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Abstract

A graph G is (d1, . . . , dl)-colorable if the vertex set of G can be partitioned
into subsets V1, . . . , Vl such that the graph G[Vi] induced by the vertices of Vi has
maximum degree at most di for all 1 6 i 6 l. In this paper, we focus on complexity
aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed
integers k, j, g with (k, j) 6= (0, 0) and g > 3, either every planar graph with girth
at least g is (k, j)-colorable or it is NP-complete to determine whether a planar
graph with girth at least g is (k, j)-colorable. Also, for every fixed integer k, it is
NP-complete to determine whether a planar graph that is either (0, 0, 0)-colorable
or non-(k, k, 1)-colorable is (0, 0, 0)-colorable. Additionally, we exhibit non-(3, 1)-
colorable planar graphs with girth 5 and non-(2, 0)-colorable planar graphs with
girth 7.

1 Introduction

A graph G is (d1, . . . , dk)-colorable if the vertex set of G can be partitioned into subsets
V1, . . . , Vk such that the graph G[Vi] induced by the vertices of Vi has maximum degree
at most di for all 1 6 i 6 k. This notion generalizes those of proper k-coloring (when
d1 = · · · = dk = 0) and d-improper k-coloring (when d1 = · · · = dk = d > 1).

Planar graphs are known to be (0, 0, 0, 0)-colorable (Appel and Haken [1, 2]) and
(2, 2, 2)-colorable (Cowen, Cowen, and Woodall [13]). The (2, 2, 2)-colorability is optimal
(for any integer k, there exist non-(k, k, 1)-colorable planar graphs) and holds in the choos-
ability case (Eaton and Hull [15] or Škrekovski [23]). Improper colorings have then been
considered for planar graphs with large girth or graphs with low maximum average degree.
We recall that the girth of a graph G, denoted by g(G), is the length of a shortest cycle in
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G, and the maximum average degree of a graph G, denoted by mad(G), is the maximum of
the average degrees of all subgraphs of G, i.e. mad(G) = max {2|E(H)|/|V (H)| , H ⊆ G}.

(1, 0)-coloring.
Glebov and Zambalaeva [20] proved that every planar graph with girth at least 16 is
(1, 0)-colorable. This was then strengthened by Borodin and Ivanova [3] who proved that
every graph G with mad(G) < 7

3
is (1, 0)-colorable. This implies that every planar graph

G with girth at least 14 is (1, 0)-colorable. Borodin and Kostochka [7] then proved that
every graph G with mad(G) 6 12

5
is (1, 0)-colorable. In particular, it follows that every

planar graph with girth at least 12 is (1, 0)-colorable. On the other hand, they constructed
graphs G with mad(G) arbitrarily close (from above) to 12

5
that are not (1, 0)-colorable;

hence their upper bound on the maximum average degree is best possible. The last re-
sult was strengthened for triangle-free graphs: Kim, Kostochka, and Zhu [22] proved that
triangle-free graphs G satisfying 11|V (G)| − 9|E(G)| > −4 are (1, 0)-colorable. This im-
plies that planar graphs with girth at least 11 are (1, 0)-colorable. On the other hand,
Esperet, Montassier, Ochem, and Pinlou [16] proved that determining whether a planar
graph with girth 9 is (1, 0)-colorable is NP-complete. To our knowledge, the question
whether all planar graphs with girth at least 10 are (1, 0)-colorable is still open.

(k, 0)-coloring with k > 2.
Borodin, Ivanova, Montassier, Ochem, and Raspaud [4] proved that every graph G with
mad(G) < 3k+4

k+2
is (k, 0)-colorable. The proof in [4] extends the one in [3] but does

not work for k = 1. Moreover, they exhibited a non-(k, 0)-colorable planar graph with
girth 6. Finally, Borodin and Kostochka [8] proved that for k > 2, every graph G with
mad(G) 6 3k+2

k+1
is (k, 0)-colorable. This result is tight in terms of maximum average

degree.

(k, 1)-coloring.
Recently, Borodin, Kostochka, and Yancey [9] proved that every graph with mad(G) 6 14

5

is (1, 1)-colorable, and the restriction on mad(G) is sharp. In [5], it is proven that every
graph G with mad(G) < 10k+22

3k+9
is (k, 1)-colorable for k > 2.

(k, j)-coloring.
A first step was made by Havet and Sereni [21] who showed that, for every k > 0,
every graph G with mad(G) < 4k+4

k+2
is (k, k)-colorable (in fact (k, k)-choosable). More

generally, they studied k-improper l-choosability and proved that every graph G with
mad(G) < l+ lk

l+k
(l > 2, k > 0) is k-improper l-choosable; this implies that such graphs are

(k, . . . , k)-colorable (where the number of partite sets is l). Borodin, Ivanova, Montassier,
and Raspaud [6] gave some sufficient conditions of (k, j)-colorability depending on the
density of the graphs using linear programming. Finally, Borodin and Kostochka [8]
solved the problem for a wide range of j and k: let j > 0 and k > 2j + 2; every graph
G with mad(G) 6 2(2− k+2

(j+2)(k+1)
) is (k, j)-colorable. This result is tight in terms of the

maximum average degree and improves some results in [4, 5, 6].

the electronic journal of combinatorics 22(1) (2015), #P1.57 2



Using the fact that every planar graphG with girth g(G) has mad(G) < 2g(G)/(g(G)−
2), the previous results give results for planar graphs. They are summarized in Table 1,
which also shows the recent results that planar graphs with girth 5 are (5, 3)-colorable
(Choi and Raspaud [12]) and (10, 1)-colorable (Choi, Choi, Jeong, and Suh [11]).

girth (k, 0) (k, 1) (k, 2) (k, 3) (k, 4)
3,4 × × × × ×
5 × (10, 1) [11] (6, 2) [8] (5, 3) [12] (4, 4) [21]
6 × [4] (4, 1) [8] (2, 2) [21]
7 (4, 0) [8] (1, 1) [9]
8 (2, 0) [8]
11 (1, 0) [22]

Table 1: The girth and the (k, j)-colorability of planar graphs. The symbol “×” means
that there exist non-(k, j)-colorable planar graphs for every k.

From the previous discussion, the following questions are natural:

Question 1.

1. Are planar graphs with girth 10 (1, 0)-colorable?

2. Are planar graphs with girth 7 (3, 0)-colorable?

3. Are planar graphs with girth 6 (1, 1)-colorable?

4. Are planar graphs with girth 5 (4, 1)-colorable?

5. Are planar graphs with girth 5 (2, 2)-colorable?

(d1, . . . , dk)-coloring.
Finally we would like to mention two studies. Chang, Havet, Montassier, and Raspaud [10]
gave some approximation results to Steinberg’s Conjecture using (k, j, i)-colorings. Dor-
bec, Kaiser, Montassier, and Raspaud [14] studied the particular case of (d1, . . . , dk)-
coloring where the value of each di (1 6 i 6 k) is either 0 or some value d, making the
link between (d, 0)-coloring [8] and (d, . . . , d)-coloring [21].

The aim of this paper is to provide complexity results on the subject and to obtain
non-colorable planar graphs showing that some above-mentioned results are optimal.

Claim 2. There exist 2-degenerate planar graphs that are:

1. non-(k, k)-colorable with girth 4, for every k > 0,

2. non-(3, 1)-colorable with girth 5,

3. non-(k, 0)-colorable with girth 6,
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4. non-(2, 0)-colorable with girth 7.

Claim 2.4 shows that the (2, 0)-colorability of planar graphs with girth at least 8 [8] is
a tight result. Claim 2.3 has been obtained in [4] and the corresponding graph is depicted
in Figure 1.

2k + 1 2k + 1

2k + 12k + 1

Figure 1: A non-(k, 0)-colorable planar graph with girth 6 [4].

Theorem 3. Let k, j, and g be fixed integers such that (k, j) 6= (0, 0) and g > 3.
Either every planar graph with girth at least g is (k, j)-colorable or it is NP-complete to
determine whether a planar graph with girth at least g is (k, j)-colorable.

Theorem 4. Let k be a fixed integer. It is NP-complete to determine whether a 3-
degenerate planar graph that is either (0, 0, 0)-colorable or non-(k, k, 1)-colorable is (0, 0, 0)-
colorable.

We construct a non-(k, k)-colorable planar graph with girth 4 in Section 2, a non-
(3, 1)-colorable planar graph with girth 5 in Section 3, and a non-(2, 0)-colorable planar
graph with girth 7 in Section 4. We prove Theorem 3 in Section 5 and we prove Theorem 4
in Section 6.

Notation.
In the following, when we consider a (d1, . . . , dk)-coloring of a graph G, we color the
vertices of Vi with color di for 1 6 i 6 k: for example in a (3, 0)-coloring, we will use color
3 to color the vertices of V1 inducing a subgraph with maximum degree 3 and use color 0
to color the vertices of V2 inducing a stable set. A vertex is said to be colored ij if it is
colored i and has j neighbors colored i, that is, it has degree j in the subgraph induced
by its color. A vertex is saturated if it is colored ii, that is, if it has maximum degree
in the subgraph induced by its color. A cycle (resp. face) of length k is called a k-cycle
(resp. k-face). A k-vertex (resp. k−-vertex, k+-vertex) is a vertex of degree k (resp. at
most k, at least k). The minimum degree of a graph G is denoted by δ(G).

2 A non-(k, k)-colorable planar graph with girth 4

For every k > 0, we construct a non-(k, k)-colorable planar graph J4 with girth 4. Let
Hx,y be a copy of K2,2k+1, as depicted in Figure 2. In any (k, k)-coloring of Hx,y, the
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vertices x and y must receive the same color. We obtain J4 from a vertex u and a star S
with center v0 and k + 1 leaves v1, . . . , vk+1 by linking u to every vertex vi with a copy
Hu,vi of Hx,y. The graph J4 is not (k, k)-colorable: by the property of Hx,y, every vertex
vi should get the same color as u. This gives a monochromatic S, which is forbidden.
Notice that J4 is a planar graph with girth 4 and is 2-degenerate.

v1

v2

vk+1

u

J4

x y

x y

2k + 1

Hx,y

v0

Figure 2: A non-(k, k)-colorable planar graph with girth 4.

3 A non-(3, 1)-colorable planar graph with girth 5

We construct a non-(3, 1)-colorable planar graph J5 with girth 5. Consider the graph Hx,y

depicted in Figure 3. If x and y are colored 3 but have no neighbor colored 3, then it is

z1

z2

z3

J5

x y

x y

Hx,y

Figure 3: A non-(3, 1)-colorable planar graph with girth 5.
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not possible to extend this partial coloring to Hx,y. Now, we construct the graph Sz as
follows. Let z be a vertex and t1t2t3 be a path on three vertices. Take 21 copies Hxi,yj of
Hx,y with 1 6 i 6 7 and 1 6 j 6 3. Identify every xi with z and identify every yi with ti.
Finally, we obtain J5 from three copies Sz1 , Sz2 , and Sz3 of Sz by adding the edges z1z2
and z2z3 (Figure 3). Notice that J5 is planar with girth 5 and is 2-degenerate. Let us
show that J5 is not (3, 1)-colorable. In every (3, 1)-coloring of J5, the path z1z2z3 contains
a vertex z colored 3. In the copy of Sz corresponding to z, the path t1t2t3 contains a
vertex t colored 3. Since z (resp. t) has at most 3 neighbors colored 3, one of the seven
copies of Hx,y between z and t, does not contain a neighbor of z or t colored 3. This copy
of Hx,y is not (3, 1)-colorable, and thus J5 is not (3, 1)-colorable.

4 A non-(2, 0)-colorable planar graph with girth 7

We construct of a non-(2, 0)-colorable planar graph J7 with girth 7. Consider the graphs
Tx,y,z and S in Figure 4.

w1

w2

w6

w7

w8

a

b c d

2

0 2

20

2

2

0

2
2

2
0

? w9

w3

2

w4

w5

S

2

g f e
2

w

2

2

0

0

2

2
2 0 2

Tx,y,z

x

y

z

Figure 4: The graphs Tx,y,z and S.

If the vertices x, y, and z of Tx,y,z are colored 2 and have no neighbor colored 2, then
w is colored 22. Suppose that the vertices a, b, c, d, e, f, g of S are respectively colored 2,
0, 2, 2, 2, 2, 0, and that a has no neighbor colored 2. Using successively the property of
Tx,y,z, we have that w1, w2, and w3 must be colored 22. It follows that w4 is colored 0, w5

is colored 2, and so w6 is colored 22. Again, by the property of Tx,y,z, w7 must be colored
22. Finally, w8 must be colored 0 and there is no choice of color for w9. Hence, such a
coloring of the outer 7-cycle abcdefg cannot be extended.
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The graph Hz depicted on the left of Figure 5 is obtained as follows.
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F1

F2

F3

F4

F5

F6

F7Hz

z

z

v1

v2

v3

v4

v5

v6

v7

J7

Figure 5: The graphs Hz and J7.

We link a vertex z to every vertex of a 7-cycle v1 . . . v7 with a path of three edges.
Then we embed the graph S in every 7-face Fi (1 6 i 6 7) incident to z by identifying
the outer 7-cycle of S with the 7-cycle of Fi such that a is identified to z. Finally, the
graph J7 depicted on the right of Figure 5 is obtained from two adjacent vertices u and
v and six copies Hz1 , . . . , Hz6 of Hz by identifying z1, z2, z3 with u and z4, z5, z6 with v.
Notice that J7 is planar with has girth 7. Let us prove that J7 is not (2, 0)-colorable.

• We assume that u is colored 2 since u and v cannot be both colored 0.

• In one of the three copies of Hz attached to u, say Hz1 , u has no neighbor colored
2.

• Since a 7-cycle is not 2-colorable, the 7-cycle v1 . . . v7 of Hz1 contains a monochro-
matic edge colored 2, say v1v2.

• The coloring of the face F2 cannot be extended to the copy of S embedded in F2.

5 NP-completeness of (k, j)-colorings

Let gk,j be the largest integer g such that there exists a planar graph with girth g that
is not (k, j)-colorable. Because of large odd cycles, g0,0 is not defined. For (k, j) 6= (0, 0),
we have 4 6 gk,j 6 10 by the example in Figure 2 and the result that planar graphs with
girth at least 11 are (0, 1)-colorable [22]. We prove this equivalent form of Theorem 3:

Theorem 5. Let k and j be fixed integers such that (k, j) 6= (0, 0). It is NP-complete
to determine whether a planar graph with girth gk,j is (k, j)-colorable.
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Let us define the partial order �. Let n3(G) be the number of 3+-vertices in G. For
any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least one of the following
conditions holds:

• |V (G1)| < |V (G2)| and n3(G1) 6 n3(G2).

• n3(G1) < n3(G2).

Note that the partial order � is well-defined and is a partial linear extension of the
subgraph poset. The following lemma is useful.

Lemma 6. Let k and j be fixed integers such that (k, j) 6= (0, 0). There exists a planar
graph Gk,j with girth gk,j, minimally non-(k, j)-colorable for the subgraph order, such that
δ(Gk,j) = 2.

Proof. We have δ(Gk,j) > 2, since a non-(k, j)-colorable graph that is minimal for the
subgraph order does not contain a 1−-vertex. Supppose that for some pair (k, j), we
construct a 2-degenerate non-(k, j)-colorable planar graph with girth gk,j. Then this
graph contains a (not necessarily proper) minimally non-(k, j)-colorable subgraph with
minimum degree 2. Thus, we can prove the lemma for the following pairs (k, j) by using
Claim 2.

• Pairs (k, j) such that gk,j 6 4: We actually have gk,j = 4 by Claim 2.1.

• Pairs (k, j) such that gk,j > 6: Indeed, a planar graph with girth at least 6 is 2-
degenerate. In particular, Claim 2.3 shows that gk,0 > 6, so the lemma is proved for
all pairs (k, 0).

• Pairs (k, 1) such that 1 6 k 6 3: If gk,j > 6, then we are in a previous case.
Otherwise, we have gk,j = 5 by Claim 2.2.

The remaining pairs satisfy gk,j = 5. There are two types of remaining pairs (k, j):

• Type 1: k > 4 and j = 1.

• Type 2: 2 6 j 6 k.

Consider a planar graph G with girth 5 that is non-(k, j)-colorable and is minimal for
the order �. Suppose for contradiction that G does not contain a 2-vertex. Also, suppose
that G contains a 3-vertex a adjacent to three 4−-vertices a1, a2, and a3. For colorings of
type 1, we can extend to G a coloring of G\{a} by assigning to a the color of improperty
at least 4. For colorings of type 2, we consider the graph G′ obtained from G \ {a} by
adding three 2-vertices b1, b2, and b3 adjacent to, respectively, a2 and a3, a1 and a3, a1
and a2. Notice that G′ � G, so G′ admits a coloring c of type 2. We can extend to G the
coloring of G \ {a} induced by c as follows. If a1, a2, and a3 have the same color, then
we assign to a the other color. Otherwise, we assign to a the color that appears at least
twice among the colors of b1, b2, and b3. Now, since G does not contain a 2-vertex nor a
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3-vertex adjacent to three 4−-vertices, we have mad(G) > 10
3

. This can be seen using the
discharging procedure such that the initial charge of each vertex is its degree and every
5+-vertex gives 1

3
to each adjacent 3-vertex. The final charge of a 3-vertex is at least

3 + 1
3

= 10
3

, the final charge of a 4-vertex is 4 > 10
3

, and the final charge of a k-vertex with
k > 5 is at least k− k× 1

3
= 2k

3
> 10

3
. Now, mad(G) > 10

3
contradicts the fact that G is a

planar graph with girth 5, and this contradiction shows that G contains a 2-vertex.

We are ready to prove Theorem 5. The case of (1, 0)-coloring is proved in a stronger
form which takes into account restrictions on both the girth and the maximum degree of
the input planar graph [16].

Proof of the case (k, 0), k > 2.
We consider a graph Gk,0 as described in Lemma 6, which contains a path uxv where x is
a 2-vertex. By minimality, any (k, 0)-coloring of Gk,0\{x} is such that u and v get distinct
saturated colors. Let G be the graph obtained from Gk,0 \ {x} by adding three 2-vertices
x1, x2, and x3 to create the path ux1x2x3v. So any (k, 0)-coloring of G is such that x2 is
colored k1. To prove the NP-completeness, we reduce the (k, 0)-coloring problem to the
(1, 0)-coloring problem. Let I be a planar graph with girth g1,0. For every vertex s of I,
add (k − 1) copies of G such that the vertex x2 of each copy is adjacent to s, to obtain
the graph I ′. By construction, I ′ is (k, 0)-colorable if and only if I is (1, 0)-colorable.
Moreover, I ′ is planar, and since gk,0 6 g1,0, the girth of I ′ is gk,0.

Proof of the case (1, 1).
By Claim 2.2 and [9], g1,1 is either 5 or 6. There exist two independent proofs [17, 19] that
(1, 1)-coloring is NP-complete for triangle-free planar graphs with maximum degree 4. We
use a reduction from that problem to prove that (1, 1)-coloring is NP-complete for planar
graphs with girth g1,1. We consider a graph G1,1 as described in Lemma 6, which contains
a path uxv where x is a 2-vertex. By minimality, any (1, 1)-coloring of G1,1 \ {x} is such
that u and v get distinct saturated colors. Let G be the graph obtained from G1,1 \{x} by
adding a vertex u′ adjacent to u and a vertex v′ adjacent to v. So any (1, 1)-coloring of G
is such that u′ and v′ get distinct colors and u′ (resp. v′) has a color distinct from the color
of its (unique) neighbor. We construct the graph Ea,b from two vertices a and b and two
copies of G such that a is adjacent to the vertices u′ of both copies of G and b is adjacent
to the vertices v′ of both copies of G. There exists a (1, 1)-coloring of Ea,b such that a
and b have distinct colors and neither a nor b is saturated. There exists a (1, 1)-coloring
of Ea,b such that a and b have the same color. Moreover, in every (1, 1)-coloring of Ea,b

such that a and b have the same color, both a and b are saturated.
The reduction is as follows. Let I be a planar graph. For every edge (p, q) of I,

replace (p, q) by a copy of Ea,b such that a is identified with p and b is identified with q,
to obtain the graph I ′. By the properties of Ea,b, I is (1, 1)-colorable if and only if I ′ is
(1, 1)-colorable. Moreover, I ′ is planar with girth g1,1.

Proof of the case (k, j).
We consider a graph Gk,j as described in Lemma 6, which contains a path uxv where x
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is a 2-vertex. By minimality, any (k, j)-coloring of Gk,j \ {x} is such that u and v get
distinct saturated colors. Let G be the graph obtained from Gk,j \{x} by adding a vertex
u′ adjacent to u and a vertex v′ adjacent to v. So any (k, j)-coloring of G is such that
u′ and v′ get distinct colors and u′ (resp. v′) has a color distinct from the color of its
(unique) neighbor. Let t = min(k − 1, j). To prove the NP-completeness, we reduce the
(k, j)-coloring to the (k− t, j − t)-coloring. Thus the case (k, k) reduces to the case (1, 1)
which is NP-complete, and the case (k, j) with j < k reduces to the case (k − j, 0) which
is NP-complete. The reduction is as follows. Let I be a planar graph with girth gk−t,j−t.
For every vertex s of I, add t copies of G such that the vertices u′ and v′ of each copy is
adjacent to s, to obtain the graph I ′. By construction, I is (k − t, j − t)-colorable if and
only if I ′ is (k, j)-colorable. Moreover, I ′ is planar, and since gk,j 6 gk−t,j−t, the girth of
I ′ is gk,j.

6 NP-completeness of (k, j, i)-colorings

In this section, we prove Theorem 4 using a reduction from 3-colorability, i.e. (0, 0, 0)-
colorability, which is NP-complete for planar graphs [18].

Let E be the graph depicted in Fig 6. The graph E ′ is obtained from 2k − 1 copies
of E by identifying the edge ab of all copies. Take 4 copies E ′1, E

′
2, E

′
3, and E ′4 of E ′ and

consider a triangle T formed by the vertices y0, x0, x1 in one copy of E in E ′1. The graph
E ′′ is obtained by identifying the edge y0x0 (resp. y0x1, x0x1) of T with the edge ab of
E ′2 (resp. E ′3, E

′
4). The edge ab of E ′1 is then said to be the edge ab of E ′′.

Lemma 7.

1. E ′′ admits a (0, 0, 0)-coloring.

2. E ′ does not admit a (k, k, 1)-coloring such that a and b have a same color of im-
property k.

3. E ′′ does not admit a (k, k, 1)-coloring such that a and b have the same color.

Proof.

1. The following (0, 0, 0)-coloring c of E is unique up to permutation of colors: c(a) =
c(xi) = 1 for even i, c(b) = c(yi) = 2 for even i, and c(xi) = c(yi) = 3 for odd i.
This coloring can be extended into a (0, 0, 0)-coloring of E ′ and E ′′.

2. Let k1, k2, and 1 denote the colors in a potential (k, k, 1)-coloring c of E ′ such that
c(a) = c(b) = k1. By the pigeon-hole principle, one of the 2k − 1 copies of E in E ′,
say E∗, is such that a and b are the only vertices with color k1. So, one of the vertices
x0, y0, and x3k+3+t in E∗ must get color k2 since they cannot all get color 1. We
thus have a vertex v1 ∈ {a, b} colored k1 and vertex v2 ∈ {x0, y0, x3k+3+t} colored k2
in E∗ which both dominate a path on at least 3k+3 vertices. This path contains no
vertex colored k1 since it is in E∗. Moreover, it contains at most k vertices colored
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a b

x0

x1

y0

y−3k−3

x3k+3+t

y3k+3

Figure 6: The graph E. We take t = 0 if k is odd and t = 1 if k is even, so that 3k+ 3 + t
is even.

k2. On the other hand, every set of 3 consecutive vertices in this path contains at
least one vertex colored k2, so it contains at least 3k+3

3
= k + 1 vertices colored k2.

This contradiction shows that E ′ does not admit a (k, k, 1)-coloring such that a and
b have a same color of improperty k.

3. By the previous item and by construction of E ′′, if E ′′ admits a (k, k, 1)-coloring c
such that c(a) = c(b), then c(a) = c(b) = 1. We thus have that {c(y0), c(x0), c(x1)} ⊂
{k1, k2}. This implies that at least one edge of the triangle T is monochromatic with
a color of improperty k. By the previous item, the coloring c cannot be extended
to the copy of E ′ attached to that monochromatic edge. This shows that E ′′ does
not admit a (k, k, 1)-coloring such that a and b have the same color.

For every fixed integer k, we give a polynomial construction that transforms every
planar graph G into a planar graph G′ such that G′ is (0, 0, 0)-colorable if G is (0, 0, 0)-
colorable and G′ is not (k, k, 1)-colorable otherwise. The graph G′ is obtained from G by
identifying every edge of G with the edge ab of a copy of E ′′. If G is (0, 0, 0)-colorable,
then this coloring can be extended into a (0, 0, 0)-coloring of G′ by Lemma 7.1. If G is
not (0, 0, 0)-colorable, then every (k, k, 1)-coloring G contains a monochromatic edge uv,
and then the copy of E ′′ corresponding to uv (and thus G′) does not admit a (k, k, 1)-
coloring by Lemma 7.3. The instance graph G in the proof that (0, 0, 0)-coloring is
NP-complete [18] is 3-degenerate. Then by construction, G′ is also 3-degenerate.
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