
HAL Id: lirmm-01256512
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01256512v1

Preprint submitted on 15 Jan 2016 (v1), last revised 12 Oct 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-contact transitions and force control of humanoid
robots by stability polygons reshaping and morphing

Hervé Audren, Abderrahmane Kheddar

To cite this version:
Hervé Audren, Abderrahmane Kheddar. Multi-contact transitions and force control of humanoid
robots by stability polygons reshaping and morphing. 2015. �lirmm-01256512v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01256512v1
https://hal.archives-ouvertes.fr


Multi-contact transitions and force control of humanoid robots by
stability polygons reshaping and morphing

Hervé Audren1 and Abderrahmane Kheddar1,2

Abstract— In this paper we provide hindsight on how to use
the information provided by the explicit computation of the
stability polygon and build on task-based QP controllers to
achieve both stable multi-contact slow transitions and force
limitation with a level of force control. This entails computing
stability polygons with unilateral and bilateral contacts and
devising a method to continuously constrain the CoM position
throughout multi-contact motion in order to effectively regulate
the forces applied on the environment while avoiding hard
constraints on the CoM and discontinuity between stances.

Index Terms— Humanoid Robots, Stability, Optimization,
Multi-contact

I. INTRODUCTION

The motivation behind this work originates from our
rehearsal for the Darpa Robotics Challenge. In several tasks
such as climbing stairs using handrails or egress/ingress a car,
we decided to use our background in multi-contact technol-
ogy that was assessed in complex tasks [1], [2]. Multi-contact
technology is relevant in situations of confined spaces, high
unevenness or highly unstructured environments. In these
situations, the motion of legged robots must be slow. While
several works have proposed efficient regulation control
strategies in multi-contact configurations [3]–[6], transitions
between contact stances is still to be researched1.

Multi-contact transitions are prone to instability: because
releasing or adding a contact is a discrete event, it induces
an abrupt change in some tasks and constraints. One way
to alleviate the effects of these changes is to use a preview
controller to enhance the motion with a flavor of dynam-
ics [7], [8], which would have hidden the problem addressed
by this paper. But slow multi-contact motion can be achieved
without preview [2], using only a closed-loop local task-
based quadratic programming (QP) control, largely adopted
in the community.

Our QP controller considers two level of hierarchy: tasks
that are to be achieved are given as part of the cost function
and tasks that should not be violated are given as constraints.
For example, a contact that is to be added appears first in
the cost function, and once achieved, it is shifted to the
constraints part to be treated as a motion support contact
in the next phase. The Center of Mass (CoM) was always
put in the cost part of the QP controller as stability was ad-
hoc, assumed to be held by tracking at best the CoM target
given by the planner, while enforcing each contact force to
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be positive and be within its respective friction cone. Our
experiments confirmed that this is not enough to warrant
stable transitions. This becomes even more critical if one
would limit the force applied for a given contact.

A large number of works enforce stability by controlling
the Center of Pressure (CoP) at each contact to remain within
the convex hull of each contact area [5]–[7], [9], [10]. This
can be added to the QP controller as a constraint, replacing
the non-sliding contacts and unilateral forces constraints
currently in use. However, in all those approaches the CoM
was given as a high-level task, and the CoP or contact forces
were regulated often in the null-space or in conjunction
with the CoM task. Moreover, CoP are ill-conditioned upon
contact removal because they only exist when the normal
contact force is non-zero. All papers using CoP treat this
issue with an ad-hoc counter-measure.

In our case, we are concerned with a position-controlled
robot, and we are ideally looking for a criterion linking
joint angles with stability. As multi-contact motions are
quasi-static, constraining the CoM to remain within the
frictional static stability polygon is an acceptable criterion
(ZMP assumes infinite friction at contact). Although the
CoM position is a continuous quantity, the static stability
polygon abruptly changes shape when changing contacts.
Thus, including it directly as a constraint in our QP controller
would lead to its immediate violation upon contact change.

Therefore, we propose a novel continuation method based
on optimal matching of points to interpolate between convex
polygons (those resulting from stability region computation).
This allows us to smoothly reshape the region of stability
during contact removal and addition and hence make QP
controllers robust to contact changes.

As an unexpected bonus, this technique allows us to per-
form force control in multi-contact. Indeed, we can deform
the static stability polygon obtained from the geometrical
and frictional information of a stance to take into account
the desired or measured contact forces. This is another
novel contribution, and force regulation can be obtained by
implicitly moving the CoM, resulting in a modified force
distribution that fulfills the target contact force limit. We
note that our work applies to torque and position controlled
robots, but it has more impact and value for the latter ones.

Our summarized main contributions stand as follows:
• We extended the exact stability polygon computation

algorithm proposed in [11] to handle bilateral contacts;
• We propose a novel force control method based on

stability polygon morphing to constrain the CoM during
motion and contact transitions;



• We shape the stability polygon smoothly as a function
of the force intensity and not only the contact geometry;

• We assess our approach using our QP multi-objective
controller in HRP-2Kai humanoid robot multi-contact
scenarios.

We present in subsection II-A how we adapted the polygon
computation to our use case, then how we included this
polygon as a constraint in objective-based controllers in
subsection II-B. We introduce our new method to smoothly
constrain the CoM in section III before applying it to the
stairs case in section IV. To solve an arising problem, we
present a way to efficiently combine tasks with this constraint
in section V and present results obtained in another multi-
contact scenario in section VI.

II. BACKGROUND

A. Computation of the stability polygon

We use the algorithm in [11] to compute the stability
polygon for static postures provided by the multi-contact
planner. The exact stability polygon lies between an inner
and an outer approximation, that are built iteratively from
solving a series of second-order cone programs of the form:

max.
z

dT c̃om

s.t. A1x+A2c̃om = t (1)

||Bx|| ≤ uTx

The solution c̃om
∗ of this problem is an extremal stable

CoM position in the direction d i.e. there exists a set of
forces x realizing t =

[
mg 0

]T
under the non-linearized

friction cones constraints defined by B and u. This wrench
is composed of the total wrench generated by a set of forces
x, at the origin, computed using the transformation matrix
A1 and the gravity wrench computed with A2 given a CoM
position c̃om . For each of these problems, c̃om∗ is added
to the inner approximation, while the half-plane defined by
{c̃om ∈ R2|dT c̃om > dT c̃om

∗} is added to the outer
approximation. At each step, the difference between these
two approximations is a set of triangles. The search direction
for the next step is perpendicular to the edge of the inner
approximation forming the triangle of maximum area. The
algorithm stops when the difference between the outer and
inner approximations area is less than a given precision σ.
The authors prove that there is a strict upper bound on the
number of iterations needed to reach σ.

In its original expression, this method is not applicable to
the case of mixed unilateral-and-bilateral contacts, that we
are using in our experiments [2]. The support region may be
unlimited in some directions. Thus, we need additional con-
straints limiting the search region. As our model of bilateral
contacts is simply a set of points with non-aligned friction
cones, we still can use Equation 1 providing additional
constraints on the acceptable CoM positions. Accordingly,
we can either use a constraint |c̃om| < r that will constrain
the CoM to a rectangular (polygonal) region or a conic
constraint of the form ||c̃om|| < r that will constraint

the CoM to a circle. A circular constraint is difficult to
approximate by a polygon. However, it may be closer to the
real geometric constraint: using a maximum limb length per
contact, we can write a series of constraints ||c̃om − l|| < r
that ensure that the CoM never goes further than d from the
contact at position l.

The stability region is unlimited is some directions because
we can apply arbitrary forces on opposite contact points,
allowing us to compensate for any momentum. In fact, the
robot cannot apply infinite torques. Translating the torque
constraint into a precise force limit of the form |x| < fm re-
quires setting fm from the robot posture, whereas we reason
on the CoM model to compute the stability polygon. Instead,
we use a reduced torque constraint, |Tx| < τm where T
represents the cross product between the contact points and
the contacting link. In this case, τm can be obtained from
the characteristics of the link that is in contact (e.g. gripper
actuators or feet/ankle actuators). This constraint is linear
because we consider non-sliding contacts.

cvxopt.socp (0.57s)

cdd.canonicalize (1.20s)

Area (0.26s)

Others (0.15s)

55.2%
26.1%

11.9%

6.8%

Fig. 1: Pie chart showing as angular sections the repartition
of computation time for 108 iterations (Required precision
of 1 cm2): total time 2.17 s

This method is quite fast but not enough for real-time. It
takes few seconds for over a hundred iterations. To solve
the second-order cone programs, Equation 1, we use the
convex optimisation package CVXOPT [12] that natively
supports conic constraints. The cost of solving each problem
is largely offset by that of finding the correct edge for the
next iteration. As we manipulate both vertices and half-
planes, we use the cddlib [13] to change between the
face and span representation of the convex polygons. Most
of the algorithm time is spent removing redundancies in
the polygon representation (calls to cdd.canonicalize)
see Figure 1. Without such correction, numerical instability
arises. Moreover, the cost of such a simplification is reported
back on the area computation routine that switches from the
half-plane to the vertex representations and simplifies the
polygon anyway. Our implementation is sub-optimal as we
do not explicitly keep track of edges and have to compare
them after each iteration to re-compute the necessary areas
only. This computational cost seems to be negligible, but
increases with the number of iterations and may become a
source of numerical errors when the desired precision is high.



B. Task-based controller

We control our humanoid robot using the multi-contact
QP task controller described in [2], which compact form is:

min.
y

1

2
yTQy + cT y

def
=
∑
i

βiTi(y)

s.t. Ay ≤ B ; Cy = D

where y is the decision variable representing both the joint
accelerations q̈, and the intensity of the forces λ applied
at each contact point. The problem is written as a sum of
quadratic or linear objectives weighted by βi (task gains).
Encoded constraints include joint position, velocity and
torque limits, non-sliding contacts, and non-desired collisions
avoidance. Typical tasks are written either directly or using
the set-point objective formulation and comprise a wide
variety of objectives [2]. Here, we focus on the CoM task.

To maintain the CoM within a moving polygon, we use
a collision constraint as in [2], [14]. However, in our case
the CoM interacts with a changing shape (see next section),
which means that we have to take into account the speed and
acceleration of the edges with respect to the CoM:

δ̇ = nT · (Jq̇ − ṗ) (2)

δ̈ = ṅT · (Jq̇ − ṗ) + nT ·
(
J̇ q̇ + Jq̈ − p̈

)
(3)

where p, n are respectively the position and normal of the
CoM projection on one such edge, δ the resulting distance,
and J the CoM Jacobian. We formulate a constraint:

u = Jq̇ − ṗ e = J̇ q̇ − p̈

−dt nTJq̈ ≤ ξ δ − δs
δi − δs

+ δ̇ + dt [ṅTu+ nT e] (4)

with ξ a damping coefficient, δi and δs the interaction and
safety distances respectively. Activating the above constraint
whenever δ < δi will ensure that δ is never smaller than δs.

III. MORPHING STABILITY POLYGONS

Changing contacts is a discrete event: at that time, the
CoM may not be inside the appropriate region of stability.
If we do not enforce the CoM to be maintained within a
moving/morphing polygon, the QP controller might often
start from an infeasible constraint set and fails. Controller
failure is solved by our new Algorithm 1 to smoothly morph
the stability polygons between stances.

It is not necessary to use state-of-the-art 2D or 3D shape
morphing found in the computer graphics and animation
community, see e.g. [15], [16] because we only morph much
simpler shapes: 2D convex polygons. Furthermore, as we are
interested in adding and removing contacts one at a time,
successive stability polygons have a non-empty intersection.
In particular, when adding a contact, the previous stability
polygon is entirely included in the new one. Thus, our
successive polygons will be both convex and have non
empty intersections, which allows us to use a simpler, faster,

Algorithm 1 Interpolation of two polygons : f(Ps, Pd, κ)

Input: Ps, Pd start and destination polygons, κ percentage
acur, done← {}, {}
while |Ps| < |Pd| do

Ps ← Ps∪ midpoints(Ps)
end while
M ← zeros(|Ps| , |Pd|)
for atar ∈ Pd do

for b ∈ Ps do
Mij = ||atar − b||2

end for
end for
acur, done← Munkres(M)
for b ∈ Ps − done do

atar ← P⊥(b, Pd)
end for
conv(interpolate(acur, atar, κ))

morphing algorithm. Morphing polygons is typically done in
three steps:
• Adding points to the shapes;
• Finding a correspondence between the points from the

start and target shape;
• Generating intermediate shapes by interpolating each of

these couples.
The main difficulty when morphing polygons is that if
corresponding points are badly chosen, the resulting polygon
will self-intersect during interpolation.

To solve the problem of self-intersection during morphing,
we use the Munkres (Hungarian) algorithm [17]. This algo-
rithm solves the assignment problem, i.e. finds a minimum
weight matching in a weighted bipartite graph. In our case,
we want to match every point from the target polygon to
one from the current polygon while minimizing the sum of
distances between each couple of matched points. In order
to warrant that the current polygon has more points than the
target polygon, we first extend the current polygon with the
midpoint of each edge until it contains more points than the
target. The result of the Munkres algorithm is the minimal, in
terms of distance travelled, set of points acur from the current
polygon matching all points atar from the target polygon.
The remaining b points of the current polygon are mapped
to their orthogonal projections onto the target polygon. The
intermediate shape is generated by interpolating each couple
of points by a percentage κ.

The Munkres algorithm is in O(n3), yet pre-computations
are possible. The start and target polygons only depend on
the geometry and friction properties of each stance. Then,
although the algorithm presented here directly gives back the
interpolation, it is much more interesting to save the result,
that is the set of correspondences acur → atar and then only
compute the interpolation between each couple of points for
a given morphing percentage κ at each time-step. Moreover,
as we usually use a few tens of points, running the Munkres
algorithm is not very costly. To map a 25-sided polygon onto



a 50-sided one, it takes about 0.67 s. Solving the assignment
problem takes about 95% of the time.

In a number of cases, the quantities ṗ, p̈, n, ṅ introduced in
subsection II-B can be explicitly computed. Indeed for every
ordered vertex vk of our current (convex) polygon that is the
interpolate between acurk and atark at κ(t), t is the time:

vk(κ) = acurk (1− κ) + atark κ

∂nvk
∂tn

= (atark − acurk )
∂nκ

∂tn
∀n ≥ 1

Thus, for every point pk of the segment [vk, vk+1] at a
distance αk from the vk and the associated normal nk:

∂npk
∂tn

=

n∑
i=0

(
n

i

)
∂iαk
∂ti

∂n−ivk
∂tn−i

+
∂i(1− αk)

∂ti
∂n−ivk+1

∂tn−i

(5)

nk =

[
0 −1
1 0

]
(vk+1 − vk)

def
= N(vk+1 − vk) (6)

= N
[
acurk+1(1− κ) + atark+1κ− (acurk (1− κ) + atark κ)

]
= (1− κ)N(acurk+1 − acurk ) + κN(atark+1 − atark )

= (1− κ)nacur
k

+ κnatar
k

(7)
∂nnk
∂tn

= (nacur
k
− natar

k
)
∂nκ

∂tn
(8)

Whenever two points of the current polygon map to the
same point of the destination polygon, i.e. natar

k
=
[
0 0

]
,

the direction of nk is constant but its norm is strictly
decreasing. To avoid numerical issues whenever ||nk|| is
small, we consider nk constant with respect to κ in this case.

Thus, knowing the nth time derivative of κ and α, one
can compute the nth time derivative of the segments’ position
and their normals. However, when κ or α depend implicitly
on the time, these quantities have to be evaluated through
numerical differentiation. We can make the following ap-
proximations to simplify this computation:
– As the CoM only interacts with edges closer than δi, it
usually interacts with few edges at a time. Because all points
are interpolated uniformly and because the constraint pushes
the CoM perpendicularly to the edge, variations of αk are
small during interaction: we consider that ∂

nαk

∂tn = 0∀n > 0.
– In our use-case, we interact when the interpolation is
almost done. At this moment, p̈ is either zero (when we
interpolate at constant speed) or negative (using quadratic
interpolation, the polygon is contracting and slowing down):
we set p̈ = 0. This puts a harder bound on the constraint.

Rotation speeds are usually small compared to the ho-
mothetic part of the transformation, but we can not neglect
ṅ. Depending on the shape of the support polygons, local
rotations can be important, such as in the top corner of the
polygon in Figure 2.

IV. LIMITING THE COM REGION DURING MOTION

For the sake of clarity and without loss of generality, we
illustrate our approach using the stair climbing with handrail
task by our humanoid robot (HRP-2Kai).

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Fig. 2: Stability 2D polygon morphing: Ps in blue, Pd in
red, the green and black arrows show the motion and the
normals directions of the edges respectively.

A. Presentation of the stairs task

In our experiment trials the robot applied too much forces
on the handrail. Although part of the excess of force is due
to positioning error and would be solved by applying lower-
level compliance, part of it comes from the fact that our
QP controller does not explicitly reduce the force applied
on the gripper. Adding a task of the form min ||Sgripperλ||2
did minimize the force and torque computed, but kept the
posture unchanged meaning that the force applied by the
real robot would remain high (this was also observed for a
torque controlled robot in [5], p. 288, last sentence).

From intuition, maintaining the CoM in a shape that is
similar to the static stability polygon of the feet should
limit the force applied on the grippers. To assess this, we
compute two stability polygons at each step of the climbing,
i.e. every time the active set of contacts is changed: one using
all contacts, the other using all contacts but those between
grippers and rail. We can then compare an intermediate
polygon, the interpolation of the “full” and “restricted”
polygon at κ, with the real static stability polygon computed
with an additional force constraint. We thus compute for a
set of real numbers γ ∈ [0, 1] the static stability polygon as
described in subsection II-A with an additional constraint on
the forces applied on each contact point of the grippers:

||fi|| ≤ γmg (9)

We then find by dichotomy which κ yields the intermediate
polygon with the closest area to the real constrained static
stability polygon. Captions of this process are shown in
Figure 3 while a numerical comparison of values of γ and
κ are shown in Figure 4.

This shows us that interpolation is a good approximation
of the force constraint with restrictions:
• Because we limit the search region, the interpolation re-

tains the shape of this limit contrarily to the constrained
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Fig. 3: Comparison between direct computation of the con-
strained static stability polygon and interpolation.
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Fig. 4: Interpolation coefficient as a function of the force
constraint coefficient for a 3-contact scenario.

static stability polygon.
• κ is a non-linear function of γ. Comprehensive analysis

of this relationship is beyond the scope of this paper.
• Interpolation is more accurate for extreme values of γ

which is a direct consequence of using interpolation.

Thus, maintaining the CoM inside a polygonal region
using the constraint presented in subsection II-B corresponds
to limiting the force applied on the gripper. This polygonal
region is smoothly interpolated from the current static stabil-
ity polygon, to an intermediate one. We can still maintain a
task of the CoM in the cost function with low gains and limit
the CoM motion in the constraint part of the QP. Note that we
can use a static stability polygon because the accelerations
and speeds generated by our controller are small and because
the safety distance δs acts as a stability margin.

B. Results of stairs climbing

To limit the stability region, we use the constraints of
subsection II-A in the stability polygon computation. We
strictly limit the torque applied on the gripper, and loosely
the forces and CoM position using the following values:

|fi| = |Six| ≤ 5mg; |τi| = |TiSix| ≤ 5N m; ||c̃om|| ≤ 1m

With Si a selection matrix of forces at the ith contact.
The interpolation between the current and target polygon
takes place over the course of one second. To avoid strong
discontinuities when the constraint gets activated, we use
quadratic interpolation, i.e. a triangular speed profile. We
also use relatively high damping, ξ = 0.1, to further avoid
discontinuity when activating the constraint. To make sure
the QP does not fail, we allow a small violation of the
constraint. The intermediate polygon is the interpolate at
90%: we need to choose a high κ because we want to
strongly limit the forces applied on the gripper. This κ
corresponds to an upper force of about 34N, which means
that in the worst case the torque applied on the gripper is
lower than our torque limit.

6.208 0.000 0.000

Fig. 5: Climbing the stairs with HRP-2 Kai: with neither the
constraint nor gripper torque task activated (left), with only
the task (middle) and with both (right)

We can see in Figure 5 and Figure 6 that adding this
constraint does indeed modify the CoM position:
• In region b, the robot has contact with the handrail,

the left foot is on the first step and it moves the right
foot onto the first step. We can see that our constraint
pushes the CoM back onto the left foot, that should
reduce the strain applied on the hand. This difference
is shown in Figure 5 and will be used as the interest
region in Figure 7. Other similar events take place in
regions a, e and f.

• In regions c and d the robot is entirely on the stairs and
removes its hand contact without its CoM being inside
the feet support polygon. The stability region constraint
gets activated and the CoM moves forward onto the feet.

To validate our approach, we add a high-gain task in order
to minimize the torque applied on the gripper. In this case,
one of the few times we got non-zero torque on the gripper
was in region b, when moving the right foot from the floor
to the first step. The CoM was out of the support region
during the leg swing: our approach enables us to move the
CoM onto the stable region and then execute the movement
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Fig. 6: Comparison of CoM trajectories with and without the polygonal constraint (Full movement). The red and blue
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Fig. 7: Comparison of torque applied on left gripper with
and without the polygonal constraint (region of interest)

at gripper 0-torque, as shown in Figure 7. Note that what
was a continuous torque being applied during the leg swing
is now replaced by a torque spike applied before movement.
This result may seem worse than the original, but in fact it
enforces stability. Firstly, the angular impulse of the torque
spike does not differ much from the original, with both being
within 5% of relative error, around 0.20N m s. Secondly, this
torque is still well within the torque limits of the gripper.
Most importantly, we recomputed the static stability polygon
in both cases: once with only two contacts and once using all
three contacts but constraining the torque to be between 2 and
3N m. In the latter case, the stability polygon is still twice
as wide as in the former. Although this shows that we could
almost get rid of the CoM objective given by the planner,
using only the constraint to move the CoM is ‘coarse’ if not
used in conjunction with the tasks. In the next section we

build a set of tasks that allow smooth removal of contacts
and force control in a multi-contact setting.

V. COMBINING TASKS AND CONSTRAINTS

In this section we present how to combine a CoM task, the
CoM constraint and a force task to drive smooth removal of
contacts. This is in fact a particular case of potentially more
complex robot force control tasks.

To perform force control on n contacts, we may set a force
fd of contact ci. The remainder force is fr = mg− fd. The
force at contact ck at time t is fk(t). Then we can compute
two geometry stability polygons:

Ps =
⊔

({ck}k∈[0···n]) (10)

Pd =
⊔

({ck}k∈[0···n] k 6=i) (11)

Then, we can create a new CoM objective that is the
barycenter of the start and end polygons centroid weighted
by the intensity of desired force and remainder force:

f% =
||fd||

||fd||+ ||fr||
(12)

CoMd = f%C(Pd) + (1− f%)C(Ps) (13)

where C is the centroid; we can then define task error at any
time t by ||CoMd − CoM(t)||. We normalize it by the error
at t = 0 and invert it to reach its maximum value when the
task is fully realized, that is:

ε(t) = 1− ||CoMd − CoM(t)||
||CoMd − CoM(0)||

(14)

As the CoM task has the highest priority in our case, its
error is strictly decreasing when the robot is not falling i.e.
ε(t) ∈ [0, 1] ∀t > 0. If CoM(0) is close to CoMd compared
to the numerical precision of the controller, we do not update



the objective. From this, we can derive the current force
objective and constraint polygon:

fε(t) = εfd + (1− ε)fi(0)
P (t) = interpolate(Ps, Pd, f%ε(t))

VI. APPLICATION TO A MULTI-CONTACT SETTING

In this simulation, we place the robot in a non-coplanar
contact configuration. The robot has three unilateral contacts
with its environment: one between the right foot and an
inclined ramp, one with its left foot and the rear flat platform,
the last one is with its wrist and an elevated flat block. Using
these contacts, we ask the robot to apply, in succession, 50N
on its right foot, 100N on its left foot. In a second test, we
switch the desired force on each foot.

Fig. 8: Snapshots of the force control simulation with HRP-
2. In green, the current polygon, in cyan and purple the
polygons using respectively the right and left foot.

We use a high-weight (high-gain) 2D CoM task, and a
low weight joint position task to ensure that all joints are
controlled throughout the movement. We also add a force
task with low-weight which role is to try matching the force
on the controlled contact to the desired one. This does not
allow us to check that the forces on the real robot will be
close to the desired ones, but rather that such a distribution
of forces is possible. Note that without this objective, as
the Hessian of the problem is positive definite, the controller
will try to minimize ||λ||2 i.e. an equi-distribution. The robot
alternates between the postures presented in Figure 8. The
force results are presented in Figure 9. The interpolated force
does not reach the exact desired one because the desired
CoM is not reachable: this is worth noticing as the controller
behaves well when requiring an infeasible force.

The main reason for the error remainder is the collision
constraint with the right block. Indeed, the actual CoM
objective is too close to the block to be reached without
having the robot’s torso penetrating it. Notice that the spike
torque behavior in Figure 7 doesn’t occur here. This is
because we combined the CoM task, the force task and the
stability region constraint.

In this scenario, we did not fully remove the contacts in
order to do a cyclical check of the feasibility of our method.
In others, we fully removed the contact (when desired).
Indeed, whenever we reach the CoM target (CoMd), the
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Fig. 9: Force control of feet in multi-contact.

CoM is inside the reduced support polygon of the supporting
contacts: there exists a zero-force solution –at the contact to
be removed– to support the robot in this configuration. Of
course, we do not know a priori if this solution fulfills the
torque limits of the robot, but as we started from a feasible
configuration and smoothly drove the robot to the desired
one we continuously reduce the force applied on the contact
that can be removed.

In order to check that this technique would be applicable
on the robot, we used it in an open-loop scenario, simply
replaying the joint trajectory in the Choreonoid dynamics
simulator [18], which is very reliable (it embeds flexibilities
at the ankle and noise). The Figure 9 shows that the force
“tracking” can still be improved: the actual repartition of
forces is not linear in the distance between the CoM and the
polygon centroids, a result that was expected from Figure 4.
However, we get a very good precision when the desired
force is small (around 50N): this shows that indeed moving
the robot in this way reduces the force applied on the contact
in a continuous way. This confirms that when the CoM is
inside the reduced stability polygon, or even better, above its
centroid, one can safely remove the other contact as we are
close to a zero-force solution.

VII. CONCLUSION

In this paper, we show that it is possible to enforce stability
as a constraint in low dynamics multi-contact transitions.
We devised a continuous morphing of the stability polygon
as part of the constraint in QP controllers. We use this
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Fig. 10: Results of dynamic simulation. Top: fdr = 50N,
fdl = 100N. Bottom: fdr = 100N, fdl = 50N. The dashed
lines represent the actual asymptotes of fε(t).

technique to limit the force applied on a given contact,
whether by directly restraining the accessible region of the
CoM throughout the movement or by specifying the force
to be applied on a contact. Although we still use postures
generated from planning, it is an interesting addition to it,
as it allows us to modify the generated motion according to
our needs without any expensive re-computation. This is even
more interesting as it allows us to specify that the CoM has to
remain in a deformable stability region instead of explicitly
forcing the CoM to remain at a given position.

As future work, we will devise a closed-loop controller
based upon this theory, by deforming the CoM region from
the forces that are actually measured or estimated and com-
pare it to an impedance/admittance control on each contact.
To improve force tracking performance, we are considering
integrating an impedance controller at a lower level. Prior to
that, we need to curb the computation time of the morphing
(as it will depend on online measured/estimated forces) and

that of the computation of the geometric stability polygon
to run with the controller on the robot embedded computer.
Similarly, to account for differences between actual surface
shapes and planned ones we need to efficiently compute the
actual shape from the off-line planned one.
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