
HAL Id: lirmm-01255927
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01255927

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Exploration for next Generation
High-Performance Manycore On-chip Systems:

Application to big.LITTLE Architectures
Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres, Michel

Robert

To cite this version:
Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres, Michel Robert. Design Explo-
ration for next Generation High-Performance Manycore On-chip Systems: Application to big.LITTLE
Architectures. ISVLSI: International Symposium on Very Large Scale Integration, Jul 2015, Mont-
pellier, France. pp.551-556, �10.1109/ISVLSI.2015.28�. �lirmm-01255927�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01255927
https://hal.archives-ouvertes.fr

Design Exploration For Next Generation

High-Performance Manycore On-chip Systems:

Application To big.LITTLE Architectures

Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres and Michel Robert

LIRMM (CNRS and University of Montpellier), Montpellier, France

Email: {firstname.lastname}@lirmm.fr

Abstract—Next generation embedded systems will massively
adopt on-chip manycore architectures to provide both perfor-
mance and energy-efficiency. This trend will definitely establish
the convergence of embedded computing and high-performance
computing. In such a context, one major design challenge will
concern the choice of adequate architecture parameters given
system requirements. Moreover, it will affect the way applica-
tions can suitably exploit architecture resources for an efficient
execution. This paper deals with manycore on-chip system design
exploration by using via simulation. It presents an approach
enabling one to study central design parameters in an accurate
and cost-effective manner. This approach is illustrated through
the design exploration for ARM big.LITTLE heterogeneous
multicore technology in the gem5 framework.

Keywords—High-performance computing, energy-efficiency,
manycore, heterogeneous, big.LITTLE, modeling, gem5, trace-
driven.

I. INTRODUCTION

The number of cores in future on-chip architectures will
keep in increasing as already observed in state-of-the-art
systems such as the Many Integrated Core Architecture (MIC)
of Intel [1], TILE-Gx of Tilera [2], Multi-Purpose Processor
Array (MPPA) of Kalray [3] and ARM big.LITTLE archi-
tecture [4]. MIC is the architecture adopted by Intel Xeon
Phi coprocessors used as compute accelerators in the world’s
fastest supercomputer (Tianhe-2 [5]). It is composed of 61
cores interconnected by a bi-directional ring network. The
TILE-Gx architecture is composed of 72 cores interconnected
by a 2D mesh NoC using wormhole routing packets. MPPA
is a manycore architecture integrates 256 cores, where cores
are distributed across 16 compute clusters. The big.LITTLE
technology promotes heterogeneous and adaptive architectures
as illustrated in Samsung Exynos Octa 5410 and 5422 chips.
It enables to dynamically migrate applications between two
different clusters of ARM cores: a low-energy consumption
cluster (“LITTLE”) composed of four Cortex-A7 cores versus
a high-performance cluster (“big”) composed of four Cortex-
A15 cores.

To illustrate the potential of on-chip big.LITTLE architec-
ture, Table I reports energy-efficiency numbers measured on
the Odroid XU3 board (see Figure 1) integrating the Exynos
Octa 5422 chip. These numbers have been obtained by execut-
ing the high-performance Linpack benchmark to determine the
number of floating-point operations per second (flops) and the
corresponding power consumption, for different frequencies of
the two clusters. Here, the configuration composed of four

Cortex-A15 cores running at 800MHz appears as the most
energy-efficient.

Thanks to their energy-efficiency, the above on-chip sys-
tems are significantly contributing to draw the current conver-
gence of embedded computing and high-performance comput-
ing. Considering this trend, an important challenge concerns
the design of adequate energy-efficient manycore systems
that will successfully fill the requirements of both computing
domains.

To address this challenge, relevant design exploration
frameworks are required for cost-effectiveness reason. Candi-
date frameworks must be accurate enough to enable designers
to address architecture features with respect to the way applica-
tions can suitably exploit resources for an efficient execution.

In this paper, we consider the gem5 architecture explo-
ration framework for demonstrating an approach for modeling
state-of-the-art multicore on-chip systems and exploring their
scalability. We consider the big.LITTLE architecture as a base
template by devising a model of the Exynos Octa 5422 clusters
in gem5 full-system mode. We evaluate the accuracy of the
resulting model via a subset of the Rodinia compute-intensive
benchmark suite [6]. We argue that the accuracy of our
models, which is around a precision error of 20% is relevant
enough to show that the models capture in a consistent way
system execution performed on real computer boards including
Exynos Octa 5422 chip. In order to accelerate the model-based
exploration for large-scale designs, we apply a trace-driven
abstraction in gem5 [7] to the big.LITTLE architecture.

The rest of this paper is organized as follows: Section II
discusses a few related gem5-oriented ARM core modeling
studies. Then, Section III and IV respectively present our
big.LITTLE architecture modeling in gem5 and an assessment
of the modeling accuracy. Section V explores the design
of large-scale system scenarios including more than hundred
cores. Finally, concluding remarks are given in Section VI.

II. RELATED WORK

In order to carry out our design exploration for many-
core embedded systems, we consider the gem5 simulator
system [8]. It is a quasi-cycle accurate simulation platform for
computer system architecture research. The gem5 framework
provides multiple architecture exploration features: system
emulation and complete full-system simulation modes, dif-
ferent CPU models which represent in-order and out-of-order

TABLE I. EVALUATION OF HIGH-PERFORMANCE LINPACK ON THE ODROID XU3 BOARD.

A7@200MHz A7@800MHz A7@1.4GHz A15@200MHz A15@800MHz A15@1.4GHz A15@2GHz

Total board power (W)

2.2 2.6 3.5 2.9 5.1 7.5 12.5

HPL score (Gflops)

0.26 1.04 1.68 0.96 3.42 4.96 4.7

Energy-efficiency (Mflops/W)

118 404 484 347 746 662 376

executions, a large set of ISAs (ALPHA, ARM, x86, SPARC,
PowerPC, MIPS) and variety of memory configurations, e.g.
cache coherence protocols, interconnects, memory controllers,
etc. In the next paragraphs, we mainly discuss a few relevant
studies on the use of gem5 for design analysis.

In an early study [9], we evaluated the accuracy of mod-
eling real systems using gem5 simulator. By considering a
range of benchmarks from scientific computing and media
applications domains, we compared simulation results against
a real hardware. The observed accuracy was promising enough
to consider gem5 as an interesting architecture design explo-
ration framework. Authors in In [10] design a gem5 model
of CoreTile Express system-on-chip (SoC) and estimate the
accuracy of Cortex-A15 core, memory system and intercon-
nect. They deeply explore the micro-architectural simulation
for the homogeneous dual-core system. The work presented in
[11] deals with the modeling and simulation of Cortex-A8 and
Cortex-A9 cores in gem5. A comparison in terms of execution
time is achieved against a real hardware execution based on
ten benchmarks. Authors claim that their core models are more
accurate than similar micro-architectural simulators. A similar
study has been acieved for Cortex-A7 and Cortex-A15 cores in
[12] by focusing on the micro-architectural simulation of these
cores. The gem5 and McPAT frameworks have been combined
to validate area and energy/performance trade-offs against the
published datasheet information. However, this work does not
aim to multicore evaluation. It only demonstrates the difference
between Cortex-A7 and Cortex-A15 cores running single-
threaded applications. The current work rather focus on the
multi- and manycore design exploration based on the same
cores models.

III. MODELING OF A BIG.LITTLE ARCHITECTURE

We introduce the main features of the computer board
integrating the considered big.LITTLE technology. Then, we
describe the modifications applied to gem5 so as to infer a cor-
responding model that will serve later for design exploration.

A. Reference platform main features

To evaluate the accuracy of our big.LITTLE model we used
the Odroid XU3 board with the embedded Exynos 5422 chip
which is illustrated in Figure 1.

The Exynos 5422 processor includes two clusters known
as “LITTLE” cluster with four Cortex-A7 in-order cores and
“big” cluster with four Cortex-A15 out-of-order cores. In
contrast to the previous chip versions, Exynos 5422 features
the heterogeneous multiprocessing (HMP) solution also known
as global task scheduling (GTS) thus all eight cores can
run simultaneously. The LITTLE cluster supports 200MHz -
1.4GHz frequency range and the big cluster supports 200MHz

Fig. 1. Odroid XU3 board [13].

- 2GHz. Each core has its 32Kb private L1 data and instruction
caches with 2-way associativity and 4ns latency. LITTLE and
big clusters contain two 512kB and 2MB L2 caches which
are shared among four cluster cores respectively. The cache
coherency between them as well as with the memory is
maintained by the Cache Coherence Interconnect 400 (CCI)
[14]. The main memory is 2GB LPDDR3 RAM running
at 933MHz and is integrated by package on package (PoP)
method. It has two 32-bit channels and achieves 14.9GB/s
memory bandwidth.

B. ARM big.LITTLE model

In order to simulate heterogeneous big.LITTLE architec-
ture in symmetric multiprocessing (SMP), e.g. only big or
LITTLE clusters, as well as in HMP modes we calibrated our
core model according to the Odroid XU3 reference platform:

• The key feature of the reference big.LITTLE processor
is the ability to run eight cores simultaneously. The
actual gem5 version does not support ARM full-
system simulation with more than four cores out of
snoop control unit (SCU) implementation. We by-
passed this restriction by modifying the SCU com-
ponent through not masking the real core number.
Another issue relates to the in-order CPU model which
is not devised yet to the ARM ISA. This problem is
often discussed in the research community and ac-
cording to gem5 developers there are three solutions:
(i) TimingSimpleCPU model, (ii) MinorCPU model
and (iii) DerivO3CPU model which can be modified
to produce quasi-in-order execution [11] [12]. In our
experiments we evaluated all three scenarios. The last
modifications related to the heterogeneous nature of
the considered architecture are performed in the gem5

TABLE II. RODINIA BENCHMARK DESCRIPTION.

Application/Kernel Abbreviation Domain Problem size

Back Propagation backprop Pattern Recognition 65536
Breadth-First Search bfs Graph Algorithms 4096
Heart Wall heartwall Medical Imaging test.avi, 1 frame
HotSpot hotspot Physics Simulation 64 x 64
K-means openmp/serial kmeans Data Mining 100
Lower Upper Decomposition lud Linear Algebra 256
k-Nearest Neighbors nn Data Mining 42760
Needleman-Wunsch nw Bioinformatics 1024
Speckle Reducing Anisotropic Diffusion srad v1 Image Processing 1 x 502 x 458

srad v2 512 x 512

�
���� ��
����� ���	
��
�
���
����� ���	
��
���� ���	
����
���
����

����� ���	
��
�
���
����� ���	
��
���� ���	
����
���
����

�
��

�
�

��
�

�	�
��	

�
�	
	�

�
�
��

�

�
�

�

�

��

!�

"�

"��

"���

#
��

$
�
��

�

#
%!

&
��

�
'

��
�

&
�
 !

�
�

$
�

��
�
!

�
�

�

$
�

��
�
!

!�
�

��

��
�

�
�

�
'

!�
��

�
"

!�
��

�
�

Fig. 2. Execution time comparison for LITTLE Cortex-A7 cluster running at 200MHz.

full-system creation script so as to support multiple
CPU models throughout a simulation.

• To support multiple clocks for LITTLE and big clus-
ters we changed the fs.py script.

• Since each cluster has its individually shared among
the cores L2 cache we added new option that identifies
the number of L2 caches as well as their parameters.
As gem5 does not contain the ARM CCI-400 inter-
connect component we ensured the cache coherency
by connecting L2 caches and memory via the coherent
crossbar (CoherentXBar [15]).

• The recent gem5 version provides multiple DRAM
controller models. Thus we chose LPDDR3 with two
32-bit channels. Note that the LPDDR3 timing corre-
sponds to 800MHz frequency and not 933MHz.

IV. ACCURACY EVALUATION

Now we assess the accuracy of the previous big.LITTLE
architecture model against the reference Odroid XU3 platform.

A. Rodinia benchmark suite

The reference Odroid XU3 board run Linux Kernel 3.10
which allows GTS. We modified the Linux Kernel 3.10 in
order to run it on gem5 simulator.

The Rodinia benchmark suite for heterogeneous comput-
ing [6] is used to validate our big.LITTLE model. It con-
tains twenty applications and kernels from different scientific
domains which is parallelized with OpenMP for multicore
CPUs and with CUDA API for GPUs. We used OpenMP

implementation with four threads per each cluster. Also, the
GOMP_CPU_AFFINITY variable is used to ensure identical
thread scheduling on the board and on the gem5 system.
The following eleven applications and kernels are chosen:
backprop, bfs, heartwall, hotspot, kmeans openmp/serial, lud,
nn, nw, srad v1/v2. The complete set of application description
and problem size are presented in Table II.

B. Analysis

We explored three available options to model ARM in-
order processor and to identify the accuracy of each one:

1) TimingSimpleCPU is the simplest purely functional
in-order model which uses timing memory accesses.

2) MinorCPU is an in-order processor model with a
fixed pipeline but configurable data structures and
execute behavior. It supports the Fetch (1,2), Decode
and Execute pipeline stages.

3) DerivO3CPU (modified) is the most complex out-
of-order model which has Fetch, Decode, Rename,
Issue/Execute/Writeback and Commit pipeline stages.

The comparative results are presented in Figure 2. Note
that the scale for the execution time is logarithmic. The figure
shows the execution time for eleven Rodinia applications and
kernels executed on the Cortex-A7 cluster running at 200MHz
on: (i) reference board, (ii) gem5 TimingSimpleCPU model,
(iii) gem5 MinorCPU and (iv) modified gem5 DerivO3CPU.
As we can see, the absolute error percentage varies between
1% and 50%. The minimum and maximum errors as well as
the absolute average error for each scenario are listed in Table
III. The results show that the execution time absolute error for

���

���

��	�
��
��	
�����

��	�
��
��	
���

��	�
��
�����	
���

��	�
��
�����	
�����

��������

�	�����������

�
��

�
��
��
�
��

�!
�
��
�
"
��
��

��
#�

$%

�

��

���

���$������ �!����"������#�$%

�
��
���
���

&���!��$���

�
��
�����

�
��
�
���

�
��
���

��������

�	�����������

�
��

�
��
��
�
��

�!
�
��
�
"
��
��

��
#�

$%

�

��

���

���$������ �!����"������#�$%

�
��
���
���

'())'*�!��$���

���
�����

���+�����

���
�����

��������

�	�����������

�
��

�
��
��
�
��

�!
�
��
�
"
��
��

��
#�

$%

�

��

���$������ �!����"������#�$%

�
��
���

Fig. 3. Execution time comparison between gem5 model and Exynos Octa 5422.

all three models is around 22%. Thus, we conclude that for per-
formance evaluation it is enough to use the TimingSimpleCPU
model. However, for more detailed studies, such as micro-
architectural or power consumption exploration, it is necessary
to switch to a more detailed one.

TABLE III. CORTEX-A7 IN-ORDER MODEL EXECUTION TIME ERROR

SUMMARY.

CPU model Minimum Maximum Absolute
error error average error

TimingSimpleCPU 0.6% 43.9% 21.4%
MinorCPU 5.7% 39.7% 22.5%
DerivO3CPU (mod) 2.2% 48.7% 21.6%

For further accuracy evaluation to simulate the in-order
Cortex-A7 cores we selected the modified gem5 DerivO3CPU
model. The following three scenarios are considered:

• Accuracy evaluation of the LITTLE Cortex-A7 cluster
in SMP mode running at 200MHz, 800MHz and 1.4
GHz (LITTLE 1, 2, and 3 respectively).

• Accuracy evaluation of the big Cortex-A15 cluster in
SMP mode running at 200MHz, 1.1GHz and 2GHz
(big 1, 2, and 3 respectively).

• Accuracy evaluation of the big.LITTLE in HMP mode
with Cortex-A7/A15 running at 200MHz/200MHz,
1.4GHz/2GHz, 200MHz/2GHz and 1.4GHz/200MHz
(big.LITTLE 1, 2, 3 and 4 respectively).

The correlation results are shown in Figure 3. Each scenario
has eleven points which correspond to the chosen Rodinia
kernels and applications. Their execution time varies between
milliseconds and seconds thus the scale is logarithmic. Two
large-dotted lines show the -50% and 50% error edges. The
comparative results, such as minimum/maximum and average
absolute errors are presented in Table IV.

To summarize the average absolute errors are 19.3%, 20.1%
and 22.9% for LITTLE cluster, big cluster and big.LITTLE in
HMP mode respectively.

For a more detailed analysis we considered application
output information over the time spent in different stages,

TABLE IV. EXECUTION TIME ERROR SUMMARY.

Scenario Minimum Maximum Absolute
error error average error

LITTLE 1 2.2% 48.7% 21.6%
LITTLE 2 2% 45.6% 19.7%
LITTLE 3 1% 38.7% 17%

big 1 2.7% 39.6% 17.9%
big 2 5.8% 46.7% 21.1%
big 3 0.9% 54.8% 21.4%

big.LITTLE 1 1.4% 43.2% 22.7%
big.LITTLE 2 0.8% 56.9% 23.3%
big.LITTLE 3 0.9% 37.8% 19.5%
big.LITTLE 4 2.4% 48.3% 26%

e.g. initial setup, I/O, kernel execution, etc. We chose three
applications: bfs, lud and srad v1. The comparative results
between reference measured and modeled Cortex-A15 cluster
running at 1.1GHz are shown in Table V. We noticed that
execution time precision error varies dramatically between 5%
and 90% according to execution stages. The total execution
time is compensated. We observed that throughout presented
three examples the computation kernel stage error is low and
amounts around 20%. At the same time, stages which are
related to memory operations, e.g. Store results, Read image
from file, Save image into file, etc., produce high error percent-
age. Thus, we conclude that the main source of error in our
model is memory system. One of the reason is LPDDR3 model
difference mentioned in Section III-B. Another possible cause
is non-realistic cache coherence protocol used in classical
memory model [15] as well as the lack of CCI-400 model.
This observation can also explain the slight error raise by
switching to the HMP mode as its memory communication
become more complex and inaccurate cache coherence system
provides a noticeable discrepancy.

V. ARCHITECTURE EXPLORATION

The presented big.LITTLE gem5 model allows us to ex-
plore important parameters as cache size, interconnect width,
memory technology. However, due to current limitation of
gem5 to simulate easily more than eight ARM cores, exploring
large-scale ARM-based system models is not feasible. Thus to
evaluate the scalability of the Rodinia benchmark running on

TABLE V. APPLICATION DIFFERENT STAGE COMPARISON.

Stage Execution time (ms) Error
Board gem5

bfs

Read graph 0.58 0.04 -93.7%
Allocate memory 3.7 4.5 21.5%
Kernel 33.7 41.5 23%
Store results 5.1 3.3 -35.1%
Total 44.0 49.6 12.7%

lud

Kernel 79.476 72.384 -8.9%
Verify 216.514 347.586 60.5%
Total 295.99 419.976 41.9%

srad v1

Initial setup 0.31 0.06 -79.4%
Read image from file 140.5 259.4 84.6%
Resize image 3.5 3.3 -5.4%
Allocate memory 0.12 0.09 -29.5%
Extract image 90.3 8.8 -90.3%
Compute 14.4 11.1 -22.9%
Compress image 38.8 23.3 -40%
Save image into file 170.8 111.1 -35%
Free memory 2.4 0.9 -62.3%
Total 461.1 418.5 -9.2%

the big.LITTLE heterogeneous manycore we used the trace-
driven approach [7]. To demonstrate the exploration flow we
chose hotspot application with 1024 problem size.

A. Trace-driven simulation

The trace-driven simulation consists on three phases: (i)
collection, (ii) reduction and (iii) simulation. The last phase
implies the replacement of gem5 full-system cores by trace
injectors (TIs) which main goal is to replay the traces obtained
in the collection phase. The key advantages of such trace-
driven approach is the significant reduction of the simulation
time and also the ability to replicate the traces in order to
evaluate system scalability [7].

To collect the Cortex-A7 traces we used the TimingSim-
pleCPU. As we showed in Section IV-B this model is suitable
for performance evaluation and in addition it provides well-
organized traces where each request is always followed by a
response. The Cortex-A15 trace-driven simulation is a tedious
task. Its out-of-order nature at times complicates trace injec-
tions and requires extra micro-dependency analysis. To solve
this issue we decided to emulate the Cortex-A15 behavior by
using collected Cortex-A7 traces.

In Figure 4 we illustrated the hotspot kernel runtime behav-
ior captured on the Odroid XU3 board with Scalasca/Score-p
instrumentation [16] and analyzed with Vampir tool [17]. The
figure represents execution of four threads under two Cortex-
A7 and two Cortex-A15 cores running at the same frequency.
Expectedly the Cortex-A15 duration is less than the Cortex-
A7 corresponding to 0.16s and 0.23s respectively. Based on
these values we calculated an acceleration factor as 1.45x and
applied it for big cluster trace-driven simulation. Consequently,
the acceleration factor varies from one application to another.

Trace replication technique [7] relies on overlapping trace
patterns with the increasing number of TIs. The hotspot kernel
consists on two stages:

1) Read input data stage is performed by master thread
successively and takes 80% of total execution time.

2) Parallel region stage is executed on all available cores
evenly and takes the remaining 20% of total execution
time.

The percentage values shown above are taken from the
Scalasca/Vampir profile and correlate with the published anal-
ysis [6]. To obtain the replication pattern we captured the
parallel region traces presented in Figure 5. We illustrated the
trace pattern collected at the core#0 (Figure 5 a)) and at the
core#1 (Figure 5 b)) on the system with four cores and 4
threads. Each kernel iteration is composed on two pragma

omp parallel for: (i) compute temperature and (ii) store
results. We observed that the results storage region has a
significant raise of cache miss number. The further exploration
is focus on the parallel region evaluation only.

B. Results

Based on previous trace-driven design, we present the
ARM big.LITTLE heterogeneous manycore scalability anal-
ysis. We evaluated three scenarios:

• LITTLE cluster with 4, 8, 16, 32, 64 and 128 cores
(injectors),

• big cluster with 4, 8, 16, 32, 64 and 128 cores
(injectors),

• big.LITTLE in HMP mode with 4/4, 8/8, 16/16, 32/32
and 64/64 cores (injectors).

The execution time and speedup for each scenario are
presented in Figure 6. As we can see, the best execution
time, as well as the speedup obviously shows big cluster.
The LITTLE cluster provides the worst execution time. The
big.LITTLE speedup is normalized by the faster big cluster.
We observed that the execution time in HMP mode is worst
than in the big cluster and slightly better than in the LITTLE
cluster. It explained by the OpenMP programming nature that
we observed in Figure 4 where faster Cortex-A15 cores wait
when the slower Cortex-A7 cores terminate. For all three
scenarios the speedup reaches the plateau around 64 cores
(injectors). It explained by the memory/interconnect saturation.

To address this common issue we propose to explore the
big.LITTLE architecture with alternative network-based Ruby
memory subsystem [15]. System includes two-level cache
hierarchy. The consistency of the memory is maintained by
the MESI coherence protocol. This protocol models inclusion
between the L1 and L2 caches and has four stable states, M,
E, S and I, hence the name. The interconnection network has
the following features: Mesh topology, XY routing algorithm

Cortex-A7

Cortex-A7

Cortex-A15

Cortex-A15

0.16s

0.23s

Kernel execution

OMP barrier

Fig. 4. Hotspot parallel region runtime behavior running on the Odroid XU3
board.

���������	�����
���������
���

�
��
��
�
�
�
�
�
�	

�
�
�
�

�

��

����

�
��

����

�
��

����

�
	�������

�
� ��� �
� ��� �
�

���	�������	�������

�������������

���������	�����
���������
���

�
��
��
�
�
�
�
�
�	

�
�
�
�

�

��

����

�
��

����

�
��

����

Fig. 5. Hotspot parallel region trace pattern.

and detailed GARNET network micro-architecture model (16-
byte links, 10 virtual networks, 4 virtual channels per virtual
network, 4 buffers per virtual channel, 1 cycle on-chip link
latency). Figure 6 b) shows the achieved speedup for the
LITTLE cluster (Ruby) up to 128 cores. Application shows
a plateau which originates from saturation of the external
memory bandwidth that according to the gem5 statistic file
is about 200 million DDR accesses per second. Hotspot
parallel region investigation shows that system scalability can
be improved by efficient network interconnect on around 30%
of execution time speedup.

��������	
��
�����
��

��

��������	
��
�

�����	
��
�

���

��������	
��
����
���

�
�

�

�

�

��

��

��

 ��

 ��

!
"�
��#$��%&
��#��

' () *�)' �(

���������
����
���
����

��������������������
��������

��������	
��
�

�����	
��
�

���

�
+

�

��
#
%
��
�"

�
�"

��

�

��

��

��

 ��

 ��

 ��

' () *�)' �(

Fig. 6. Execution time and speedup evaluation.

VI. CONCLUSION

In this paper, we proposed ARM big.LITTLE cores models
in the gem5 architecture exploration framework, which are
accurate enough to enable a relevant design exploration of
heterogeneous manycore systems. More precisely, models of
Cortex-A7 and Cortex-A15 cores have been combined in full-
system mode and evaluated against the Exynos Octa 5422
system-on-chip in order to assess the models accuracy. A rea-
sonable precision error of about 20% has been obtained. Due
to the limitation of gem5 full-system mode to simulate more
than eight ARM cores, we applied our trace-driven approach
[7] to explore the heterogeneous nature of big.LITTLE systems
including more than one hundred cores. The scalability of such

systems has been addressed and compared with homogeneous
system configuration. All the study has been achieved by using
a subset of the Rodinia compute-intensive benchmark suite [6].

Future work includes a more detailed analysis of out-of-
order Cortex-A15 core in gem5. Then, traces could be gener-
ated using this model for replication and further architecture
parameter exploration, e.g., cache and memory configuration.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community Seventh Framework Pro-
gramme (FP7/2013-2016) under the Mont-Blanc 2 Project:
http://www.montblanc-project.eu, grant agreement no 610402.

REFERENCES

[1] Intel, “Many Integrated Core Architecture,” 2015. [Online]. Available:
http://www.intel.com

[2] EZchip, “TILE-Gx Multicore ,” 2015. [Online]. Available:
http://www.tilera.com

[3] Kalray, “Multi-Purpose Processor Array,” 2015. [Online]. Available:
http://www.kalrayinc.com

[4] ARM, “big.LITTLE Technology,” 2015. [Online]. Available:
http://www.arm.com

[5] TOP500, “TOP500 Supercomputer Sites,” 2015. [Online]. Available:
http://www.top500.org/

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-

tional Symposium on, Oct 2009, pp. 44–54.

[7] A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatié, G. Sassatelli, and
C. Adeniyi-Jones, “A trace-driven approach for fast and accurate sim-
ulation of manycore architectures,” in Design Automation Conference

(ASP-DAC), 2015 20th Asia and South Pacific, Jan 2015, pp. 707–712.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.

News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[9] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of gem5 simulator system,” in Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, July
2012, pp. 1–7.

[10] A. Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C. Sudanthi,
C. Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, March 2014, pp. 13–22.

[11] F. Endo, D. Courousse, and H.-P. Charles, “Micro-architectural simula-
tion of in-order and out-of-order arm microprocessors with gem5,” in
Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS XIV), 2014 International Conference on, July 2014, pp. 266–
273.

[12] F. A. Endo, D. Couroussé, and H.-P. Charles, “Micro-architectural
simulation of embedded core heterogeneity with gem5 and mcpat,”
in Proceedings of the 2015 Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools, ser. RAPIDO ’15.
New York, NY, USA: ACM, 2015, pp. 7:1–7:6. [Online]. Available:
http://doi.acm.org/10.1145/2693433.2693440

[13] “Odroid-xu3,” 2015. [Online]. Available: http://www.hardkernel.com

[14] CoreLink CCI-400 Cache Coherent Interconnect Technical Reference

Manual, ARM, November 16 2012, revision r1p1.

[15] gem5, “Classic Memory System,” 2015. [Online]. Available:
http://www.m5sim.org

[16] “Scalasca,” 2015. [Online]. Available: http://www.scalasca.org/

[17] “Vampir - performance optimization,” 2015. [Online]. Available:
https://www.vampir.eu/

