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Abstract—Dynamic Thermal and Power Management
methods require efficient monitoring techniques. Based on
a set of data collected by sensors, embedded models estimate
online the power consumption: this task is a real challenge,
since models must be both accurate and low cost, but they also
have to be robust to variations. In this paper, we investigate
a self-aware approach using the performance events and the
external temperature. We present a solution (PESel) for the
selection of the relevant information. This method is two
times faster than existing solutions and provides better results
compared to related works. The power models achieve a 96%
accuracy with a temporal resolution of 100 ms, and negligible
performance/energy overheads (less than 1%). Moreover,
we show that our estimations are not sensitive to external
temperature variations.

I. INTRODUCTION

ACHIEVING high energy efficiency is a major chal-
lenge in the design of integrated circuits, which is

confronted with the problem of delivering high perfor-
mance with a limited power budget. Therefore, modern
day microprocessors provide dynamic thermal and power
management techniques (DTPM) to address this challenge
(e.g. scaling the voltage and the frequency, switching
to low-power modes, scheduling of tasks, etc.). Several
techniques use the information of the power consumption
to adapt the system behavior (reactive techniques) or to
predict undesired future states (proactive techniques). In all
cases, the effective management of power and temperature
depends critically on the monitoring method, which should
provide robust and accurate estimations in a cost-effective
way.

Modern systems integrate a specific unit connected to
several events for the debugging and profiling of the per-
formance. This unit is called Performance Monitoring Unit
(PMU) in ARM processors, and Performance Monitoring
Counters (PMCs) in Intel ones; the first notation will be
used in the rest of this paper. The events that can be
monitored in such system can be decomposed into three
main categories: (i) local events occurring at the hardware-
level inside each core (e.g. L1 instruction misses), (ii)
shared events occurring at the hardware-level on the shared
resource inside the cluster (e.g. L2 cache accesses), and
(iii) system events available at the operating system (e.g.
a task migration). The PMU has a dedicated hardware
counter to monitor the occurrence of both local and shared
events, while the system event counters are implemented
in a software layer managed by a firmware. Indeed, it is
impossible to integrate a particular hardware counter for
each hardware-level event. That is the reason why, PMUs
integrate a few numbers of configurable hardware counters,
smaller than the number of available events. It thus raises

the question of how the PMU can be configured and used to
appraise the global system activity that affects the overall
power consumption Ptotal, which is due to the dynamic
and static power.

In this paper, we investigate low-cost power models,
robust to temperature variations. We use the information
from the PMU and an external temperature sensor to
track any variation in the power consumption. There are
thousands of events at system-level that can be monitored
by the PMU [1]. So, if one wants to profile these events,
one will easily face a problem of managing a big quantity
of data. For this purpose, we develop the algorithm PESel
(Performance Events Selection) inspired from Data Mining
techniques for the selection of relevant events for power
modeling. Furthermore, linear and neural network models
are extended taking into account the external temperature
to build an efficient monitoring approach.

The remainder of the paper is structured as follows. In
Section II the limitations of most relevant power estimation
and event selection techniques are discussed to highlight
the need for this work. Sections III and IV present the
proposed selection method and power models. Section V
describes the experiments and in Section VI we draw some
conclusions.

II. RELATED WORKS
Several works assume that either the internal activity,

or the ambient temperature are constant, while modeling
the power consumption. In [2], when estimating the power
consumed by the ARM big.LITTLE platform, the internal
activity is supposed to be constant. In [3], a few perfor-
mance events were manually selected based on a previous
knowledge about the system behavior, to build a simple
linear model. In [4], the authors present a power model
based on dynamic and static contributions, but there is
no mention on the impact of the external temperature.
The selection of events is a problem addressed in [5],
using the Pearson correlation criterion, or the Spearmans
rank correlation in [6]. A projection method based on the
principle component analysis (PCA) is proposed in [7] that
takes into account the relation between the elements before
the selection of performance events for the Dell PowerEdge
Opteron processor.

This paper proposes a new algorithm for the selection of
events (PESel), which is faster than existing works [7], and
takes into account the parallel execution of the applications
by the multiprocessor platforms. The originality of our
algorithm comes from the consideration of the interactions
between events before the selection, that were not taken
into account classical statistical methods such as in [5], [6].
Furthermore, our cost-effective power models are robust to
temperature variations while tracking the consumption.978-1-4673-6576-5/15/$31.00 c©2015 IEEE



III. PERFORMANCE EVENTS SELECTION

The main goal is to produce a robust and accurate
power model that is able to track power variations for
any activity at any ambient temperature. Here, we propose
to use the performance events from the PMU to appraise
the global system activity. But, due to the limited number
of hardware counters, the most relevant events for power
modeling purposes must be selected. For example, the
ARM CortexA9 processor has 6 hardware counters, and
consequently, must be configured with 6 among the 62
available local events. Furthermore, it is not possible to
construct a unique database containing all available events
with the power under a unique time-sample domain, limit-
ing the utilization of the standard selection methods such
as PCA analysis, features selection, etc. For this reason, we
developed a sub-space method inspired from the features
selection algorithms from Data Mining. It greedily searches
for the best set of events, and uses the Correlation Features
Selection (CFS) metric (merit) [8] for the evaluation shown
in the following equation:

M =
p× rEi,p√

p+ p× (p− 1)× rEi,Ej

(1)

where p is the number of events in the candidate subset, Ei
and Ej are two events in the candidate subset, rEi,p is the
average correlation between each event Ei and the power
P , and rEi,Ej

is the average correlation among events in
the candidate subset. The subset having the highest merit is
the best solution found, and corresponds to a set of events
uncorrelated with each other, which highly correlate with
the power.

The proposed method requires several iterations (k), each
one having two main steps. At the end of each iteration,
only one event is selected among the resulting available
events. In the first step, at the iteration k, the k−1 selected
events will occupy several hardware counters. Therefore,
the remaining available counters are used to configure the
remaining available events. For this purpose, several runs
are required to finish this step at iteration k. A subset C
of events with the corresponding power P is generated for
each run.

The second step is to use the proposed PESel algorithm
to identify the most relevant event at the iteration k (ek).
The pseudo-code of the proposed algorithm is shown in
the Algorithm 1. It operates on all subsets C generated
previously for each run to find the best event ek at the
current stage k. Let Ccand be the set of events candidate
extracted from C. For each Ccand, we measure the impact
of each event candidate e over the solution Sk−1 found at
the stage k− 1. This evaluation is done by the calculation
of the merit of the union between Sk−1 and e. Then, the
event with the highest merit is selected. At the first iteration
k = 1, where S0 = ∅, PESel selects the event the most
correlated with the power, as long as the equation (1) is
reduced to a simple correlation for p = 1. At the end of the
stage k, the event found by the proposed PESel algorithm
is added to the solution pool: Sk = Sk−1 ∪ {ek}, and
k = k + 1.

IV. POWER CONSUMPTION MODELS

The total power consumption can be calculated as:

input : Sk−1 and Dk set of simultaneous measurement
output : ek best event found at the end of the stage k

MBest = 0;
ek = {};
for C in Dk do

Ccand ← C \ Sk−1;
for e in Ccand do

Le ← Sk−1 ∪ {e};
M = Merit(Le);
if M > MBest then

MBest = M ;
ek ← e;

end
end

end
return ek;

Algorithm 1: PESel Algorithm

Ptotal = Pdyn + Pstat = (Psw + Psc) + Pstat

= (α · C · V 2
dd · f + Vdd · Isc) + Vdd · Ileakage

(2)

Where α is the activity factor, C is the switching capaci-
tance, Vdd is the power supply, f is the frequency and Isc
is the short-circuit current. This one occurs when pull-up
and pull-down networks are conducting simultaneously. In
the rest of this paper, the short-circuit term is neglected.

The dynamic power component dominates during the
active mode of the system, while the static power accom-
panies the total power as long as the system is powered
on. The static component increases exponentially with the
chip temperature (Tchip). This temperature dependence can
result in a positive feedback loop, because the tempera-
ture is also dependent on power consumption. With this
assumption, the static power (PStat) can be expressed as:

Pstatic = P0 · e−k/Tchip (3)
where P0 and k are process dependent constants. After that,
we can write the updated equation for the power dissipation
as follows:

Ptotal = α · C · V 2
dd · f + P0 · e−k/Tchip (4)

According to [9], the external temperature Text (room
temperature) and Tchip (operating temperature) may be
found in a same equation by using the equivalent RC circuit
for modeling the temperature, and it can be written as
follows:

Tchip = Text +Rθ · PTotal (5)
where Rθ is the equivalent thermal resistance of the pack-
age (◦C/W ). This equation (5) clearly shows that a change
of the ambiant temperature has a direct impact on Tchip.
This highlights the need to account for this parameter in
the power models for tracking the consumption.

A. Linear Approximation
In mathematics, a functional equation not identically null

where F :]0,+∞[ ⇒ R like Cauchy function can verify
the following property F (xy) = F (x) + F (y) for all
x and y strictly positive. This formal definition can be
applicated on the equation (4), since the power domain
meets the interval of F and will never be null or negative
when the system is powered on. We can apply this property
to the representation of PDyn, PStat and PTotal. The total
power can than be approximated as:

PTotal = P0 +

N∑
i=1

wi · ei + wf · f +K · Tchip (6)



where P0 is a constant that corresponds to the idle power
consumption, wi is the weight of the contribution of the
event ei on power variation. Tchip corresponds to the chip
temperature which results from P and Text, K is a process
dependent constant and wf is the weight of the frequency.
In the subsequent experiments, the DVFS mechanism was
deactivated in order to put the focus on the temperature
impact on power consumption. For this reason, the terms
wf .f can be considered here as a constant term.

B. Neural Network Estimation
Modeling the power with a highly reduced subset of

events might be innaccurate with the afore mentioned
linear approximations. Neural network modeling could be
an interesting alternative to investigate. For this purpose,
multilayer feed forward neural networks model which
has been extensively used in data mining for supervised
learning could be suitable to mode non-linear behaviors.

Neural network consists of neurons, that are arranged in
layers. The number of neurons at the first layer is equal to
the length of the input set (events and temperature), while
the output layer contains only one neuron that produces
the estimation of the power. The layers between have
a configurable number of neurons, and each neuron has
direct connections to all neurons of the subsequent layer.
In general, the hidden layer determines the reliability of
the model and the number of neurons is usually equal to
the number of inputs [3].

V. EXPERIMENTS

In this section, we evaluate the proposed power models
on the SKY-S9500-ULP-CXX snowball PDK development
kit . It includes a Cortex A9 ARM dual-core processor
integrated into the NovaTMA9500 chip from ST-Ericsson.
The on-chip PMUv2 has 6 configurable counters for each
cores for local events, one counter per core for the clock
cycles and 2 configurable counters for the L2 cache events.
In order to vary the system activity, we run on both cores
several software benchmarks, including MiBench, Whet-
stone and Linpack. These one target different application
fields, including: (i) performance and data management, (ii)
automotive and industrial control, (iii) office and security
programs and (iv) network and telecom. We carried out the
experiments using the Streamline Performance Analyzer
of DS-5 v5.21 development studio and the Energy probe
provided by ARM for the measurement of the power
consumption. DS-5 collects the number of occurrences
of events counted by the PMU and the measured power
consumption, at 1ms data sampling period.
A. Accuracy vs. Performance Events

We first aim at evaluating the proposed PESel method.
Benchmarks were split into two sets of applications: 70%
for the training of the models and 30% for the test and
measurement of the errors. We applied PESel to the set of
training applications and we found the 11 most significant
events for power modeling.

We compare PESel with the Neural Network ( NN) and
the Linear Model ( LM), to three other methods from the
literature that use the LM model to estimate the power.
The number of selected events is varied from 1 to 11
considering for each case the best selected events according
to each method.
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Fig. 1: comparison of the selection methods for different selected subsets

Figure 1 depicts the average for each models. The
worst selection is the one that uses the classical statistical
correlations (Pearson [5] and Spearman [6] correlations).
The PCA based selection in [7] produces a solution closer
to the one selected by PESel with the LM model. It must
also be noticed that PESel is two times faster than PCA
(129.8s compared to 226.22s at stage k = 11). The NN
model is clearly more accurate than LM especially when
the number of events is lower than 6. The percentage of
average error of NN constructed with the 11 events is
about 4.85% at a data sampling period equal to 100ms
and the measured coefficient of determination (R2) is about
0.887. The obtained error decreases when the data sampling
period increases; the average error of NN reaches 3.2%
(R2 = 0.9084) compared to 4.1% (R2 = 0.8912) for a
sampling period equal to 1 sec. For this purpose, the NN
model is chosen to model the power consumption in the
rest of this paper.

It can be noticed that the error achieved in [10] at
a timing resolution equal to 500 ms is about 8.2% and
10.0% for the small core and big core respectively, of the
ARM big.LITTLE processor, while in [11] is about 3% by
application.

B. Temperature Impact

For the external temperature, the board was placed
in a thermal chamber where the system runs through a
series of arbitrary temperatures (from -20 ◦C to +80 ◦C).
Several experiments are therefore conducted under different
thermal conditions. The power consumed over time and the
corresponding external temperatures are depicted in Fig.2.
Plot(a) of this figure shows the reference power consumed
by the system at each external temperature. Since the tran-
sient phases at each change in the temperature are very long
(10min), they were not represented in this figure. Plot(b)
shows that for the same applications scenario running at
different external temperatures, there is a significant impact
on the power consumed, as expected (both on average and
amplitude). Since an increase in the external temperature
favors the self-heating phenomena. This motivates the need
to build a power model robust to temperature variations.

C. Power Tracking

In this experiment, we aim to assess and compare two
power models: the first one NN20 was generated under
normal conditions of temperature (+20◦C), while the sec-
ond NNR was trained with external temperature variations
(from -20◦C to +80◦C) and includes Text as a model
variable. The Fig.2 (both plot (c) and (d)) depicts the power
consumed tracked by both models at different temperatures.
At +20◦C (plot (c)), NN20 produces a good estimation of
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Fig. 2: Reference Power consumed at each external temperature (a) and (b); The tracking of power with both NNR and NN20 models (c) and (d).

the consumption, as expected. Despite small discrepancies,
the NNR model also provides a precise assessment. When
switching to +80◦C (plot(d)), we observe that the NNR is
still able to accurately follow the power variations, while
the NN20 clearly not.

D. Overhead

Our methodology allows an online estimation, which
is simply based on a set of logic events and an external
temperature sensor: we have shown that our solution is
able to track the total power consumption with a good accu-
racy. However, it also requires some processing ressources,
which need to be examined. Both models, NNR and NN20,
were programmed and executed by the processor at 1GHz.
The maximum overhead is achieved with the 11 selected
events, from which the time (tNN) taken by the processor to
compute the calculation of the NNR and NN20 equations
are equal to 8.036 µs and 7.962 µs respectively.
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Fig. 3: The Perfomance and energy overhead of both NNR and NN20 models for
different sampling periods

The power consumed (PNN) during this computation is
2.02W. The energy overhead is approximated as the ratio
between the extra energy (tNN × PNN) and the minimum
energy at idle state (worst case scenario). The performance
overhead is the ratio between the computation time (tNN)
over the data sampling period (Ts). Energy and perfor-
mance overheads for both NNR and NN20, at different
sampling periods, are depicted in the Fig.3 introducing the
temperature into the NN model has a negligible impact on
both overheads. In all cases, the overhead is very low and
is almost less than 1%.

VI. CONCLUSION

We have proposed a method robust to temperature vari-
ations that can be exploited for the run-time monitoring of
the power consumption in modern computing systems. This
approach appraises the total power in terms of performance
events taking into account the external temperature, thanks
to the proposed PESel algorithm. The results show the
efficiency of the solution, which selects a few events faster
than existing works. Moreover, the power models achieve
a very good accuracy (<4%), with a low performance and
energy overheads (<1%).
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