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Model Preview Control in Multi-Contact Motion–
Application to a Humanoid Robot

Hervé Audren2,1, Joris Vaillant2, Abderrahmane Kheddar1,2, Adrien Escande1, Kenji Kaneko1, Eiichi Yoshida1

Abstract— Our work builds largely on Nagasaka’s stabilizer
in multi-contact motion [1]. Using a sequence of contact stances
from an offline multi-contact planner, we use first a Model
Predictive Controller to generate a dynamic trajectory of the
center of mass, then a whole-body closed-loop model-based
controller to track it at best. Relatively to Nagasaka’s work, we
allow frame changes of the preferred force, provide a heuristic
to compute the timing of the transition from purely geometrical
features and investigate the synchronization problem between
the reduced-model preview control and the whole-body con-
troller. Using our framework, we generate a wide range of
3D motions, while accounting for predictable external forces,
which includes transporting objects. Simulation scenarios are
presented and obtained results are analyzed and discussed.

I. INTRODUCTION

Multi-contact motion planning and closed-loop control of
humanoid robots is useful in many situations. Indeed, having
humanoids capable of moving by taking additional contacts
(when needed) that make use of any of their links, allows
them to evolve in cumbersome environments and to en-
force their equilibrium, preventing them from falling. Multi-
contact dynamic motion is sometimes wrongly understood
or misused. Indeed, dynamic does not only mean computing
motion using the dynamic models, it requires also the ability
to forecast at least one or two contact sequences ahead and
exploit robots dynamic to generate the motion that will go
through. How much of the contact sequence need to be
known ahead depends a lot on the tasks and its conditions.

There are diverse multi-contact control strategies. Strictly
prioritized task-space controllers that compute motions using
the dynamic model of the robot are used in [2], [3]. Weighted
prioritized task-space controllers are proposed in [4], [5], [6],
[7], [8]. These controllers proved to be efficient, although
their robustness relies heavily on the numerical solver they
use (generally off-the-shelf or customized [9] QP solvers).
Yet, they do not anticipate upcoming tasks, e.g. the next
contact sequences, and they require the user to set the timing
of the tasks. Whole-body model preview control (MPC) that
exploits dynamics and future contact sequence can only be
formulated as a nonlinear optimal control or program as
in [10]. In this case, if the computation of such multi-contact
trajectories can be made efficiently within a second or so, it
can be used in a closed-loop MPC scheme. We are far from
it: this is the reason why early dynamic walking approaches
use a two-level scheme:

1) compute quickly the dynamic motion (with a time
horizon window taking into account few next steps)
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by means of a simplified dynamic model that yet can
capture the essence of the whole body dynamics, e.g.
the center-of-mass (CoM);

2) provide the CoM computed trajectory to be tracked at
best by whatever chosen local low-level whole body
motion planner/controller.

One problem with such a scheme is that there is no
guarantee that the tracking of the CoM by the second level
is always feasible. This is why heuristics and hypotheses
specific to tasks to be achieved are used. Yet, this approach
is successfully used in humanoid biped walking illustrated
by the seminal work of Kajita et al. [11] that uses a
model preview control (MPC) of the ZMP. More impressive
enhancements were illustrated in computer graphics [12]
with a spring-load inverted pendulum (SLIP).

CoM-based models appear, until recently, to be difficult
to extend beyond walking. However, Nagasaka et al. [1]
proposed an elegant formulation of MPC using the CoM
for multi-contact. The present contribution is the outcome
from our attempt to implement [1] in the framework of our
multi-contact planner [13], [14]. We report the problems that
we encountered and the practical enhancements made. Be-
sides this, and relative to Nagasaka’s method, our additional
contributions are as follows: (i) the possibility to choose any
desired preferred axis (change of referential), (ii) handling
external sustained forces; (iii) automatic determination of
timings from spatial information; (iv) a new position/velocity
CoM control instead of force (an equality constraint on
contact forces was used in [1]); (v) application to a combined
locomotion/manipulation.
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Fig. 1. HRP-2 leaning: representation of variables used in modeling.



II. MODEL PREDICTIVE CONTROL

A. Previous Formalism

In [1], the robot’s flywheel model state equation is derived
from the conservation of the linear and angular momentum,
projected on x and y axes, see Figure 1:

mr̈ =

n∑
i=1

f i −mg (1)

L̇ =

n∑
i=1

[(pi − r)× f i + li] (2)

with f i and li the force and momentum applied at i-th
(contact) point pi, m the total mass of the robot, r the
position of the CoM and L the angular momentum at the
CoM across the number of contacts n. Upon using a discrete
integration scheme, this choice yields a linear formulation as
long as Lz is ignored and the sum of external forces on the
z-axis is constant and known at each discrete time interval
[tk, tk+1]; that is, we provide Fzk and impose

Fzk =

nk∑
i=0

f izk (3)

nk being the number of contacts at instant k. Then, we
build a state vector composed of: the linear momentum,
their integral and the angular momentum all of which are
along the x- and y-axes. In [1], the z-axis is aligned with
the gravity −~g. Recall that we have uncontrolled angular
momentum around the z-axis since L̇z is non-linear. The
command vector is composed of the forces and momenta
applied at each centroid of the contact polygons. Under the
constraint (3) and the assumption that the centroid positions
of the contact-polygons are known, we have:

x̂k+1 = Akx̂k +Bkuk (4)

x̂k =
[
mrx mṙx mry mṙy Lx Ly

]
(5)

uk =
[
f1x f1y f1z l1x l1y l1z . . . lnk

z

]
(6)

Let X =
[
x̂T1 . . . x̂TK

]T
and U =

[
uT0 . . . uTK−1

]T
,

we can apply (4) repeatedly over a time-horizon window
[t0, tK ] to get

X = Φx̂0 + ΨU (7)

x̂0 is the given initial state. We define a quadratic cost in
contact wrenches U to be minimized while tracking a given
reference state trajectory X (explained later in section III-C):

V = (X −X)TWx(X −X) + UTWuU

= UTQU + 2UT v + γ (by using eq. (7)) (8)

Q = ΨTWxΨ +Wu

v = ΨTWxΦx̂0 −ΨTWxX

Additionally, we impose constraints on forces to sustain con-
tacts (that are unilateral) and non-sliding using the associated
(4-sided) linearized friction cones written in each contact

reference frame (here, z̃ is the contact normal direction). As-
suming that the local-to-world frame transforms are known,
these constraints write:

f̃ ikz ≥ 0 ∀i ∈ [1, nk] ∀k ∈ [0,K − 1] (9)

|f̃kx|y | ≤ µ
i
kfkz ∀i ∈ [1, nk] ∀k ∈ [0,K − 1] (10)

We also apply a center of pressure (CoP) condition on each
line (a, b, c) of each contact polygon’s edge at each time k:

− aikj l̃
i
ky + bikj l̃

i
kx + cikj f̃

i
kz ≥ 0 (11)

∀k ∈ [0,K − 1] ∀i ∈ [1, nk] ∀j ∈ [1,mk]

mk is the total number of all contact’s polygon edges.
Minimizing (8) under constraints (3) and (9)–(11) is a QP
which solution gives us the optimal set of contact forces (in
their local frames) that will be substituted in (7) from which
a feasible X is computed to be tracked at best by the lower
level controller. Wx and Wu are QP diagonal tuning gains.

B. Arbitrary reference frames

In [1]’s formulation the z-axis is aligned with −~g. This is
limiting in cases where general direction of motion is along
the gravity field (e.g. climbing a ladder or spider-walking):
setting the z force trajectory is rather limiting and can
even be not feasible. One would instead set the transversal
swaying to zero rather than the ‘climbing’ trajectory which
can preferably be left to the planning process.

Now, we allow choosing an arbitrary direction along which
one component of the force trajectory is set. Therefore, we
will account for the gravity components and project eqs. (1)
and (2) onto an arbitrary reference frame W {~w1, ~w2, ~w3}.
We can then rewrite the state vector and the state equation:

x̂k+1 = Akx̂k +Bkuk + Ck (12)

x̂k =
[
mr1 mṙ1 mr2 mṙ2 L1 L2

]
(13)

where Ck represents the contribution of the gravity in W:

Ck =



−T
2
k

2 Rk,1
−→g

−TkRk,1−→g
−T

2
k

2 Rk,2
−→g

−TkRk,2−→g
0
0


(14)

This leads us to a new formulation of eq. (7):

X = Φx̂0 + ΨU +



C0

A1C0 + C1

A2A1C0 +A2C1 + C2

...
K∑
i=0

([
K∏

j=i+1

Aj

]
Ci

)


(15)

As the command vector U is written in local reference
frames, we do not need to change neither the constraints nor
the basic expression of our matrix Ψ, which now depends
on the transform matrix from local frames to W . Note



that problems may occur if the privileged direction changes
within the preview window. This problem will be thoroughly
investigated in future work.

C. Dealing with other external known forces

For the time being Ck is used to represent the effect of
gravity in W . Yet, this term can actually encompass any
other external known force. For example, we can account for
sustained forces due to holding an object during motion. But,
for the preview to compensate accurately for this additional
force, it is necessary to know at what time the force will
apply and how much force and momentum is applied at the
CoM (hence, where it will be applied). This is not possible
in general because the force will be applied at a point that is
moving and depend on the actual position of the robot which
we do not know a priori.

III. THE OBJECTIVE-BASED CONTROLLER

A. Presentation

Our multi-contact controller is composed of the modules
illustrated in Figure 2. First, a multi-contact planner outputs
a sequence of stances [13]. Each stance is composed of a set
of contacts and a statically-stable configuration of the robot
(including the free-flyer). A QP task-based controller, de-
scribed in [15], [16] accounts for various types of constraints
and tasks (such as CoM tracking) to achieve multi-contact
stance-to-stance transitions. This position command is then
sent to the robot’s PD control loop.

Fig. 2. Multi-contact motion planning architecture.

Our preview control in Figure 2 requires two parameters:
1) setting the timings i.e. the instants at which the contacts

are either made or released, and
2) a reference, noted X in subsection II-A.

B. Time parametrization of the stances

The other price to pay for having a linear formulation of
the problem is to predefine the timings of the stances. Indeed,
our multi-contact planner does not produce any temporal
information whereas our preview controller requires it. We
tried setting intuitive ad-hoc values; but it quickly turned out
to be a very critical issue as many simulated scenarios failed

if the robot was given too much or not enough time to com-
plete desired multi-contact motions. Nonlinear optimization
techniques (resolving for the timing) are still computationally
costly and not very robust [10]. Instead, we investigated
whether using heuristics from spatial information (provided
by the multi-contact planner) can be an acceptable substitute.
To do so, we categorized the transitions between stances
into support, when the CoM moves with sustained contacts,
and move, when the number of contacts changes. For the
support transitions, it appears that the distance between the
CoM of the stances is a good metric for the time needed to
accomplish the transition. For the move stances, we need
the distance travelled by the link currently changing its
contact state. We chose a cubic polynomial that links the
start-point ~p0 and the end-point ~p1 (given by the stance
configuration), arriving with zero velocity, plus a waypoint
defined as follows:

~pwp = ~p0 + d‖(~p1 − ~p0) + d⊥(~p1 − ~p0)⊥ (16)

Typical values we use are: d‖ = 0.1, d⊥ = 0.15. We define
~v⊥ = ~n

‖~n‖ |~n ∈ plane (~v, ~z) and ~n · ~z ≥ 0 and ~n · ~v = 0.
All our simulations did not need anything more complex

than this heuristic to behave well. These trajectories need to
be recomputed online as the starting point depends on the
actual position of the robot. Techniques such as parallel pa-
rameter space exploration [17] or CHOMP [18] can be used
to generate more reliable trajectories than cubic polynomials.
We propose the following heuristic for timing:

tν+1 = tν +
{d, l}
v0

(
1−

(
min(tn, τ)

α

)κ)
(17)

meaning that for transiting from stance ν to ν + 1, the
CoM motion starts with a desired given speed v0 and
accelerates in a degree κ during a time τ . The time scale
α regulates the final speed for each stance. In addition,
α > τ to keep positive timings. d or l are respectively
the distance between CoMν+1 and CoMν , and the length of
contacting point computed trajectory. This heuristic describes
a strategy similar to a trapezoidal speed command but with
no deceleration. Simulations show that adding deceleration
did not improve much the behavior. After careful tuning of
the heuristic for our robot, we set: v0,d = 0.75, v0,l = 0.5,
κ = 2, τ = 4 and α2 = 50.

C. Defining the reference X and tuning the MPC gains

Defining a desired reference X for our MPC also amounts
to tuning the weight matrices Wx and Wu.

The desired angular moments are easy: as we do not want
the robot to sway, we will impose on them zero reference
with high weights, Lx = 0, Ly = 0 in X . For the
remaining mrx,mry and their derivatives, the reference is
given as a constant speed interpolated between the first and
the last stance. Associated weights Wx are put higher on the
speed relatively to position. This simple setting allows fast
computations on-the-fly. Moreover, this speed reference is
continuous, whereas piecewise interpolation between stances
gave worse results because of abrupt changes in acceleration.



Yet, interpolation would not be applicable in strongly curved
paths where the robot has to change motion direction.
Subsequently, we approximate the path by a sequence of
gross segments to better match it.

As for the setting of the privileged axis (~u3), we chose
it simply as a trajectory at constant velocity, obtained from
the ratio of the distance separating final from current CoMs
along ~u3 divided by the difference between final and current
times.

Concerning Wu tuning, we want the robot to follow the
trajectory first, and then minimize the contact forces, we will
put much lower weights w.r.t. Wx.

IV. LIFTING AN OBJECT

Our MPC accounts for a given external force. A good
example to assess the latter claim is to lift an object and
walk with it. We discuss three approaches we considered:

On way to deal with an additional hold object is to
integrate contacts’ locations and forces between the robot
and the objet as part of the MPC with additional constraints
on grasp stability. This however increases the complexity
of the problem (that will end as a non-linear formulation);
therefore, we do not use it.

Apart from using robot/object contact forces (left for the
QP task controller), the second way could be to exploit the
external forces term Ck in subsection II-B. Indeed, Ck can
also embed the weight of the object: we simply need to
compute the weight and moment produced by the object
w.r.t the CoM. By doing so, we are able to account, in
the MPC, for an “ instant” pick-up when the robot lifts the
object. Unfortunately, it will be hard to predict exactly the
object’s trajectory ahead of time because this is left to –and
results from– the task controller. It is then difficult to predict
the moment applied by the object w.r.t the CoM along the
preview window.

Third, we consider our reduced point-mass system to
change from the robot system to the robot + object system.
This turns the constant mass m into two values of the masses:
mrobot or mrobot + object at each sample k. By doing so, the CoM
position and velocity will be discontinuous at the pick-up
phase. This discontinuity is ‘filtered’ by the lower-level task-
based controller when possible. We use this approach and
assess it with simulations.

A. Change in the QP task controller

We modify the task-based QP controller to include the
dynamics of the manipulated object. We extend the con-
troller state with the object’s state because it is the best
way to have the robot use the object to regulate its own
dynamics, yielding a much plausible plan that eventually
allows performing real experiments. However, this solution
requires identifying the inertia parameters (we may not know
the precise weight of the manipulated body). Instead, we
rather impose a force task on both wrists to maintain the
manipulated object in position. We also consider a different
kind of contacts between the robot and the manipulated body,

thus changing the state vector into:

x =
[
q̈robot q̈object λe→r λo↔r τ

]
(18)

subscript e stands for environment, o for manipulated object
and r for robot. The arrow denotes a contact between
two entities, applied on the latter. Note that the reciprocal
pair of contacts between the robot and the manipulated
body use the same forces intensity, λ on the same friction
cone generators, so that the forces are effectively reciprocal.
This new formulation leads us to design two new equality
constraints, written as Ax = B for the extended dynamic
motion constraint, that will allow us to compute the object’s
acceleration q̈o. We have:

A =

Hr 0 di∈e→rJiµie di∈o→rJiµie
[

06
−I

]
0 Ho 0 di∈r→oJiµie 0


B =

[
Crobot

Cobject

]
(19)

where H is the inertia matrix, J is the Jacobian, µ is the
friction cone generator, C represents the nonlinear gravita-
tional effects, subscribes o, r and e are defined as previously.
The d e operator denotes the horizontal concatenation of
the enclosed quantity across all generators of each contact.
We also add a manipulation acceleration constraint such that
for every contact between the robot and the object, at each
contact point:

Jo→r q̈ + J̇o→r q̇ = Jr→oq̈ + J̇r→oq̇ (20)

Which translates, in our implementation into:

A =
[
−Jr→o Jo→r 0

]
B =

[
J̇r→oq̇ − J̇o→r q̇

]
(21)

Finally the remaining changes are as follows:
First, we enhanced the initial Finite State Machine of [15]

to account for additional steps that are: (i) reach a target
posture before lifting an object, (ii) trigger on/off the nec-
essary modifications to bilaterally switch between robot and
robot+object (iii) bridge on/off to the robot multi-contact
FSM.

For CoM and angular momentum tracking tasks, we
compute these quantities by assuming the ensemble robot
+ object attached – recall that the MPC outputs results
considering the total mass and the resultant CoM for the
reduced model. This assumption is plausible since enforced
by non-slip constraints that we impose on the contact points
between the end effectors and the object.

To sum-up, our controller computes torques and joint
accelerations for the robot and manipulated body (see [15]):
• The equality and inequality constraints are:

– Dynamics of the object and robot (19);
– Non-sliding contacts between the robot and the

environment and the object (21);
– Torque and joints limits;
– Collision avoidance with itself and the environ-

ment.



• The objective function composed of:
– CoM objective: position, velocity and angular mo-

mentum track the output of the preview control;
– Posture objective: match at best the stances gener-

ated by the static multi-contact planner;
– Contact objectives: activate on/off target contact

orientation and position tasks.

V. RESULTS

All the results presented in this section are illustrated by
the attached video, including output of the stance planner
and actual motion.

A. Walking
The first trial for this control method is done with walking

on flat grounds. This scenario was very helpful for tuning
some parameters of our simulation, including those presented
in subsection III-B. In the simulation the robot walked on
both short and long distances, provided we use the following
gains for our various tasks, (empty cells stand for “all axes”):

Task Type Axis Weight

CoM Position, Velocity x,y 200
z 20

Angular Momentum x,y 1
Posture 2

Target Position 20
Orientation 150

We use a lower weight for the CoM tracking task on
the z-axis otherwise the geometrical constraints of the robot
(e.g. joint limits) conflict with tracking the CoM along that
direction. It could seem strange that we do not impose a high
weight on this particular task, as it determines a good part
of our model, but the error (being low) does not disturb the
closed-loop control.

This first simulation revealed that we were indeed capable
of computing our lower-level control in less than 5ms,
and our CoM trajectory in about 20ms, when using our
default setting of a 3-second window sampled into 20 points.
Experiments show that in our hardware, the number of points
should not exceed 40 to keep the computation fast, and that
the maximum interval length should be less than 250ms to
keep a good sampling of our trajectory. We also found out
that the minimum window length is around 3s to preview at
least through the next stance.

B. Corniche
This scenario was designed to demonstrate multi-contact

capabilities of our planner/controller. The environment con-
sists of a flat ground that is reduced to a narrow ridge, wide
of about 15cm, shown on Figure 3. To be able to cross it,
we added a support plank on the left side. We disabled
the momentum tracking task because the preview control
was able to generate a very low-momentum trajectory while
the robot has to bend forward to take the contact with his
left hand. Thus, the conflicting tasks resulted in failures to
properly position the hand in the given ad-hoc computed
time.

Fig. 3. HRP-2 going over a ridge: contact stances and transitions are
illustrated.

C. Walking with an object on uneven terrain

As we use both hands to carry a 2kg object, shown
in red on Figure 4, it is difficult to present a scenario
showing at the same time the multi-contact capabilities and
object manipulation. The setting is made for walking on
a succession of non-coplanar surfaces while wielding the
object. This trial consists of a first stair step, followed by
a slope and ending on a flat floor. This trial assessed our
approach to modify the mass used by the preview while
walking but showed that we had to perform one modification
to our general approach.

Fig. 4. HRP-2 Walking on uneven ground while carrying an object.

While holding the object, it is necessary to slightly pe-
nalize its use to regulate the CoM position. Otherwise, the
robot would use this easy-to-move weight to follow the CoM,
hence being late on the desired position of the robot. As this
delay accumulates, the robot ends up in a position where it
needs to exert tremendous torques to reach the CoM target
in time, resulting in instability and toppling.

In terms of results, the robot executes a correct motion,
although not fully ‘human-like’, mainly because the robot
crouches down more than we would do, as shown by the dip
at the end of the trajectory. Although HRP-2 is quite strong in
the arms, lifting heavy weights is usually done using handles
rather than two small unilateral contacts, as in this paper. On
top of this the loaded robot’s CoM is higher than unloaded
but we still target the stable end CoM computed by the
planner, resulting in an increased tendency to crouch.

In this experiment, we also plotted on Figure 5 the uncon-
trolled momentum derivative, L̇z computed by two methods
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Fig. 5. Uncontrolled momentum derivative L̇z computed on the whole-
body model (thin red) and reduced flywheel model (thick grey) with
superposition of computed trajectories (multicolor transparent)

over the two first seconds. The first one is the momentum
of the full robot, computed by the controller. We plot the
finite difference derivative of this quantity. The second one
is computed by the preview control on the flywheel model.
Using the fact that L̇z depends (non-linearly) on the state
X and control vector U , we can compute it a posteriori.
This figure shows that the momentum derivative computed
by the preview is almost always lower than the one of the
real robot, and does not present the same variations.

VI. CONCLUSION AND FUTURE WORK

We presented a multi-purpose control scheme to realize a
variety of multi-contact dynamic motions eventually holding
(with both arms) another rigid body (motion with sustained
external forces). We also presented practical heuristics to
partially achieve automatic parametrization of the model pre-
view control in multi-contact motion. The simulated scenar-
ios revealed that although attractive, many limitations would
jeopardize a robust implementation on a real humanoid robot.
First of all, despite a heuristic tuning of the timing, it is far
from being a solved issue. For now, we associate a feasible
timing to each contact, but we do not have a criteria to
recompute them in case of imminent failure due to conflicting
tasks. Second, the moment around z may produce a bad
behavior. However, since this momentum can be computed
from the reduced model, it can be send as an objective to be
tracked at best by the low-level task QP controller.

To sum-up, this study reveals that seeking for linear mod-
els based on reduce models come with drawbacks that are
difficult to circumvent for general purpose multi-contact mo-
tions. Time parameterization of the contact formation/release
and their transition phases can hardly be left for tuning.

Future work consists in either incrementally go toward
nonlinear formulation but still keeping a two phase reduced
model or work toward whole-body nonlinear MPC using
best of GPGPU parallelization and solver customization. We
clearly do not have a clear answer on what best to go with.
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