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A graph G is (d 1 , . . . , d l )-colorable if the vertex set of G can be partitioned into subsets V 1 , . . . , V l such that the graph G[V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i l. In this paper, we focus on complexity aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed integers k, j, g with (k, j) = (0, 0) and g 3, either every planar graph with girth at least g is (k, j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k, j)-colorable. Also, for every fixed integer k, it is NP-complete to determine whether a planar graph that is either (0, 0, 0)-colorable or non-(k, k, 1)-colorable is (0, 0, 0)-colorable. Additionally, we exhibit non-(3, 1)colorable planar graphs with girth 5 and non-(2, 0)-colorable planar graphs with girth 7.

Introduction

A graph G is (d 1 , . . . , d k )-colorable if the vertex set of G can be partitioned into subsets V 1 , . . . , V k such that the graph G[V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k. This notion generalizes those of proper k-coloring (when

d 1 = • • • = d k = 0) and d-improper k-coloring (when d 1 = • • • = d k = d 1).
Planar graphs are known to be (0, 0, 0, 0)-colorable (Appel and Haken [START_REF] Appel | Every planar map is four colorable[END_REF][START_REF] Appel | Every planar map is four colorable[END_REF]) and (2, 2, 2)-colorable (Cowen, Cowen, and Woodall [START_REF] Cowen | Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency[END_REF]). The (2, 2, 2)-colorability is optimal (for any integer k, there exist non-(k, k, 1)-colorable planar graphs) and holds in the choosability case (Eaton and Hull [15] or Škrekovski [START_REF] Škrekovski | List improper coloring of planar graphs[END_REF]). Improper colorings have then been considered for planar graphs with large girth or graphs with low maximum average degree. We recall that the girth of a graph G, denoted by g(G), is the length of a shortest cycle in G, and the maximum average degree of a graph G, denoted by mad(G), is the maximum of the average degrees of all subgraphs of G, i.e. mad(G) = max {2|E(H)|/|V (H)| , H ⊆ G}.

(1, 0)-coloring. Glebov and Zambalaeva [START_REF] Glebov | Path partitions of planar graphs[END_REF] proved that every planar graph with girth at least 16 is (1, 0)-colorable. This was then strengthened by Borodin and Ivanova [START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF] who proved that every graph G with mad(G) < 7 3 is (1, 0)-colorable. This implies that every planar graph G with girth at least 14 is (1, 0)-colorable. Borodin and Kostochka [START_REF] Borodin | Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one[END_REF] then proved that every graph G with mad(G) [START_REF] Choi | Planar graphs with girth at least 5 are (3,5)-colorable[END_REF] 5 is (1, 0)-colorable. In particular, it follows that every planar graph with girth at least 12 is (1, 0)-colorable. On the other hand, they constructed graphs G with mad(G) arbitrarily close (from above) to 12 5 that are not (1, 0)-colorable; hence their upper bound on the maximum average degree is best possible. The last result was strengthened for triangle-free graphs: Kim, Kostochka, and Zhu [START_REF] Kim | Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs[END_REF] proved that triangle-free graphs G satisfying 11|V (G)| -9|E(G)| -4 are (1, 0)-colorable. This implies that planar graphs with girth at least 11 are (1, 0)-colorable. On the other hand, Esperet, Montassier, Ochem, and Pinlou [START_REF] Esperet | A complexity dichotomy for the coloring of sparse graphs[END_REF] proved that determining whether a planar graph with girth 9 is (1, 0)-colorable is NP-complete. To our knowledge, the question whether all planar graphs with girth at least 10 are (1, 0)-colorable is still open.

(k, 0)-coloring with k 2. Borodin, Ivanova, Montassier, Ochem, and Raspaud [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] proved that every graph G with mad(G) < 3k+4 k+2 is (k, 0)-colorable. The proof in [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] extends the one in [START_REF] Borodin | Near proper 2-coloring the vertices of sparse graphs[END_REF] but does not work for k = 1. Moreover, they exhibited a non-(k, 0)-colorable planar graph with girth 6. Finally, Borodin and Kostochka [START_REF] Borodin | Defective 2-coloring of sparse graphs[END_REF] proved that for k 2, every graph G with mad(G) 3k+2 k+1 is (k, 0)-colorable. This result is tight in terms of maximum average degree.

(k, 1)-coloring. Recently, Borodin, Kostochka, and Yancey [START_REF] Borodin | On 1-improper 2-coloring of sparse graphs[END_REF] proved that every graph with mad(G) 14 5 is (1, 1)-colorable, and the restriction on mad(G) is sharp. In [START_REF] Borodin | k, 1)-coloring of sparse graphs[END_REF], it is proven that every graph G with mad(G) < 10k+22 3k+9 is (k, 1)-colorable for k 2.

(k, j)-coloring. A first step was made by Havet and Sereni [START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF] who showed that, for every k 0, every graph G with mad(G)

< 4k+4 k+2 is (k, k)-colorable (in fact (k, k)-choosable).
More generally, they studied k-improper l-choosability and proved that every graph G with mad(G) < l+ lk l+k (l 2, k 0) is k-improper l-choosable; this implies that such graphs are (k, . . . , k)-colorable (where the number of partite sets is l). Borodin, Ivanova, Montassier, and Raspaud [START_REF] Borodin | k, j)-coloring of sparse graphs[END_REF] gave some sufficient conditions of (k, j)-colorability depending on the density of the graphs using linear programming. Finally, Borodin and Kostochka [START_REF] Borodin | Defective 2-coloring of sparse graphs[END_REF] solved the problem for a wide range of j and k: let j 0 and k 2j + 2; every graph

G with mad(G) 2(2 -k+2 (j+2)(k+1) ) is (k, j)-colorable.
This result is tight in terms of the maximum average degree and improves some results in [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF][START_REF] Borodin | k, 1)-coloring of sparse graphs[END_REF][START_REF] Borodin | k, j)-coloring of sparse graphs[END_REF].
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Using the fact that every planar graph G with girth g(G) has mad(G) < 2g(G)/(g(G)-2), the previous results give results for planar graphs. They are summarized in Table 1, which also shows the recent results that planar graphs with girth 5 are (5, 3)-colorable (Choi and Raspaud [START_REF] Choi | Planar graphs with girth at least 5 are (3,5)-colorable[END_REF]) and (10, 1)-colorable (Choi, Choi, Jeong, and Suh [START_REF] Choi | 1, k)-coloring of graphs with girth at least 5 on a surface[END_REF]). (1, 0) [START_REF] Kim | Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs[END_REF] Table 1: The girth and the (k, j)-colorability of planar graphs. The symbol "×" means that there exist non-(k, j)-colorable planar graphs for every k.

girth (k, 0) (k, 1) (k, 2) (k, 3) (k, 4) 3,4 × × × × × 5 × ( 10 
From the previous discussion, the following questions are natural:

Question 1.

1. Are planar graphs with girth 10 (1, 0)-colorable?

2. Are planar graphs with girth 7 (3, 0)-colorable?

3. Are planar graphs with girth 6 (1, 1)-colorable?

4. Are planar graphs with girth 5 (4, 1)-colorable?

5. Are planar graphs with girth 5 (2, 2)-colorable?

(d 1 , . . . , d k )-coloring. Finally we would like to mention two studies. Chang, Havet, Montassier, and Raspaud [START_REF] Chang | Steinberg's Conjecture and near-colorings[END_REF] gave some approximation results to Steinberg's Conjecture using (k, j, i)-colorings. Dorbec, Kaiser, Montassier, and Raspaud [START_REF] Dorbec | Limits of near-coloring of sparse graphs[END_REF] studied the particular case of (d 1 , . . . , d k )coloring where the value of each d i (1 i k) is either 0 or some value d, making the link between (d, 0)-coloring [START_REF] Borodin | Defective 2-coloring of sparse graphs[END_REF] and (d, . . . , d)-coloring [START_REF] Havet | Improper choosability of graphs and maximum average degree[END_REF].

The aim of this paper is to provide complexity results on the subject and to obtain non-colorable planar graphs showing that some above-mentioned results are optimal. Claim 2. There exist 2-degenerate planar graphs that are:

1. non-(k, k)-colorable with girth 4, for every k 0, Claim 2.4 shows that the (2, 0)-colorability of planar graphs with girth at least 8 [START_REF] Borodin | Defective 2-coloring of sparse graphs[END_REF] is a tight result. Claim 2.3 has been obtained in [START_REF] Borodin | Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k[END_REF] and the corresponding graph is depicted in Figure 1. Theorem 3. Let k, j, and g be fixed integers such that (k, j) = (0, 0) and g 3. Either every planar graph with girth at least g is (k, j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k, j)-colorable.

2k + 1 2k + 1 2k + 1 2k + 1
Theorem 4. Let k be a fixed integer. It is NP-complete to determine whether a 3degenerate planar graph that is either (0, 0, 0)-colorable or non-(k, k, 1)-colorable is (0, 0, 0)colorable.

We construct a non-(k, k)-colorable planar graph with girth 4 in Section 2, a non-(3, 1)-colorable planar graph with girth 5 in Section 3, and a non-(2, 0)-colorable planar graph with girth 7 in Section 4. We prove Theorem 3 in Section 5 and we prove Theorem 4 in Section 6.

Notation.

In the following, when we consider a (d 1 , . . . , d k )-coloring of a graph G, we color the vertices of V i with color d i for 1 i k: for example in a (3, 0)-coloring, we will use color 3 to color the vertices of V 1 inducing a subgraph with maximum degree 3 and use color 0 to color the vertices of V 2 inducing a stable set. A vertex is said to be colored i j if it is colored i and has j neighbors colored i, that is, it has degree j in the subgraph induced by its color. A vertex is saturated if it is colored i i , that is, if it has maximum degree in the subgraph induced by its color. A cycle (resp. face

) of length k is called a k-cycle (resp. k-face). A k-vertex (resp. k --vertex, k + -vertex) is a vertex of degree k (resp. at most k, at least k).
The minimum degree of a graph G is denoted by δ(G).

A non-(k, k)-colorable planar graph with girth 4

For every k 0, we construct a non-(k, k)-colorable planar graph J 4 with girth 4. Let H x,y be a copy of K 2,2k+1 , as depicted in Figure 2. In any (k, k)-coloring of H x,y , the the electronic journal of combinatorics 22(1) (2015), #P1.57 vertices x and y must receive the same color. We obtain J 4 from a vertex u and a star S with center v 0 and k + 1 leaves v 1 , . . . , v k+1 by linking u to every vertex v i with a copy H u,v i of H x,y . The graph J 4 is not (k, k)-colorable: by the property of H x,y , every vertex v i should get the same color as u. This gives a monochromatic S, which is forbidden. Notice that J 4 is a planar graph with girth 4 and is 2-degenerate. 

A non-(3, 1)-colorable planar graph with girth 5

We construct a non-(3, 1)-colorable planar graph J 5 with girth 5. Consider the graph H x,y depicted in Figure 3. If x and y are colored 3 but have no neighbor colored 3, then it is

z 1 z 2 z 3 J 5
x y

x y H x,y not possible to extend this partial coloring to H x,y . Now, we construct the graph S z as follows. Let z be a vertex and t 1 t 2 t 3 be a path on three vertices. Take 21 copies H x i ,y j of H x,y with 1 i 7 and 1 j 3. Identify every x i with z and identify every y i with t i . Finally, we obtain J 5 from three copies S z 1 , S z 2 , and S z 3 of S z by adding the edges z 1 z 2 and z 2 z 3 (Figure 3). Notice that J 5 is planar with girth 5 and is 2-degenerate. Let us show that J 5 is not (3, 1)-colorable. In every (3, 1)-coloring of J 5 , the path z 1 z 2 z 3 contains a vertex z colored 3. In the copy of S z corresponding to z, the path t 1 t 2 t 3 contains a vertex t colored 3. Since z (resp. t) has at most 3 neighbors colored 3, one of the seven copies of H x,y between z and t, does not contain a neighbor of z or t colored 3. This copy of H x,y is not (3, 1)-colorable, and thus J 5 is not (3, 1)-colorable.

A non-(2, 0)-colorable planar graph with girth 7

We construct of a non-(2, 0)-colorable planar graph J 7 with girth 7. Consider the graphs T x,y,z and S in Figure 4. If the vertices x, y, and z of T x,y,z are colored 2 and have no neighbor colored 2, then w is colored 2 2 . Suppose that the vertices a, b, c, d, e, f, g of S are respectively colored 2, 0, 2, 2, 2, 2, 0, and that a has no neighbor colored 2. Using successively the property of T x,y,z , we have that w 1 , w 2 , and w 3 must be colored 2 2 . It follows that w 4 is colored 0, w 5 is colored 2, and so w 6 is colored 2 2 . Again, by the property of T x,y,z , w 7 must be colored 2 2 . Finally, w 8 must be colored 0 and there is no choice of color for w 9 . Hence, such a coloring of the outer 7-cycle abcdef g cannot be extended.

the electronic journal of combinatorics 22(1) (2015), #P1.57 We link a vertex z to every vertex of a 7-cycle v 1 . . . v 7 with a path of three edges. Then we embed the graph S in every 7-face F i (1 i 7) incident to z by identifying the outer 7-cycle of S with the 7-cycle of F i such that a is identified to z. Finally, the graph J 7 depicted on the right of Figure 5 is obtained from two adjacent vertices u and v and six copies H z 1 , . . . , H z 6 of H z by identifying z 1 , z 2 , z 3 with u and z 4 , z 5 , z 6 with v. Notice that J 7 is planar with has girth 7. Let us prove that J 7 is not (2, 0)-colorable.

F 1 F 2 F 3 F 4 F 5 F 6 F 7 H z z z v 1 v 2 v 3 v 4 v 5 v 6 v 7 J 7
• We assume that u is colored 2 since u and v cannot be both colored 0.

• In one of the three copies of H z attached to u, say H z 1 , u has no neighbor colored 2.

• Since a 7-cycle is not 2-colorable, the 7-cycle v 1 . . . v 7 of H z 1 contains a monochromatic edge colored 2, say v 1 v 2 .

• The coloring of the face F 2 cannot be extended to the copy of S embedded in F 2 .

NP-completeness of (k, j)-colorings

Let g k,j be the largest integer g such that there exists a planar graph with girth g that is not (k, j)-colorable. Because of large odd cycles, g 0,0 is not defined. For (k, j) = (0, 0), we have 4 g k,j 10 by the example in Figure 2 and the result that planar graphs with girth at least 11 are (0, 1)-colorable [START_REF] Kim | Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs[END_REF]. We prove this equivalent form of Theorem 3:

Theorem 5.
Let k and j be fixed integers such that (k, j) = (0, 0). It is NP-complete to determine whether a planar graph with girth g k,j is (k, j)-colorable.
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Let us define the partial order . Let n 3 (G) be the number of 3 + -vertices in G. For any two graphs G 1 and G 2 , we have G 1 ≺ G 2 if and only if at least one of the following conditions holds:

• |V (G 1 )| < |V (G 2 )| and n 3 (G 1 ) n 3 (G 2 ). • n 3 (G 1 ) < n 3 (G 2 ).
Note that the partial order is well-defined and is a partial linear extension of the subgraph poset. The following lemma is useful. Lemma 6. Let k and j be fixed integers such that (k, j) = (0, 0). There exists a planar graph G k,j with girth g k,j , minimally non-(k, j)-colorable for the subgraph order, such that δ(G k,j ) = 2.

Proof. We have δ(G k,j ) 2, since a non-(k, j)-colorable graph that is minimal for the subgraph order does not contain a 1 --vertex. Supppose that for some pair (k, j), we construct a 2-degenerate non-(k, j)-colorable planar graph with girth g k,j . Then this graph contains a (not necessarily proper) minimally non-(k, j)-colorable subgraph with minimum degree 2. Thus, we can prove the lemma for the following pairs (k, j) by using Claim 2.

• Pairs (k, j) such that g k,j 4: We actually have g k,j = 4 by Claim 2.1.

• Pairs (k, j) such that g k,j

6: Indeed, a planar graph with girth at least 6 is 2degenerate. In particular, Claim 2.3 shows that g k,0 6, so the lemma is proved for all pairs (k, 0).

• Pairs (k, 1) such that 1 k 3: If g k,j 6, then we are in a previous case. Otherwise, we have g k,j = 5 by Claim 2.2.

The remaining pairs satisfy g k,j = 5. There are two types of remaining pairs (k, j):

• Type 1: k 4 and j = 1.

• Type 2: 2 j k.

Consider a planar graph G with girth 5 that is non-(k, j)-colorable and is minimal for the order . Suppose for contradiction that G does not contain a 2-vertex. Also, suppose that G contains a 3-vertex a adjacent to three 4 --vertices a 1 , a 2 , and a 3 . For colorings of type 1, we can extend to G a coloring of G \ {a} by assigning to a the color of improperty at least 4. For colorings of type 2, we consider the graph G obtained from G \ {a} by adding three 2-vertices b 1 , b 2 , and b 3 adjacent to, respectively, a 2 and a 3 , a 1 and a 3 , a 1 and a 2 . Notice that G G, so G admits a coloring c of type 2. We can extend to G the coloring of G \ {a} induced by c as follows. If a 1 , a 2 , and a 3 have the same color, then we assign to a the other color. Otherwise, we assign to a the color that appears at least twice among the colors of b 1 , b 2 , and b 3 . Now, since G does not contain a 2-vertex nor a the electronic journal of combinatorics 22(1) (2015), #P1.57 3-vertex adjacent to three 4 --vertices, we have mad(G) 10 3 . This can be seen using the discharging procedure such that the initial charge of each vertex is its degree and every 5 + -vertex gives 1 3 to each adjacent 3-vertex. The final charge of a 3-vertex is at least 3 + 1 3 = 10 3 , the final charge of a 4-vertex is 4 > 10 3 , and the final charge of a k-vertex with k 5 is at least kk × 1 3 = 2k 3 10 3 . Now, mad(G) 10 3 contradicts the fact that G is a planar graph with girth 5, and this contradiction shows that G contains a 2-vertex.

We are ready to prove Theorem 5. The case of (1, 0)-coloring is proved in a stronger form which takes into account restrictions on both the girth and the maximum degree of the input planar graph [START_REF] Esperet | A complexity dichotomy for the coloring of sparse graphs[END_REF].

Proof of the case (k, 0), k 2. We consider a graph G k,0 as described in Lemma 6, which contains a path uxv where x is a 2-vertex. By minimality, any (k, 0)-coloring of G k,0 \{x} is such that u and v get distinct saturated colors. Let G be the graph obtained from G k,0 \ {x} by adding three 2-vertices x 1 , x 2 , and x 3 to create the path ux 1 x 2 x 3 v. So any (k, 0)-coloring of G is such that x 2 is colored k 1 . To prove the NP-completeness, we reduce the (k, 0)-coloring problem to the (1, 0)-coloring problem. Let I be a planar graph with girth g 1,0 . For every vertex s of I, add (k -1) copies of G such that the vertex x 2 of each copy is adjacent to s, to obtain the graph I . By construction, I is (k, 0)-colorable if and only if I is (1, 0)-colorable. Moreover, I is planar, and since g k,0 g 1,0 , the girth of I is g k,0 .

Proof of the case (1, 1). By Claim 2.2 and [9], g 1,1 is either 5 or 6. There exist two independent proofs [START_REF] Fiala | Graph subcolorings: complexity and algorithms[END_REF][START_REF] Gimbel | Subcolorings and the subchromatic number of a graph[END_REF] that (1, 1)-coloring is NP-complete for triangle-free planar graphs with maximum degree 4. We use a reduction from that problem to prove that (1, 1)-coloring is NP-complete for planar graphs with girth g 1,1 . We consider a graph G 1,1 as described in Lemma 6, which contains a path uxv where x is a 2-vertex. By minimality, any (1, 1)-coloring of G 1,1 \ {x} is such that u and v get distinct saturated colors. Let G be the graph obtained from G 1,1 \ {x} by adding a vertex u adjacent to u and a vertex v adjacent to v. So any (1, 1)-coloring of G is such that u and v get distinct colors and u (resp. v ) has a color distinct from the color of its (unique) neighbor. We construct the graph E a,b from two vertices a and b and two copies of G such that a is adjacent to the vertices u of both copies of G and b is adjacent to the vertices v of both copies of G. There exists a (1, 1)-coloring of E a,b such that a and b have distinct colors and neither a nor b is saturated. There exists a (1, 1)-coloring of E a,b such that a and b have the same color. Moreover, in every (1, 1)-coloring of E a,b such that a and b have the same color, both a and b are saturated.

The reduction is as follows. Let I be a planar graph. For every edge (p, q) of I, replace (p, q) by a copy of E a,b such that a is identified with p and b is identified with q, to obtain the graph I . By the properties of E a,b , I is (1, 1)-colorable if and only if I is (1, 1)-colorable. Moreover, I is planar with girth g 1,1 .

Proof of the case (k, j). We consider a graph G k,j as described in Lemma 6, which contains a path uxv where x the electronic journal of combinatorics 22(1) (2015), #P1.57 is a 2-vertex. By minimality, any (k, j)-coloring of G k,j \ {x} is such that u and v get distinct saturated colors. Let G be the graph obtained from G k,j \ {x} by adding a vertex u adjacent to u and a vertex v adjacent to v. So any (k, j)-coloring of G is such that u and v get distinct colors and u (resp. v ) has a color distinct from the color of its (unique) neighbor. Let t = min(k -1, j). To prove the NP-completeness, we reduce the (k, j)-coloring to the (kt, jt)-coloring. Thus the case (k, k) reduces to the case (1, 1) which is NP-complete, and the case (k, j) with j < k reduces to the case (kj, 0) which is NP-complete. The reduction is as follows. Let I be a planar graph with girth g k-t,j-t . For every vertex s of I, add t copies of G such that the vertices u and v of each copy is adjacent to s, to obtain the graph I . By construction, I is (kt, jt)-colorable if and only if I is (k, j)-colorable. Moreover, I is planar, and since g k,j g k-t,j-t , the girth of I is g k,j .

NP-completeness of (k, j, i)-colorings

In this section, we prove Theorem 4 using a reduction from 3-colorability, i.e. (0, 0, 0)colorability, which is NP-complete for planar graphs [START_REF] Garey | Some simplified NP-complete graph problems[END_REF].

Let E be the graph depicted in Fig 6 . The graph E is obtained from 2k -1 copies of E by identifying the edge ab of all copies. Take 4 copies E 1 , E 2 , E 3 , and E 4 of E and consider a triangle T formed by the vertices y 0 , x 0 , x 1 in one copy of E in E 1 . The graph E is obtained by identifying the edge y 0 x 0 (resp. y 0 x 1 , x 0 x 1 ) of T with the edge ab of E 2 (resp. E 3 , E 4 ). The edge ab of E 1 is then said to be the edge ab of E . Lemma 7.

1. E admits a (0, 0, 0)-coloring.

2. E does not admit a (k, k, 1)-coloring such that a and b have a same color of improperty k.

3. E does not admit a (k, k, 1)-coloring such that a and b have the same color.

Proof.

1. The following (0, 0, 0)-coloring c of E is unique up to permutation of colors: c(a) = c(x i ) = 1 for even i, c(b) = c(y i ) = 2 for even i, and c(x i ) = c(y i ) = 3 for odd i. This coloring can be extended into a (0, 0, 0)-coloring of E and E . x 3k+3+t y 3k+3

Figure 6: The graph E. We take t = 0 if k is odd and t = 1 if k is even, so that 3k + 3 + t is even. We thus have that {c(y 0 ), c(x 0 ), c(x 1 )} ⊂ {k 1 , k 2 }. This implies that at least one edge of the triangle T is monochromatic with a color of improperty k. By the previous item, the coloring c cannot be extended to the copy of E attached to that monochromatic edge. This shows that E does not admit a (k, k, 1)-coloring such that a and b have the same color.

For every fixed integer k, we give a polynomial construction that transforms every planar graph G into a planar graph G such that G is (0, 0, 0)-colorable if G is (0, 0, 0)colorable and G is not (k, k, 1)-colorable otherwise. The graph G is obtained from G by identifying every edge of G with the edge ab of a copy of E . If G is (0, 0, 0)-colorable, then this coloring can be extended into a (0, 0, 0)-coloring of G by Lemma 7.1. If G is not (0, 0, 0)-colorable, then every (k, k, 1)-coloring G contains a monochromatic edge uv, and then the copy of E corresponding to uv (and thus G ) does not admit a (k, k, 1)coloring by Lemma 7.3. The instance graph G in the proof that (0, 0, 0)-coloring is NP-complete [START_REF] Garey | Some simplified NP-complete graph problems[END_REF] is 3-degenerate. Then by construction, G is also 3-degenerate.
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2 .

 2 non-(3, 1)-colorable with girth 5, 3. non-(k, 0)-colorable with girth 6, the electronic journal of combinatorics 22(1) (2015), #P1.57 4. non-(2, 0)-colorable with girth 7.

Figure 1 :

 1 Figure 1: A non-(k, 0)-colorable planar graph with girth 6 [4].

Figure 2 :

 2 Figure 2: A non-(k, k)-colorable planar graph with girth 4.

Figure 3 :

 3 Figure 3: A non-(3, 1)-colorable planar graph with girth 5.

Figure 4 :

 4 Figure 4: graphs T x,y,z and S.

Figure 5 :

 5 Figure 5: The graphs H z and J 7 .

2. Let k 1 ,

 1 k 2 , and 1 denote the colors in a potential (k, k, 1)-coloring c of E such that c(a) = c(b) = k 1 . By the pigeon-hole principle, one of the 2k -1 copies of E in E , say E * , is such that a and b are the only vertices with color k 1 . So, one of the vertices x 0 , y 0 , and x 3k+3+t in E * must get color k 2 since they cannot all get color 1. We thus have a vertex v 1 ∈ {a, b} colored k 1 and vertex v 2 ∈ {x 0 , y 0 , x 3k+3+t } colored k 2 in E * which both dominate a path on at least 3k + 3 vertices. This path contains no vertex colored k 1 since it is in E * . Moreover, it contains at most k vertices colored the electronic journal of combinatorics 22(1) (2015), #P1.57

k 2 . 3 = k + 1 vertices colored k 2 .

 232 On the other hand, every set of 3 consecutive vertices in this path contains at least one vertex colored k 2 , so it contains at least 3k+3 This contradiction shows that E does not admit a (k, k, 1)-coloring such that a and b have a same color of improperty k.

3 .

 3 By the previous item and by construction of E , if E admits a (k, k, 1)-coloring c such that c(a) = c(b), then c(a) = c(b) = 1.
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