulator [13]. Authors in [14] combine a network simula-

tor with trace-based MPI simulator to explore the impact of

interconnection network on the performance of parallel appli-

cations. In [15], trace-driven injectors enable to drive the opti-

mization of networks-on-chip (NoCs) according to application

traffic traces. Such approaches do not focus on microarchitec-

ture issues. Another trace-driven simulator is TaskSim [11],

dedicated to design space exploration of shared-memory mul-

ticore systems. It concentrates on multithreaded application

behaviors instead of microarchitecture aspects.

Our contribution differs from all previous works by propos-

ing a novel trace-driven simulation approach suitable for an

efficient exploration of manycore architectures. Among its

strengths are a source-level dependency management for thread

synchronizations and a trace replication technique. It is capable

of properly taking into account control and data dependencies

of thread-oriented APIs such as POSIX threads and OpenMP.

III. TRACE-DRIVEN APPROACH

A. General Concept

The proposed trace-driven (TD) simulation approach is com-

posed of three phases as shown in Fig.1: (a) trace collection,

(b) trace processing and (c) trace simulation.

The first phase is devoted to trace collection. We define the

target system as consisting of the hardware architecture and

software system. In Fig.1 (a), the hardware architecture com-

prises N cores, each one having its private instruction (I$) and

data (D$) caches. Communications between cores and external

memory is achieved via an arbitrary communication infrastruc-

ture that may comprise caches (L2, L3). Software system in-

cludes the application code and the operating system. As mod-

eled system are of shared-memory type all communications

take place through memory locations that are being accessed

by code executed on cores. Fig.1 depicts communications as a

stream of request and response events via the communication

and memory infrastructures. The structure of a trace contains

... ...

Trace File #1 Trace File #M

Replication

Core #1

Memory Infrastructure

Communication

Infrastructure

Trace Collection Interface

Core #N

I$ D$ I$ D$

Trace

Injector #1

vI$ vD$

Communication

Infrastructure

Trace

Injector #M

vI$ vD$

Memory Infrastructure

(a) Trace Collection (b) Trace Processing (c) Trace Simulation

Trace Files

#1 .. #N

Reference Memory System Simulated Memory System

Trace Files

#1 .. #M

Fig. 1. Structural view of trace-driven simulation phases.

the memory access type (read or write), destination address,

data value, the time at which a request is sent and satisfied.

The trace collection interface (TCI) shown in Fig.1 (a) tracks

and stores all request and response traces. It is located at the

interface of each private cache memory. This allows to capture

information on the core side memory requests and correspond-

ing memory side responses. As a global output of collection

phase a trace-set consisting of one trace-file for each core is

obtained. Only trace information related to cache miss events

are kept as only those result in external memory traffic.

The trace processing phase is shown in Fig.1 (b). Collected

traces are augmented with synchronization information seman-

tics which is automatically inserted from annotations at source-

code level, this technique and also a trace-replication technique

are explained in details in Sections III-B and IV-D.

The TD simulation phase depicted in Fig.1 (c) takes the aug-

mented vector traces as inputs, and per-core traces are injected

in the communication and memory subsystem by trace injec-

tors (TIs). I$ and D$ are replaced by their virtual implemen-

tation (vI$ and vD$) to manage cache misses only. Given the

output of our modular TD approach, one can analyse system

behaviors by exploring a variety of parameters in communica-

tion and memory infrastructures. Parameters of cores are con-

figured during trace collection phase.

Time
Core
I$/D$
Interconnect
Memory

computation communication computation

Time
TI
vI$/vD$
Interconnect
Memory

communication

Memory Request Memory Response

(a) event-driven simulation

(b) trace-driven simulation

- computation events - interconnect and external memory events
- L1 cache memory events - trace injector events

T1 T2

Time
TI
vI$/vD$
Interconnect
Memory

(c) trace-driven runtime behavior
t1 t2 t3t2 t3

shifting delay

- actual simulation events - expected trace events

T1

Fig. 2. Comparing event-driven and trace-driven simulations.

To identify the gain of the TD approach, we consider sim-

ulation process from two perspectives: full event-driven sim-

ulation and the corresponding TD simulation. These perspec-

tives are illustrated in Fig.2, where a target architecture con-

sists of four communicating layers corresponding to cores/TIs,

private L1 cache memory, interconnection component and ex-

ternal memory. The time intervals T1 and T2 respectively rep-

resent the induced durations in case of cache miss and cache

hit. According to the event-driven paradigm, we assume that

the simulation time for both full event-driven simulation and

trace-driven simulation is proportional to the number of simu-

lated events. Thus, the gain in term of simulation time using

the proposed TD approach depends on the number of events

collected and filtered during the trace collection phase.

2902097628000: system.cpu0.icache: ReadReq f: 1 1 a: fffd018 s: 4 v: 4043833472

2902097674000: system.cpu0.icache: resp

Time tick Event source Type Flags Address Size Value

(a) Memory request/response traces collected via debug flags

Thread id 0 create tick: 2901449500000

Thread id 0 barrier tick: 2908594414000

Thread id 0 join tick: 2927322559000

(b) Dependency traces collected via macros

Fig. 3. An example of collected trace file extract.

Let us consider a reference trace collected according to

Fig.1. Assuming the purpose lies in determining the impact

of memory performance, memory responses are likely to oc-

cur at different time instants in the TD simulation compared to

the recorded timeline in the reference simulation used for trace

collection. This is shown in Fig.2 (c) in which a TI issues a

request at time t1, which reaches the memory at time t′
2
, while

in the reference simulation this request was expected at t2 (rep-

resented by bullets with dashed borders). This implies a time

shift that postpones 1) the response to the injector at time t′
3

instead of t3, and 2) the next TI injection time. This is handled

by processing time intervals between a response and the next

request from the TI rather than absolute time.

B. Integration in gem5

The implementation of our TD simulation approach in gem5

follows the previous three phases.

Trace Collection and Processing. The first two phases are

treated at the same time. Trace collection includes two impor-

tant aspects: the hardware architecture and the software sys-

tem. On the hardware structure side, to implement the TCI

gem5 already has the necessary functionality that is part of its

trace-based debugging which contains DPRINTF statements.

It provides a flexible text-format file, which can be in some

cases sub-optimal in terms of space and processing time. For-

tunately, well-known optimization techniques such as coding

and compression address this issue.

The gem5 memory subsystem is based on the notions of port,

packet and request/response. Ports connect memory compo-

nents to each other. Requests and responses are used to encap-

sulate CPU or I/O device messages [2]. Our implementation

of trace collection interface relies on these notions. Fig.3 (a)

shows an extract of the collected trace file.

On the software system side, we consider a multithreading

programming model where multiple threads exist within the

same process and share resources, e.g., memory. On a many-

core system, every core executes a separate thread simultane-

ously. In order to deal with the resource sharing, threads are

equipped with synchronization mechanisms. The synchroniza-

tion points (barriers and join) introduce control-flow dependen-

cies, addressed via a trace synchronization mechanism.

The first step of our synchronization mechanism consists in

collecting additional synchronization traces. For that purpose,

we add macros to input application source code so as to capture

synchronization points. The gem5 specific operation rpns()

returns the time at which it has been invoked in the format of in-

ternal time count, e.g. ticks. We create three macros, CREATE,

BARRIER and JOIN, based on POSIX thread API and the

rpns() operation of gem5. The execution output of an ap-

plication annotated with such macros is presented in Fig.3 (b).

This makes it possible to automatically append in the execution

trace synchronization information that are later used.

Trace-Driven Simulation. For the simulation of the aug-

mented vector traces, two main components are implemented

in gem5 simulator: (i) Trace Injector and (ii) Trace Arbiter.

The TI consists of two fundamental modules: the first is

dedicated to parse a trace file and to provide request/response

structures, whereas the second triggers request injection and

time interval management, i.e. time shifting of upcoming re-

quests according to response times.

The second important component is trace arbiter. It is con-

nected to each injector and has a global view of the entire sys-

tem. Arbiter deals with dependency traces collected via the

macros. Communications between the arbiter and injectors are

achieved via a simple protocol. TI has two basic states: LOCK

and UNLOCK. After initialization, it is unlocked and reads the

trace file. As soon as the parser reaches a synchronization entry

in the trace, an injector sends a corresponding signal to the ar-

biter. The arbiter sets the injector to LOCK state and waits un-

til all the other injectors reach the same synchronization point.

Once it happens, the locked arbiter unlocks all injectors and

the simulation continues. Exchange of messages between the

arbiter and the injectors is carried by atomic packets and does

not affect the runtime. Arbiter and injector connections are

shown in Fig.4.

One additional modification concerns the cache. Since the

TD simulation starts with a cold (empty) memory it causes a

form of bias. This problem is usually referred to as cold-start

bias [16]. For private caches, we exploit the fact that all mem-

ory requests are cache misses and are declared as such for the

TD simulation. This solution eliminates cold-start error, but

brings a new restriction: each individual trace file collected

through one cache size cannot be simulated with other cache

sizes. For the other levels of cache, e.g. L2, there are a few

methods, discussed in [16], reducing the problem.

One important trace simulation scenario is trace replication.

The aim is to collect traces from N-core systems, then repli-

cate them and simulate M-core systems, where M > N. Such

a replication is applicable when a given N-core system exe-

cutes N-thread application where computation phases are time-

bounded. In this case an application behavior pattern can be

duplicated to simulate M-core system thus increasing the vir-

tual size of application problem. A major feature of our tech-

nique is the direct access to the memory reference address field

which allows the TI apply a smart memory mapping bypassing

the compiler and the application source code.

Trace
Injector #1

Trace
Injector #2

Trace
Injector #3

Trace
Injector #4

1

2

3

4

LOCK

UNLOCK

UNLOCK

LOCK
LOCK

LOCK
STATE

Arbiter

Fig. 4. Four TIs connection with an arbiter and two-sided communication of

dependency management.

TABLE I

SUMMARY OF MAIN SIMULATION RESULTS: SPEEDUP, ACCURACY, COST IN TERMS OF MEMORY.

Applications FIR MJPEG SW Hist Sort N-body VO Reduct FFT Radix LU Ocean Barnes

Simulation FS 21.77 3.62 3.05 60.01 2306 78.38 23.45 97.82 119.57 3.61 16.61 15.92 10.35

time(seconds) TD 1.03 0.03 0.03 0.073 6.28 0.62 0.72 0.14 14.08 0.11 0.43 2.82 0.52

Gain 21 136 122 800 366 79 33 734 8.5 36 38 6 20

Trace file (Gigabytes) 0.87 0.04 0.05 0.06 5.48 0.66 0.92 2.49 11.6 0.99 2.51 2.48 1.04

Execution FS 0.4549 0.0264 0.0186 0.2672 48.169 0.8811 0.3010 0.3716 1.745 0.0188 0.4790 0.6027 0.1617

time (seconds) TD 0.4546 0.0262 0.0178 0.2649 48.150 0.8809 0.3009 0.3715 1.852 0.0191 0.4843 0.6025 0.1613

Error (%) 0.07 0.98 4.26 0.85 0.04 0.03 0.02 0.02 5.79 1.84 1.09 0.03 0.21

Limitations. Our approach has three main constraints. The

first is related to the core and L1 cache abstraction. It requires

to recollect traces and change their configuration, e.g. core fre-

quency, L1 cache size, etc. The second constraint concerns

the nature of considered applications. Our trace replication ap-

proach does not support applications in which the computation

phase cannot be statically bounded, e.g. data-dependent appli-

cations for which this phase depends on input data. The third

constraint concerns simulation host machine capabilities. In-

deed some traces could take tens of GB disk space and tens of

GB operating memory for 512 cores simulation. Thus, consid-

ered machines should provide enough storage space.

IV. TRACE-DRIVEN APPROACH EVALUATION

We validate our TD approach by providing a detailed anal-

ysis of the simulation process. Our reference platform (RP) is

characterized by a set of parameters: (i) 1-,2-,4-,8-cores pro-

cessor (500 MHz), (ii) 4-kB private L1 D/I caches, (iii) 64 bits

channel width, (iv) 30 ns DDR memory latency and (v) Linux

Kernel 2.6.38. The ARM in-order ISA model of gem5 is used.

The processors are connected to the DDR memory via a bus.

We consider a set of applications from scientific and mul-

timedia computing domain, implemented in POSIX Threads.

Some of them come from the SPLASH-2 benchmark suite [17]:

Radix, Barnes, LU and Ocean, which are relevant due to the

presence of multiple dependencies in the corresponding algo-

rithms. In addition, we adopt further applications: Motion

JPEG (MJPEG), Finite Impulse Filter (FIR), Smith Waterman

(SW), Histogram for histogram graph computing, Merge Sort,

N-body for simulating a dynamical system of particles, Reduc-

tion of vectors, Vector Operations (VO) and Fast Fourier Trans-

form (FFT).

The considered RP is configured to run the above bench-

marks in the timing Full System (FS) mode of gem5. We ad-

dress a thorough assessment of our TD approach by studying

the gain in simulation speedup, accuracy and cost in terms of

execution resources (mainly memory).

A. Evaluation of Speedup and Accuracy

Trace files are collected from the above RP with eight cores,

and then executed in our TD simulator without any architec-

tural change. Table I summarizes the simulation results. These

comprise the simulation and application execution times (ETs)

of both gem5 FS and TD simulation, the size of generated trace

files, the gain in terms of speedup and the error percentage.

The results provided by the TD simulation show that the

gain in terms of speedup is in a fairly wide range of 6x-

800x depending on the application nature, e.g. computation-

to-communication ratio. The size of obtained trace files and

the error of TD simulation are respectively is within 40Mb –

11.6Gb and 0.02% – 5.79%.

B. Exploration of Architectural Parameters

We evaluate the TD simulation consistency by varying the

internal architectural parameters just after the trace collection

phase. Five memory latency values are used: 5ns, 15ns, 30ns,

45ns and 55ns. Their impact on two applications (MJPEG and

FFT) execution time is evaluated, as illustrated in Fig.5. Re-

sults show that the error in terms of execution time is around

6%. Thus, our TD simulation reproduces the application be-

havior properly even when architectural parameters change.

In another experiment, we used the captured traces to evalu-

ate system configurations including components that were not

present during the original trace collection phase. To illustrate

this evaluation, traces are collected from our RP with eight

cores running MJPEG, and then transferred to a TD system,

which includes an L2 cache shared between all TIs.

����������
����� ���	�

����

�

��

�

��
�
��

�
�
�
��

��
�

���

�

���

��

�����
���	�

���
�
�����

�����

����������
��������� ������
�
�����
�

�

��

��
�
�

��
�
��

�
�
�
��

����

�����

����

�����

���� !�"#$���!

��� ���� ���� ���� ����

Fig. 5. Execution time and error comparing the gem5 FS vs. TD.

Here, in order to minimize the error in terms of execution

time, we must address the cold-start bias issue as discussed in

Section III-B. We propose to warm up L2 cache by considering

traces captured before application execution phase. We collect

and compare three traces: (i) execution time (ET) traces, (ii)
ET with initialization phase traces and (iii) ET + initialization

and OS boot phases. The results are presented in Fig.7. The

traces in (i) do not provide the expected performance improve-

ment and lead to 14.01% of absolute error on average. By using

the traces in (ii), we observe a speedup and obtain an absolute

error of 7.88% on average, which is 2 times less than provided

by (i). The traces in (iii) give 6.60% of absolute error on av-

erage, which is the best.

��������

���������	

�
��
�
�	

�

�

���
�

���

����	�����

� �� �� �� ��� ���

���
����
����
����

���
����
����
����

�
���������
��
�
�	

�

�

���
��

���
����
����
����

���
����
����
����

���������

�
��
�
�

�

�

���
�

���

����	�����

� �� �� �� ��� ���

���
����
����
����

���
����
����
����

�
��
�
�	

�

�

���
�

���

����������

�����	������

���
����
����
����

����	������

���
����
����
����

Fig. 6. Comparison of the numbers of cache misses: gem5 Full System vs. Trace-Driven simulation.

�����
�����

������
��	�� ������

�
����

	��	�
�����

��
��

����� �	����

������
	�	��

���������� �� ��������� ���������

�
�
��

�
��
�
�
��

��
��

 �
��

�
�
!
�"

	�	�
	�	�
	�	�
	��

	���
	���
	���
	���

#���$�%����&�

'�(�'���� �
�)* �+* �+* ��+*

Fig. 7. Comparison of error for exploring the impact of L2 cache memory.

C. Consistency of Simulations in Presence of Dependencies

We evaluate the error percentage of the TD approach w.r.t.

gem5 FS simulation in the case applications are composed of

multiple threads with dependencies between them, e.g., in-

duced by synchronizations. The mechanism that we defined

for addressing this concern has been presented in Sections III-

B. This is illustrated on the integer Radix sort kernel.

In the trace collection phase, the RP contains 4 cores and

Radix kernel is executed with 4 threads. For each core, the

numbers of cache misses observed during a given time slot

and the induced error are illustrated in Fig.6. The moments at

which synchronization barriers occur are highlighted by dashed

vertical lines. We observe a fluctuation of the error on barriers

occurrences. However, the observed peaks in the error are com-

pensated during the entire simulation, so that the cumulated er-

ror is only 1.39%.

D. Trace Replication for Large-Scale Simulation

We evaluate the opportunity of simulating the replication of

a given trace set on more processing elements than those used

to collect this trace set. Typically, a trace obtained from a gem5

FS simulation on a 2-cores could be replicated on tens or hun-

dreds of cores and simulated faster and still accurately with

the proposed TD extension. A preliminary observation about

cache miss behaviors of cores is that they are very similar (see

Fig.6). The cache misses of all cores follow the same mem-

ory access time pattern. Then, such a pattern can be used as

a possible trace template to be replicated among more cores.

We explore different scenarios for identifying such a pattern by

considering the MJPEG application, where traces are collected

from: (i) 1-core RP, (ii) 2-cores RP, (iii) 4-cores RP and (iv)
8-cores RP.

The traces obtained from these scenarios are replicated on a

platform with 8 TIs. We use normalized correlation function to

produce an accurate estimation. Correlation is made between

the number of cache misses obtained through the 8-cores gem5

FS simulation and the number of cache misses obtained via the

above four scenarios. The obtained correlation coefficients for

each scenario are shown in Table II. These results show that the

three scenarios provide very similar behaviors regardless of the

number of cores used. The produced execution time error com-

paring with the FS simulation is under 4%. Thus, the 2-cores

scenario is relevant enough for a meaningful replication target-

ing up to hundreds of injectors. We used the above replication

pattern to simulate a manycore architecture composed of up to

512 cores. The number of cores is limited by the host machine

capabilities. The architectural exploration results are out of the

scope of this paper.

In order to improve the correlation coefficients, we inves-

tigate the impact of application problem size on these coeffi-

cients. We focus on four applications: Radix, LU, Ocean and

Barnes. For each of these applications, we chose three prob-

lem sizes, where Size 1 < Size 2 < Size 3. Here, size means

the amount of processed data. Then, we collected their cor-

responding traces on the RP with four cores and four threads.

Table III shows the average correlation coefficients calculated

for each application trace according to the three problem sizes.

Note the significant increase in correlation with larger problem

TABLE II

CORRELATATION OF TRACES FROM 1-,2-,4-,8-CORES RP COLLECTION.

Collection RP parameter 1-core 2-cores 4-cores 8-cores

Replication Ratio 8 4 2 1

Correlation Coefficient 0.77 0.80 0.76 0.99

Execution time error (%) 3.34 2.93 0.92 0.98

TABLE III

APPLICATION PROBLEM SIZE IMPACT ON CORRELATION COEFFICIENTS.

Application Radix LU Ocean Barnes

Problem size 1 0.82 0.65 0.57 0.59

Problem size 2 0.87 0.75 0.66 0.73

Problem size 3 0.90 0.90 0.80 0.80

sizes, originating from the increased pressure to memory sub-

system: a higher dynamics in the cache miss rate over time

results in more prominent correlation.

E. Trace-Driven Simulation Cost

We here analyse the breakdown of the simulation effort on

the host machine for the following components: trace injec-

tor, cache, bus, memory and gem5 simulator. A single core

Full System simulation is also given for reference. From the

achieved experiments, we observed similar distributions that

can be instantiated as in Fig.8 for the MJPEG decoder. The

analysis is performed with the standard gprof profiling tool1.

The most part of the TD simulation falls into the realization

of cache coherent snooping protocol. Since the target system

is bus-based, the memory traffic congestion and performance

degradation is induced by increasing processors and injectors.

����

�

����	

��

�

�	����

��������������
���

�
��

�
��

��
�
�
��

�
�
��
�

	�
��

!

"!

#!

$!

%!

&!!

���������	
��	

�
 � � �� �
 �� �
�
��

Fig. 8. Simulation time distribution among cache, bus, memory and gem5

simulator during trace-driven simulation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an extension of the well-known

gem5 simulator with a trace-driven approach for an efficient

exploration of manycore architectures. Our solution provides a

fast and accurate simulation compared to the current gem5 ver-

sion, while preserving all design capabilities of gem5. A num-

ber of experiments has been reported, showing all the benefits

of our trace-driven extension: scalability via trace replication,

speedup and accuracy. The obtained results showed a simula-

tion speed of up to 800 times faster than the timing gem5 Full

System mode, while the achieved accuracy varies from 0.02%
to 6%. Our implementation aims to be made freely available

online 2 for manycore architecture exploration, while decreas-

ing the gap between simulation accuracy and performance.

Future work include improvements of the current trace-

driven simulator by addressing issues concerning the optimiza-

tion of trace file, the out-of-order processor support and differ-

ent memory mapping algorithms. We also plan to support other

1
http://sourceware.org/binutils/docs/gprof

2
http://www.lirmm.fr/ADAC

programming models enabling the architecture exploration of

complex computer systems like GPUs.

VI. ACKNOWLEDGEMENT

The research leading to these results has received fund-

ing from the European Communitys Seventh Framework

Programme (FP7/2007-2013) under the Mont-Blanc Project:

http://www.montblanc-project.eu, grant agreement no 288777.

REFERENCES

[1] J. Yi and D. Lilja, “Simulation of computer architectures: simulators,

benchmarks, methodologies, and recommendations,” IEEE Transactions

on Computers, vol. 55, no. 3, pp. 268–280, 2006.

[2] “Gem5’s memory system,” http://www.m5sim.org, 2013.

[3] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation

of gem5 simulator system,” in 7th Int’l Workshop on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), 2012, pp. 1–7.

[4] “Open virtual platforms,” http://www.ovpworld.org/, 2013.

[5] QEMU, “Qemu open source processor emulator,”

http://wiki.qemu.org/Main Page, 2013.

[6] D. Sanchez and C. Kozyrakis, “Zsim: fast and accurate microarchi-

tectural simulation of thousand-core systems,” in Proceedings of the

40th Annual International Symposium on Computer Architecture, ser.

ISCA ’13. New York, NY, USA: ACM, 2013, pp. 475–486. [Online].

Available: http://doi.acm.org/10.1145/2485922.2485963

[7] S. Stattelmann, S. Ottlik, A. Viehl, O. Bringmann, and W. Rosenstiel,

“Combining instruction set simulation and wcet analysis for embed-

ded software performance estimation,” in Industrial Embedded Systems

(SIES), 2012 7th IEEE International Symposium on, 2012, pp. 295–298.

[8] J. Chen, M. Annavaram, and M. Dubois, “Slacksim: a platform for

parallel simulations of cmps on cmps,” SIGARCH Comput. Archit.

News, vol. 37, no. 2, pp. 20–29, Jul. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1577129.1577134

[9] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator for

multicores,” in High Performance Computer Architecture (HPCA), 2010

IEEE 16th International Symposium on, 2010, pp. 1–12.

[10] S. Abdi, G. Schirner, Y. Hwang, D. Gajski, and L. Yu, “Automatic tlm

generation for early validation of multicore systems,” Design Test of

Computers, IEEE, vol. 28, no. 3, pp. 10–19, 2011.

[11] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero,

“Trace-driven simulation of multithreaded applications,” in Performance

Analysis of Systems and Software (ISPASS), 2011 IEEE International

Symposium on, 2011, pp. 87–96.

[12] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Moeng,

“Tpts: A novel framework for very fast manycore processor architecture

simulation,” in Int’l Conf. on Parallel Processing (ICPP), 2008, pp. 446–

453.

[13] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full

system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[14] C. Minkenberg and G. Rodriguez, “Trace-driven co-simulation of high-

performance computing systems using omnet++,” in 2nd Int’l Confer-

ence on Simulation Tools and Techniques, 2009, pp. 65:1–65:8.

[15] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: Dependency-driven

trace-based network-on-chip simulation,” in Proceedings of the Third

International Workshop on Network on Chip Architectures, ser. NoCArc

’10. New York, NY, USA: ACM, 2010, pp. 31–36. [Online]. Available:

http://doi.acm.org/10.1145/1921249.1921258

[16] R. A. Uhlig, “Trap-driven Memory Simulation,” Ph.D. dissertation, Uni-

versity of Michigan, 1995.

[17] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-2

programs: characterization and methodological considerations,” in Com-

puter Architecture, 1995. Proceedings., 22nd Annual International Sym-

posium on, 1995, pp. 24–36.

http://sourceware.org/binutils/docs/gprof
http://www.lirmm.fr/ADAC
http://www.m5sim.org
http://www.ovpworld.org/
http://wiki.qemu.org/Main_Page
http://doi.acm.org/10.1145/2485922.2485963
http://doi.acm.org/10.1145/1577129.1577134
http://doi.acm.org/10.1145/1921249.1921258

