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Stability polygons reshaping and morphing for smooth multi-contact
transitions and force control of humanoid robots

Hervé Audren1, Abderrahmane Kheddar1,2 and Pierre Gergondet1

Abstract— In this paper we provide hindsight on how to use
the information provided by the explicit computation of the
stability polygon and build on task-based QP controllers to
achieve both stable multi-contact smooth transitions and force
control without jeopardizing stability. This entails computing
stability polygons with unilateral and bilateral contacts and
devising a method to continuously constrain the CoM position
throughout multi-contact motion in order to effectively regulate
the forces applied on the environment while avoiding hard
constraints on the CoM and discontinuity between stances.

Index Terms— Body balancing, Locomotion, Humanoid Dy-
namics

I. INTRODUCTION

Multi-contact technology [1], [2] can be used in several
tasks such as climbing stairs using handrails or egress/ingress
a car, or more generally access confined spaces. While
several works have proposed efficient regulation control
strategies in multi-contact configurations [3]–[6], transitions
between contact stances is still to be researched1.

One can enforce stability by controlling the Center of
Pressure (CoP) at each contact to remain within the convex
hull of its area [5]–[9]. This criterion can be added to the
QP controller as a constraint. Yet, in these implementations,
the CoM was given as a high-level task, and the CoP or
contact forces were regulated often in the null-space or
in conjunction with the CoM task. Moreover, CoP are ill-
conditioned upon contact removal because they only exist
when the normal contact force is non-zero. All papers using
CoP treat this issue with an ad-hoc counter-measure.

In order to smoothly transition from contacts, we want to
specify only a desired force profile on a given contact without
endangering stability. Whole body controllers typically solve
an optimization problem that aims at finding compatible joint
accelerations, q̈ and contact forces λ minimizing a set of
task errors under constraints. Stability objectives typically
only depend on the current joint state (position, velocity and
acceleration) q, q̇, q̈. Thus, adding a task to minimize the 2-
norm of λ will not result in modification of angular values:
the best local solution is redistributing the internal torques
to fall as little as possible.

One usual way to circumvent the local-view issue is to
use a preview controller to enhance the motion with a flavor
of dynamics [8], [10], but slow multi-contact motion can be
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achieved without preview [2], using only a closed-loop local
task-based controller.

To ensure that the desired force is indefinitely sustainable,
we want the controller to move the CoM to a stable region.
However, this approach is not directly applicable as the CoM
position only depends on q: a task error υ(q, λ) cannot be
turned into a quadratic objective T that depends only on q̈
and λ. Indeed, to do so one must differentiate υ with respect
to time, but λ is our optimization variable.

Forcefully setting the CoM to a precise location will
require to set gains that will interfere with almost all the other
tasks, such as end-effectors trajectories. This is generally a
very conservative measure. Thus, we may want the CoM
objective to be among the tasks to be achieved at best when
this is needed, but it should be allowed to freely move in a
known region of stability, that can be a hard constraint.

In this study, we will limit our developments to multi-
contact with quasi-static motions. Hence, constraining the
CoM to remain within the frictional static stability polygon
is an acceptable criterion (ZMP assumes infinite friction at
contact). The static stability is a polygon and allow us to
have a better comprehension before moving to the general
3D case in future work. Yet this shape is neither modified
according to desired contact forces nor continuous across
contact changes. For the latter point, including it directly as
a constraint in our QP controller would lead to its immediate
violation upon contact transition.

To deal with the latter drawbacks, our main contribution
is to propose a novel continuation method based on optimal
matching of points to interpolate between convex polygons
(those resulting from multi-contact stability region compu-
tation). This allows us to smoothly reshape the region of
stability during contact removal and addition and hence make
QP controllers robust to contact changes.

By formulating a pure CoM based constraint, we effec-
tively decouple the CoM placement from the force regulation
problem which allows us to perform force control in multi-
contact. Indeed, we can deform the static stability polygon
obtained from the geometrical and frictional information of
a stance to take into account the desired contact forces.
Then, using a simple impedance control scheme, we regulate
the applied force to the objective one without endangering
stability. This is another novel contribution, as we do not
move the CoM to a predetermined location, but inside
a formally defined polygon that guarantees stability with
respect to a certain force limitation. We note that our work
applies to torque and position controlled robots, but it has
more impact and value for the latter ones as redistributing



internal torques has no effect on them.
We recall in section II the static stability polygon compu-

tation, then how we included it as a constraint our controller
in section IV. We introduce our idea to smoothly constrain
the CoM in section III before applying it to the stairs case
in section V. We present a way to efficiently combine tasks
with this constraint in section VI and present results obtained
in another multi-contact scenario in section VII.

II. COMPUTATION OF THE STABILITY POLYGON

We use the algorithm in [11] to compute the stability
polygon for static postures provided by the multi-contact
planner. The exact stability polygon lies between an inner
and an outer approximation, that are built iteratively from
solving a series of second-order cone programs of the form:

max.
c̃om

dT c̃om

s.t. A1x+A2c̃om = t (1)

||Bx|| ≤ uTx
The solution c̃om

∗ of this problem is an extremal stable
CoM position in the direction d i.e. there exists a set of
forces x realizing t =

[
mg 0

]T
under the non-linearized

friction cones constraints defined by B and u. This wrench
is composed of the total wrench generated by a set of forces
x, at the origin, computed using the transformation matrix
A1 and the gravity wrench computed with A2 given a CoM
position c̃om . For each of these problems, c̃om∗ is added
to the inner approximation, while the half-plane defined by
{c̃om ∈ R2|dT c̃om > dT c̃om

∗} is added to the outer
approximation. At each step, the difference between these
two approximations is a set of triangles. The search direction
for the next step is perpendicular to the edge of the inner
approximation forming the triangle of maximum area. The
algorithm stops when the difference between the outer and
inner approximations area is less than a given precision σ.
The authors prove that there is a strict upper bound on the
number of iterations needed to reach σ.

In its original expression, this method is not applicable to
the case of mixed unilateral-and-bilateral contacts, that we
are using in our experiments [2]. The support region may be
unlimited in some directions. Thus, we need additional con-
straints limiting the search region. As our model of bilateral
contacts is simply a set of points with non-aligned friction
cones, we still can use Equation 1 providing additional
constraints on the acceptable CoM positions. Accordingly,
we can either use a constraint |c̃om| < r that will constrain
the CoM to a rectangular (polygonal) region or a conic
constraint of the form ||c̃om|| < r that will constraint
the CoM to a circle. A circular constraint is difficult to
approximate by a polygon. However, it may be closer to the
real geometric constraint: using a maximum limb length per
contact, we can write a series of constraints ||c̃om − l|| < r
that ensure that the CoM never goes further than d from the
contact at position l.

The stability region is unlimited is some directions because
we can apply arbitrary forces on opposite contact points,

allowing us to compensate for any momentum. In fact, the
robot cannot apply infinite torques. Translating the torque
constraint into a precise force limit of the form |x| < fm re-
quires setting fm from the robot posture, whereas we reason
on the CoM model to compute the stability polygon. Instead,
we use a reduced torque constraint, |Tx| < τm where T
represents the cross product between the contact points and
the contacting link. In this case, τm can be obtained from
the characteristics of the link that is in contact (e.g. gripper
actuators or feet/ankle actuators). This constraint is linear
because we consider non-sliding contacts.
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Fig. 1: Pie chart showing as angular sections the repartition
of computation time for 150 iterations: total time 1.87 s

This method is quite fast but not enough for real-time. It
takes few seconds for over a hundred iterations. To solve the
second-order cone programs, Equation 1, we use the convex
optimisation package CVXOPT [12] that natively supports
conic constraints. Our implementation is sub-optimal as we
recompute the area spanned by every edge at every iteration
but the cost for solving each problem is by far the most
consuming task. This means that even if we curb the time
spent finding the next best edge, the overall runtime of the
algorithm will not be significantly improved.

III. MORPHING STABILITY POLYGONS

Now, we are able to compute the stability region for
each contact configuration. It is a polygon that can be
reshaped in a more conservative form when needed. But
more importantly, the static stability can be integrated in our
controller as a hard constraint through ‘CoM in Polygon’
equations. When the robot changes contact configuration,
the stability polygon shape for the following configuration
is different from the current one. We do not want to reset
the problem or to design a specific CoM task. Instead, we
would like the constraints to continuously deform from a
stability shape to the other while subscribing the CoM all
along the deformation. In this case, the transition from a
contact configuration to another is made smoothly while
keeping hard constraints on the stability.

If we do not enforce the CoM to be maintained within
a moving/morphing polygon, the QP controller might often
start from an infeasible constraint set and fails. Controller
failure is solved by our new Algorithm 1 to smoothly morph
the stability polygons between stances and this is done within
the QP controller.



Algorithm 1 Interpolation of two polygons : f(Ps, Pd, κ)

Input: Ps, Pd start and destination polygons, κ percentage
acur, done← {}, {}
while |Ps| < |Pd| do

Ps ← Ps∪ midpoints(Ps)
end while
M ← zeros(|Ps| , |Pd|)
for atar ∈ Pd do

for b ∈ Ps do
Mij = ||atar − b||2

end for
end for
acur, done← Munkres(M)
for b ∈ Ps − done do

atar ← P⊥(b, Pd)
end for
conv(interpolate(acur, atar, κ))

It is not necessary to use state-of-the-art 2D or 3D shape
morphing found in the computer graphics and animation
community, see e.g. [13], [14] because in this study we
only morph 2D convex polygons. Furthermore, as we are
interested in adding and removing contacts one at a time,
successive stability polygons have a non-empty intersection.
In particular, when adding a contact, the previous stability
polygon is entirely included in the new one. Thus, our
successive polygons will be both convex and have non
empty intersections, which allows us to use a simpler, faster,
morphing algorithm. Morphing polygons is typically done in
three steps:
• Adding points to the shapes;
• Finding a correspondence between the points from the

start and target shape;
• Generating intermediate shapes by interpolating each of

these couples.
The main difficulty when morphing polygons is that if
corresponding points are badly chosen, the resulting polygon
will self-intersect during interpolation.

To solve the problem of self-intersection during morphing,
we use the Munkres (Hungarian) algorithm [15]. This algo-
rithm solves the assignment problem, i.e. finds a minimum
weight matching in a weighted bipartite graph. In our case,
we want to match every point from the target polygon to
one from the current polygon while minimizing the sum of
distances between each couple of matched points. In order
to warrant that the current polygon has more points than the
target polygon, we first extend the current polygon with the
midpoint of each edge until it contains more points than the
target. The result of the Munkres algorithm is the minimal, in
terms of distance travelled, set of points acur from the current
polygon matching all points atar from the target polygon.
The remaining b points of the current polygon are mapped
to their orthogonal projections onto the target polygon. The
intermediate shape is generated by interpolating each couple
of points by a percentage κ. Figure 2 presents the results

obtained on simple shapes.
The Munkres algorithm is in O(n3), yet pre-computations

are possible. The start and target polygons only depend on
the geometry and friction properties of each stance. Then,
although the algorithm presented here directly gives back the
interpolation, it is much more interesting to save the result,
that is the set of correspondences acur → atar and then only
compute the interpolation between each couple of points for
a given morphing percentage κ at each time-step. Moreover,
as we usually use a few tens of points, running the Munkres
algorithm is not very costly. To map a 25-sided polygon onto
a 50-sided one, it takes about 0.67 s. Solving the assignment
problem takes about 95 % of the time.
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Fig. 2: Stability 2D polygon morphing: Ps in blue, Pd in
red, the green and black arrows show the motion and the
normals directions of the edges respectively.

IV. TASK-BASED CONTROLLER

Now we discuss how this morphing is integrated in the
controller. We control our humanoid robot using the multi-
contact QP task controller described in [2], which compact
form is:

min.
y

1

2
yTQy + cT y

def
=
∑
i

βiTi(y)

s.t. Ay ≤ B ; Cy = D

where y is the decision variable representing both the joint
accelerations q̈, and the intensity of the forces λ applied
at each contact point. The problem is written as a sum of
quadratic or linear objectives weighted by βi (task gains).
Encoded constraints include joint position, velocity and
torque limits, non-sliding contacts, and non-desired collisions
avoidance. Typical tasks are written either directly or using
the set-point objective formulation and comprise a wide
variety of objectives [2]. Here, we focus on the CoM task.

To subscribe the CoM within a moving polygon, we use
a collision constraint as in [2], [16]. However, in our case



the CoM interacts with a changing shape (see next section),
which means that we have to take into account the speed and
acceleration of the edges w.r.t the CoM, that is:

δ̇ = nT · (Jq̇ − ṗ) (2)

δ̈ = ṅT · (Jq̇ − ṗ) + nT ·
(
J̇ q̇ + Jq̈ − p̈

)
(3)

where p, n are respectively the position and normal of the
CoM projection on one such edge, δ the resulting distance,
and J the CoM Jacobian. We formulate a constraint:

u = Jq̇ − ṗ e = J̇ q̇ − p̈

−dt nTJq̈ ≤ ξ δ − δs
δi − δs

+ δ̇ + dt [ṅTu+ nT e] (4)

with ξ a damping coefficient, δi and δs the interaction and
safety distances respectively. Activating the above constraint
whenever δ < δi will ensure that δ is never smaller than δs.

In a number of cases, the quantities ṗ, p̈, n, ṅ can be
explicitly computed from the mapping obtained by applying
Algorithm 1. Indeed for every ordered vertex vk of our
current (convex) polygon that is the interpolate between acurk

and atark at κ(t), t being the time:

vk(κ) = acurk (1− κ) + atark κ

∂nvk
∂tn

= (atark − acurk )
∂nκ

∂tn
∀n ≥ 1

Thus, for every point pk of the segment [vk, vk+1] at a
distance αk from the vk and the associated normal nk:

∂npk
∂tn

=

n∑
i=0

(
n

i

)
∂iαk
∂ti

∂n−ivk
∂tn−i

+
∂i(1− αk)

∂ti
∂n−ivk+1

∂tn−i

(5)

nk =

[
0 −1
1 0

]
(vk+1 − vk)

def
= N(vk+1 − vk) (6)

= N
[
acurk+1(1− κ) + atark+1κ− (acurk (1− κ) + atark κ)

]
= (1− κ)N(acurk+1 − acurk ) + κN(atark+1 − atark )

= (1− κ)nacur
k

+ κnatar
k

(7)
∂nnk
∂tn

= (nacur
k
− natar

k
)
∂nκ

∂tn
(8)

Whenever two points of the current polygon map to the
same point of the destination polygon, i.e. natar

k
=
[
0 0

]
,

the direction of nk is constant but its norm is strictly
decreasing. To avoid numerical issues whenever ||nk|| is
small, we consider nk constant with respect to κ in this case.

Thus, knowing the nth time derivative of κ and α, one
can compute the nth time derivative of the segments’ position
and their normals. However, when κ or α depend implicitly
on the time, these quantities have to be evaluated through
numerical differentiation. We can make the following ap-
proximations to neglect high-order terms:
– As the CoM only interacts with edges closer than δi, it
usually interacts with few edges at a time. Because all points
are interpolated uniformly and because the constraint pushes
the CoM perpendicularly to the edge, variations of αk are
small during interaction: we consider that ∂

nαk

∂tn = 0∀n > 0.

– In most of our use-cases, we interact when the interpolation
is almost done (the CoM is generally nearby the barycenter
of the polygons. At this moment, p̈ is either zero (when we
interpolate at constant speed) or negative (using quadratic
interpolation, the polygon is contracting and slowing down):
we set p̈ = 0. This puts a harder bound on the constraint.

Overall rotation speeds are usually small compared to the
homothetic part of the transformation, but we can not neglect
ṅ. Depending on the shape of the support polygons, local
rotations can be important, such as in the top corner of the
polygon in Figure 2.

V. LIMITING THE COM REGION DURING MOTION

For the sake of clarity and without loss of generality,
we illustrate our approach using the stair climbing with
handrail task by our humanoid robot (HRP-2Kai). In our
experiment trials the robot applied too much forces on the
handrail. Although part of the excess of force is due to
positioning error and would be solved by applying lower-
level compliance, part of it comes from the fact that our
QP controller does not explicitly reduce the force applied
on the gripper. Adding a task of the form min ||Sgripperλ||2
did minimize the force and torque computed, but kept the
posture unchanged meaning that the force applied by the
real robot would remain high (this was also observed for a
torque controlled robot in [5], p. 288, last sentence). Thus,
we want to modify the trajectory such that the force applied
on the gripper dimishes without endangering stability.

A. Linking force limitation and interpolation

From intuition, maintaining the CoM in a shape that is
similar to the static stability polygon of a restricted set
of contacts should reduce the force applied on the others.
We can compute the real static stability polygon with an
additional force constraint: for a set of real numbers γ ∈
[0, 1] we compute the static stability polygon as described in
section II with an additional constraint on the forces applied
on each contact point of the grippers:

||fi|| ≤ γmg (9)

Then we compute two stability polygons at each step of the
climbing, i.e. every time the active set of contacts is changed:
one using all contacts, the other using all contacts but those
between grippers and rail, and their interpolation. We then
find by dichotomy which κ yields the the interpolation of
the “full” and “restricted” polygon with the closest area to
the real constrained static stability polygon. Captions of this
process are shown in Figure 3 while a numerical comparison
of values of γ and κ are shown in Figure 4.

This shows us that interpolation is a good approximation
of the force constraint with restrictions:
• Because we limit the search region, the interpolation re-

tains the shape of this limit contrarily to the constrained
static stability polygon.

• κ is a non-linear function of γ. Indeed, as a consequence
of the above point, there is a “dead-zone” when the
force constraint results in a shape modification smaller
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Fig. 4: Interpolation coefficient as a function of the force
constraint coefficient for a 3-contact scenario. Dashed line
represents κ = 1− γ.

than the distance constraint. However, this function
does not have a general expression. Indeed, even when
linearizing the friction constraints, the two-dimensional
stability polygon is the result of a series of non-
linear transformations. As our problem is defined as a
series of inequalities describing contact geometry and
friction and equalities describing stability conditions,
the first step is to enumerate the vertices of the convex
polyhedron hence described in the manifold of forces
and CoM positions. This operation is called double
description [17]. Then, adding a linear force limitation
constraint corresponds to capping this n-dimensional
polyhedron, which may modify any number of edges,
and will present discontinuities depending on which

edges intersect with the constraint. Note that the two
above operations can be computed in a single pass of
double description, but capping would allow for efficient
testing of various force limitations. Finally, the polygon
is the convex hull of the projections of those vertices
in the plane. Another non-linear, complex operation.
It is thus impossible to derive a general relationship
between γ and κ that is independent of the contact
configuration. Moreover, as double description is an NP-
hard problem [18], enumerating all vertices in a high-
dimensional space may be much more computationally
costly than repeatedly computing only the projection, as
the worst-case complexity is doubly exponential. Simi-
larly, capping in high-dimensional spaces is much more
expensive than in two or three dimensional space [19].

• Interpolation is more accurate for extreme values of γ
which is a direct consequence of using interpolation.

Thus, maintaining the CoM inside a polygonal region
using the constraint presented in section IV corresponds to
limiting the force applied on the gripper. This polygonal re-
gion is smoothly interpolated from the current static stability
polygon, to an intermediate one. We can still maintain a task
of the CoM in the cost function with low gains and limit the
CoM motion in the constraint part of the QP. Note that we
can use a static stability polygon because the accelerations
and speeds generated by our controller are small and because
the safety distance δs acts as a stability margin.

B. Results of stairs climbing

To limit the stability region, we use the constraints of
section II in the stability polygon computation. We strictly
limit the torque applied on the gripper, and loosely the forces
and CoM position using the following values:

|fi| = |Six| ≤ 5mg; |τi| = |TiSix| ≤ 5 N m; ||c̃om|| ≤ 1 m

With Si a selection matrix of forces at the ith contact.
The interpolation between the current and target polygon
takes place over the course of one second. To avoid strong
discontinuities when the constraint gets activated, we use
quadratic interpolation, i.e. a trapezoidal speed profile. We
also use relatively high damping, ξ = 0.1, to further avoid
discontinuity when activating the constraint. To make sure
the QP does not fail, we allow a small violation of the
constraint. The intermediate polygon is the interpolate at
90 %: we need to choose a high κ because we want to
strongly limit the forces applied on the gripper. This κ
corresponds to an upper force of about 34 N, which means
that in the worst case the torque applied on the gripper is
lower than our torque limit.

We first designed the motion, and checked that introducing
the polygonal constraint in our controller does indeed modify
the posture as shown in Figure 5. Moreover, introducing
this constraint allowed us to check that our controller can
indeed generate a trajectory without applying any force on
the gripper.

We then modified the CoM objectives in each phase to
ensure that the robot’s flexibilities would not be too excited
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Fig. 5: Climbing the stairs with HRP-2 Kai: with neither the
constraint nor gripper torque task activated (left), with only
the task (middle) and with both (right)
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Fig. 6: CoM trajectory during experiment

during motion, and confirmed that the robot can climb the
stairs in dynamic simulation.

To make sure that the robot was able to climb the stairs
in the real world, it was very important to ensure that the
contacts were properly established before moving on to the
next phase. Thus, every time a contact has to be added, we
use a 6D position task as a form of impedance control to
regulate the contact force. Its objective X(t) is updated as
follows:

δf = fmes − fobj (10)

X(t+ dt) = X(t) +Kpδf +Kd
˙δf (11)

With Kp, Kd positive diagonal gain matrices, fmes the
measured 6 dimensional wrench, fobj an objective wrench.
This task allows us to align the contacting bodies with
the contacting surfaces by specifying a pure normal force
objective as shown in the attached video.

The resulting trajectory is shown in Figure 6: while
the constraint was correctly added to our QP controller, it
is rarely activated. This confirms that the manual tuning
concords with the stability information. Note that during
this testing phase, being sure that the CoM would never
exit the polygon was very useful as it allowed us to tinker
without worrying about changes in other tasks disturbing
the CoM. In that sense, this technique is a complement to
posture generation as it adds explicit boundaries in between
the known to be static stances.

However, we can see in Figure 8 that the effective force
applied during the motion is often superior to the designated
force. Although part of this error stems from the fact that the
polygons are not recomputed according to the actual contacts
taken and more generally modeling errors, most of it is due

to the fact that a low-force solution only exists, but it is not
the one we get when doing raw position control.

VI. COMBINING TASKS AND CONSTRAINTS FOR FORCE
CONTROL

In this section we present how to combine the CoM
constraint and an impedance force control task to drive
smooth removal of contacts. This is in fact a particular case
of potentially more complex robot force control tasks. We
also show that it is possible to recompute on the fly, but not
in real-time the important polygons.

In a n contact scenario, we want to force control the ith

contact, ci. We can then compute two geometry stability
polygons:

Ps =
⊔

({ck}k∈[0···n]) (12)

Pd =
⊔

({ck}k∈[0···n] k 6=i) (13)

We can then interpolate between Ps and Pd at a rate κ(t).
We choose κ(t) to have a trapezoidal speed profile of total
duration 30 s. Denoting fk the force at the kth contact, we
can derive an objective force at that contact, f̄k that is a
function of κ. Knowing that we only control one contact,
we choose:

f̄k = mg(1− κ) (14)

We can then use an impedance force control task such
as the one presented in section V to regulate the actual fk
around f̄k by setting fobj to f̄k at each timestep. In reality, we
only modify the impedance task objective whenever fk > f̄k
to only maintain fk under the maximum desired force.

This linear objective in κ is in general sub-optimal as
lower forces could be attained, but without an explicit re-
lationship between κ and γ, we have to remain conservative.

VII. APPLICATION TO A MULTI-CONTACT SETTING

In this experiment, the controller establishes three contacts
with the environment. Each of the two contacts that are
added use the force control task to ensure paralellism of
the contacting body and surface. When done, the robot has
established three unilateral contacts with its environment: one
between the right foot and the rear flat platform, one with
its left foot and an inclined ramp and the last one is with its
hand and an elevated flat block.

After establishing the contacts, we reposition the CoM
before starting the experiment. During those few seconds,
we asynchronously compute the corresponding polygons: Ps
and Pd for every contact as well as every interpolator.

While maintaining those contacts, we interpolate Ps to-
wards Pd for every contact: first for removing the right foot,
then for removing the left foot and finally for removing
the right hand. Another shorter experiment presented in
Figure 9 and the attached video consists in doing only one
interpolation, but then entirely removing the right foot.

In order to check that this technique would be applicable
on the robot, we first tested it in the Choreonoid dynamics
simulator [20], which is very reliable (it embeds flexibilities



Fig. 7: Frames of HRP2 climbing the stairs using the handrail
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Fig. 8: Force (magnitude) applied on left hand during stairs
climbing. Data was low-pass filetred by an order 2, Butter-
worth filter with a critical frequency of 10Hz. For phases,
a,m,r stand for “add”, “move” and “remove” respectively
while R,L,F,H stand for “Right”, “Left”, “Foot”, “Hand”.

at the ankle and noise) to ensure that the trajectory is indeed
feasible and that the robot does avoid both environment and
self-collisions.

In this experiment, we do not use a CoM task, only the
constraint with wide safety margin. This ensures smoothness
and stability. We also add a very low weight posture task
to avoid having uncontrolled joints. The last task is the
impedance control task that is only inserted when interpo-
lating for the first contact. This will allow us to confirm
its importance and role. Note that without an explicit force
regulation task, as the Hessian of the problem is positive
definite, the controller will try to minimize ||λ||2 i.e. an equal
distribution that does not reflect the real forces being applied.

Whenever we finish the interpolation (i.e. κ = 1), the
CoM is inside the reduced support polygon of the supporting
contacts: there exists a zero-force solution –at the contact to
be removed– to support the robot in this configuration. Of
course, we do not know a priori if this solution fulfills the
torque limits of the robot, but as we started from a feasible
configuration and smoothly drove the robot to the desired
one while continuously reducing the force applied on the

Fig. 9: Snapshots of the force control experiment with HRP-2
to smoothly remove the right foot.

contact, it is to be expected.
We show in Figure 10 how the force did decrease contin-

uously, both in simulation and in reality albeit with slightly
different profiles. We reach a zero-force configuration when-
ever the interpolation ends for the first contact. Note that
for successive contacts, this is no longer true. When we do
not explicitly aim for the desired force distribution, the robot
establishes itself in a configuration that balances the contact
forces with the joint torques generated by the lower level
PD controller. Indeed, the worst case is shown in the third
part, when interpolating to remove the hand: as the CoM is
already almost inside the reduced polygon, the force applied
on the left hand is only slightly reduced. However, it could
safely be controlled to smoothly decrease towards zero as
the interpolation index decreases as was done for the foot.

VIII. CONCLUSION

In this paper, we show that it is possible to enforce stability
as a constraint in low dynamics multi-contact transitions.
We devised a continuous morphing of the stability polygon
as part of the constraint in QP controllers. We use this
technique to limit the force applied on a given contact,
whether by directly restraining the accessible region of the
CoM throughout the movement or by specifying the force to
be applied on a contact and displacing the CoM accordingly.
Once the CoM is correctly placed, we can be sure that
impedance or admittance control is usable to select the
appropriate force distribution. Although we still use postures
generated from planning, it is an interesting addition to it,
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as it allows us to modify the generated motion according to
our needs without any expensive re-computation. This is even
more interesting as it allows us to specify that the CoM has to
remain in a deformable stability region instead of explicitly
forcing the CoM to remain at the planned position.

As future work, we are working on the following improve-
ment: extending this work to dynamic motion, and closed-
loop control. For the former, we need to extend the theoret-
ical part to take into account accelerations explicitly instead
of relying on safety margins (this is almost done). For the
latter, we need to curb the computation time of the morphing
(as it will depend on online measured/estimated forces) and
that of the computation of the geometric stability polygon
to run with the controller on the robot embedded computer.
Similarly, to account for differences between actual surface
shapes and planned ones we need to efficiently compute the

actual shape from the off-line planned one, possibly by using
the current robot state to narrow down the search area.
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NOMENCLATURE

α Distance along the segment, see equation (8), page 4
f̄k Objective force at contact k, see equation (13),

page 6
β Task weight, see equation (1), page 3
c̃om CoM position, see equation (1), page 2
acur Corresponding points in Ps, see equation (1), page 2
δf Force error for compliance task, see equation (11),

page 6
δ Distance to a line, see equation (3), page 4
κ Morphing percentage, see equation (1), page 2
σ Error threshold to stop the algorithm, see equa-

tion (1), page 2
atar Points in Pd, see equation (1), page 2
ξ Damping coefficient, see equation (4), page 4
A,C/B,D Constraint matrices/vectors, see equation (1),

page 3
A1, A2 Matrices projecting the wrenches, see equation (1),

page 2
b Points in Ps, see equation (1), page 2
B, u Matrices describing the friction cones, see equa-

tion (1), page 2
c Gradient vector, see equation (1), page 3
ck k-ith contact, see equation (13), page 6
d Search direction, see equation (1), page 2
e Normal acceleration, see equation (4), page 4

fk Force at contact k, see equation (13), page 6
fmes Measured force at the sensor, see equation (11),

page 6
fobj Compliance task objective force, see equation (11),

page 6
J CoM jacobian, see equation (3), page 4
Kd Compliance task derivative gain matrix, see equa-

tion (11), page 6
Kp Compliance task proportional gain matrix, see equa-

tion (11), page 6
l Contact position, see equation (1), page 2
N Normal matrix, see equation (8), page 4
n Normal to a line, see equation (3), page 4
p Position of a point on the line, see equation (3),

page 4
Q Hessian matrix, see equation (1), page 3
r CoM region radius, see equation (1), page 2
S Selection matrix for contact forces, see equation (9),

page 5
t Target acceleration, see equation (1), page 2
u Relative speed, see equation (4), page 4
v Vertex of the interpolate, see equation (8), page 4
X Compliance task position objective, see equa-

tion (11), page 6
x Set of forces, see equation (1), page 2
y Optimisation variable, see equation (1), page 3
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