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Abstract. Multiple interval graphs are variants of interval graphs where instead of a single
interval, each vertex is assigned a set of intervals on the real line. We study the complexity of the
MAXIMUM CLIQUE problem in several classes of multiple interval graphs. The MAXIMUM
CLIQUE problem, or the problem of finding the size of the maximum clique, is known to
be NP-complete for t-interval graphs when t ≥ 3 and polynomial-time solvable when t = 1.
The problem is also known to be NP-complete in t-track graphs when t ≥ 4 and polynomial-
time solvable when t ≤ 2. We show that MAXIMUM CLIQUE is already NP-complete for
unit 2-interval graphs and unit 3-track graphs. Further, we show that the problem is APX-
complete for 2-interval graphs, 3-track graphs, unit 3-interval graphs and unit 4-track graphs.
We also introduce two new classes of graphs called t-circular interval graphs and t-circular
track graphs and study the complexity of the MAXIMUM CLIQUE problem in them. On
the positive side, we present a polynomial time t-approximation algorithm for WEIGHTED
MAXIMUM CLIQUE on t-interval graphs, improving earlier work with approximation ratio
4t.

1 Introduction

Given a family of sets F , a graph G with vertex set V (G) and edge set E(G) is said to be an
“intersection graph of sets from F” if ∃f : V (G) → F such that for distinct u, v ∈ V (G), uv ∈
E(G) ⇔ f(u) ∩ f(v) 6= ∅. When F is the set of all closed intervals on the real line, it defines the
well-known class of interval graphs. A t-interval is the union of t intervals on the real line. When F
is the set of all t-intervals, it defines the class of graphs called t-interval graphs. This class was first
defined and studied by Trotter and Harary [24]. Given t parallel lines (or tracks), if each element of
F is the union of t intervals on different lines, one defines the class of t-track graphs. It is easy to
see that this class forms a subclass of t-interval graphs.

These classes of graphs received a lot of attention, for both their theoretical simplicity and their
use in various fields like Scheduling [3, 12] or Computational Biology [2, 8]. West and Shmoys [26]
showed that recognizing t-interval graphs for t ≥ 2 is NP-complete.

Given a circle, the intersection graphs of arcs of this circle forms the class of circular arc graphs.
We introduce similar generalizations of circular arc graphs. If G has an intersection representation
using t arcs on a circle per vertex, then G is called a t-circular interval graph. If instead, G has an
intersection representation using t circles and exactly one arc on each circle corresponding to each
vertex of G, then G is called a t-circular track graph. Note that in this case, the class of t-circular
track graphs may not be a subclass of the class of t-circular interval graphs. One can see after cutting
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the circles, that t-circular interval graphs and t-circular track graphs are respectively contained in
(t+ 1)- and (2t)-interval graphs.

For all these intersection families of graphs, one can define a subclass where all the intervals or
arcs have the same length. We respectively call those subclasses unit t-interval, unit t-track, unit
t-circular interval, and unit t-circular track graphs.

MAXIMUM WEIGHTED CLIQUE is the problem of deciding, given a graph G with weighted
vertices and an integer k, whether G has a clique of weight k. The case where all the weights are
1 is MAXIMUM CLIQUE. Zuckerman [27] showed that unless P=NP, there is no polynomial time
algorithm that approximates the maximum clique within a factor O(n1−ǫ), for any ǫ > 0. MAX-
IMUM CLIQUE has been studied for many intersection graphs families. It has been shown to be
polynomial for interval filament graphs [11], a graph class including circle graphs, chordal graphs
and co-comparability graphs. It has been shown to be NP-complete for B1-VPG graphs [19] (inter-
section of strings with one bend and axis-parallel parts [1]), and for segment graphs [6] (answering
a conjecture of Kratochv́ıl and Nešetřil [18]).

MAXIMUMCLIQUE is polynomial for interval graphs (folklore) and for circular interval graphs [10,
13]. However, Butman et al. [5] showed that MAXIMUM CLIQUE is NP-complete for t-interval
graphs when t ≥ 3. For t-track graphs, MAXIMUM CLIQUE is polynomial-time solvable when

t ≤ 2 and NP-complete when t ≥ 4 [17]. Butman et al. also showed a polynomial-time t2−t+1
2 fac-

tor approximation algorithm for MAXIMUM CLIQUE in t-interval graphs. Koenig [17] observed

that a similar approximation algorithm with a slightly better approximation ratio t2−t
2 exists for

MAXIMUM CLIQUE in t-track graphs. Butman et al. asked the following questions:

– Is MAXIMUM CLIQUE NP-hard in 2-interval graphs?
– Is it APX-hard in t-interval graphs for any constant t ≥ 2?

– Can an algorithm with a better approximation ratio than t2−t+1
2 be achieved for t-interval

graphs?

We answer all of these questions in the affirmative. As far as the third question is concerned, Kam-
mer, Tholey and Voepel [16] have already presented an improved polynomial-time approximation
algorithm that achieves an approximation ratio of 4t for t-interval graphs. In this paper (Section 3),
we present a linear time 2t-approximation algorithm, and a polynomial time t-approximation al-
gorithm for MAXIMUM WEIGHTED CLIQUE in t-interval graphs (and thus in t-track graphs),
t-circular interval graphs, and t-circular track graphs. Then we show in Section 4 that MAXIMUM
CLIQUE is APX-complete for many of these families (including 2-interval graphs). In Section 5, we
show that for some of the remaining classes (including unit 2-interval graphs) MAXIMUM CLIQUE
is NP-complete. In Section 6 we give some APX-hardness results for several problems restricted
to the complement class of t-interval graphs. Finally, we conclude with some remarks and open
questions.

2 Preliminaries

Consider a circle C of length l with a distinguished point O. The coordinate of a point p ∈ C is
the length of the arc going clockwise from O to p. Given two reals p and q, [p, q] is the arc of C
going clockwise from the point with coordinate p to the one with coordinate q. In the following,
coordinates are understood modulo l.
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A representation of a t-interval graph G is a set of t functions, I1, . . . , It, assigning each vertex
in V (G) to an interval of the real line. For t-track graphs we have t lines L1, . . . , Lt, and each Ii
assigns intervals from Li. Similarly, for a representation of t-circular interval graphs (resp. t-circular
track graphs) we have a circle C (resp. t circles C1, . . . , Ct) and t functions Ii, assigning each vertex
in V (G) to an arc of C (resp. of Ci).

3 Approximation algorithms

The first approximation algorithms for the MAXIMUM CLIQUE in t-interval graphs and t-track
graphs [5, 17] are based on the fact that any t-interval representation (resp. t-track representation) of
a clique admits a transversal (i.e. a set of points touching at least one interval of each vertex) of size
τ = t2 − t+ 1 (resp. τ = t2 − t) [15]. Scanning the representation of a graph G from left to right (in
time O(tn)) one passes through the points of the transversal of a maximum clique K of G. At some
of those points there are at least |K|/τ intervals forming a subclique of K. Thus, this gives an O(tn)-
time τ -approximation. Butman et al. improved this ratio by 2 by considering every pair of points in
the representation. The intervals at these points induce a co-bipartite graph, for which computing
the maximum clique is polynomial (as computing a maximum independent set of a bipartite graph
is polynomial). Then one can see that this gives a polynomial time (τ/2)-approximation algorithm.
This actually gives a polynomial exact algorithm for the MAXIMUM CLIQUE in 2-track graphs [17],
as τ = 2 in this case. For the other cases, Kammer et al. [16] greatly improved the approximation
ratios from roughly t2/2 to 4t, using the new notion of k-perfect orientability. Using transversal
arguments, we can easily improve this ratio for some subclasses. A representation is balanced if for
each vertex, all its intervals (or arcs) have the same length.

Remark 1. In any balanced t-interval (resp. t-track, t-circular interval, or t-circular track) represen-
tation of a clique, the 2t interval extremities of the vertex with the smallest intervals form a transver-
sal. Thus, in those classes of graphs MAXIMUM CLIQUE admits a linear time 2t-approximation
algorithm, and a polynomial time t-approximation algorithm.

We shall now show how to achieve the same approximation ratio without restraining to balanced
representations.

Theorem 1. There is a linear time 2t-approximation algorithm, and a polynomial time t-approximation
algorithm for MAXIMUM WEIGHTED CLIQUE on t-interval graphs, t-track graphs, t-circular in-
terval graphs, and t-circular track graphs.

Proof. The problem is polynomial when t = 1, we thus assume that t ≥ 2. Let us prove the theorem
for t-interval graphs, the proofs for the other classes are exactly the same. Let G be a weighted
t-interval graph with weight function w(u) on its vertices, and let K be a maximum weighted
clique of G. Let I1, . . . , It form a t-interval representation of G such that for any vertex u ∈ V (G),
Ii(u) = [ui, u

′

i]. For any edge uv there exists a i and a j ∈ [t] such that the point ui belongs to
Ij(v), or such that vj ∈ Ii(u). One can thus orient and color the edges of G in such a way that uv
goes from u to v in color i if ui ∈ Ij(v) for some j. In K there is a vertex u with more weight on
its out-neighbors in K than on its in-neighbors in K. Indeed, this comes from the fact that in the
oriented graphs obtained from K by replacing each vertex u by w(u) vertices ui and by putting an
arc uivj if and only if there is an arc uv in K, there is a vertex ui with d+(ui) ≥ d−(ui), which
is equivalent to w(N+

K(u)) ≥ w(N−

K(u)). Thus there exists two distinct values i and j such that u
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has at least weight (w(K) − w(u))/2t on its out-neighbors in color i, and at least (w(K) − w(u))/t
out-neighbors in color i or j. The vertex u and its out-neighbors in a given color clearly induce a
clique of G (they intersect at ui). Thus scanning the representation from left to right looking for the
point with the more weights gives a clique of weight at least w(u) + (w(K) − w(u))/2t > w(K)/2t,
which is a 2t-approximation.

Then the graph induced by u and its out-neighbors in color i or j being co-bipartite one can
compute its maximum weighted clique in polynomial time (as computing a maximum weighted
independent set of a bipartite graph is polynomial). This clique has weight at least w(u) + (w(K)−
w(u))/t > w(K)/t (the weight of the subclique of K induced by u and its neighbors in color i or j).
Thus, for each vertex u of the graph and any pair ui and uj of interval left end, if we compute the
maximum weighted clique of the corresponding co-bipartite graph, we obtain a t-approximation.

4 APX-hardness in multiple interval graphs

The complement of a graph G is denoted by G. Given a graph G on n vertices with V (G) =
{x1, . . . , xn} and E(G) = {e1, . . . , em}, and a positive integer w, we define Subdw(G) to be the
graph obtained by subdividing each edge of G w times. If ek ∈ E(G) and ek = xixj where i < j,
we define l(k) = i and r(k) = j (as if xi and xj were respectively the left and the right end of
ek). In the following we subdivide edges 2 or 4 times. In Subd2(G) (resp. Subd4(G)), the vertices
subdividing ek are ak and bk (resp. ak, bk, ck, and dk) and they are such that (xl(k), ak, bk, xr(k))
(resp. (xl(k), ak, bk, ck, dk, xr(k))) is the subpath of Subd2(G) (resp. Subd4(G)) corresponding to ek.
To prove APX-hardness results we need the following structural theorem, which is of independent
interest.

Theorem 2. Given any graph G,

– Subd4(G) is a 2-interval graph,
– Subd2(G) is a unit 3-interval graph,
– Subd2(G) is a 3-track graph,
– Subd2(G) is a unit 4-track graph,
– Subd2(G) is a unit 2-circular interval graph (and thus a 2-circular interval graph),
– Subd2(G) is a 2-circular track graph, and
– Subd2(G) is a unit 4-circular track graph.

Furthermore, such representations can be constructed in linear time.

Since MAXIMUM INDEPENDENT SET is APX-hard even when restricted to degree bounded
graphs [21, 4], Chleb́ık and Chelb́ıková [7] observed that MAXIMUM INDEPENDENT SET is APX-
hard even when restricted to 2k-subdivisions of 3-regular graphs for any fixed integer k ≥ 0. Taking
the complement graphs, we thus have that MAXIMUM CLIQUE is APX-hard even when restricted
to the set C2k = {Subd2k(G) | any graph G}, for any fixed integer k ≥ 0. Thus, since MAXIMUM
CLIQUE is approximable for all the graph classes considered in Theorem 2, we clearly have the next
result.

Theorem 3. MAXIMUM CLIQUE is APX-complete for:

– 2-interval graph,
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– unit 3-interval graph,
– 3-track graph,
– unit 4-track graph,
– unit 2-circular interval graph (and thus for 2-circular interval graphs),
– 2-circular track graph, and
– unit 4-circular track graph.

Remark 2. To prove that MAXIMUM CLIQUE is NP-hard on B1-VPG graphs, Middendorf and
Pfeiffer [19] proved that for any graph G, Subd2(G) ∈ B1-VPG. One can thus see that MAXIMUM
CLIQUE is actually APX-hard for this class of graphs.

We prove Theorem 2 in the following subsections.

4.1 2-interval graphs

Theorem 4. Given any graph G, Subd4(G) is a 2-interval graph and a 2-interval representation
for it can be constructed in linear time.

Proof. Recall that each edge ek = xixj ofGwhere i < j, corresponds to the path (xi, ak, bk, ck, dk, xj)

in Subd4(G). We define the representation {I1, I2} of Subd4(G) as follows (see also Figure 1). For
1 ≤ i ≤ n and 1 ≤ k ≤ m:

I1(ak) = [0,m(l(k)− 1) + k − 1]
I1(xi) = [mi,mn+mi]
I2(ak) = [mn+ml(k) + 1, 4mn+m−ml(k)− k + 1]
I1(bk) = [m(l(k)− 1) + k,mn+m− k]
I1(ck) = [mn+m− k + 1, 3mn+m−mr(k)− k + 1]
I1(dk) = [3mn+m−mr(k) − k + 2, 4mn+mr(k)]
I2(bk) = [4mn+m−ml(k)− k + 2, 5mn+ k]
I2(xi) = [4mn+mi+ 1, 5mn+mi+ 1]
I2(dk) = [5mn+mr(k) + k + 1, 6mn+m+ 1]
I2(ck) = [5mn+ k + 1, 5mn+mr(k) + k]

ak

(l(k), k)

bk

(l(k), k)

k

xi
i

ak
l(k)

ck
k

(r(k), k)

(l(k), k)

dk

bk ck

dkxi

(r(k), k) r(k)

(l(k), k)

k k

(r(k), k)

(r(k), k)

i i

i

Fig. 1. The 2-interval representation of Subd4(G).
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Figure 1 (and the other figures of this kind) should be understood in the following way. The
leftmost block labeled ak corresponds to the intervals I1(ak), and its shape, together with the label
(l(k), k) on the arrow mean that,

– the left end of the intervals I1(ak) are the same (coordinate 0), and that
– the right end of the intervals I1(ak) are ordered (from left to right) accordingly to l(k), and in

case of equality, accordingly to k.

Here we can see that this block is close to the blocks I1(bk), and I1(xi).
The left end of the interval I1(bk) is also ordered (from left to right) accordingly to (l(k), k).

Such situation means that I1(ak) intersects every I1(bk′) such that (l(k), k) > (l(k′), k′), i.e. such
that l(k) > l(k′) or such that l(k) = l(k′) and k > k′. Note that since, between I2(ak) and I2(bk) we
have the opposite situation, for any vertex ak, ak is adjacent to every bk′ , except bk.

The left end of the interval I1(xi) is ordered (from left to right) accordingly to i. Such situation
means that I1(ak) intersects every I1(xi) such that l(k) > i. Note that since, between I1(xi) and
I2(ak) we have the opposite situation, for any vertex ak, ak is adjacent to every xi, except xl(k).

We claim that I1 and I2 together form a valid 2-interval representation for Subd4(G). One can
check it with Figure 1, but we give a full proof for this first construction. For any two vertices u and
v of Subd4(G), we will show that uv is an edge of Subd4(G) if and only if I1(u) ∪ I2(u) intersects
I1(v) ∪ I2(v). We first consider the case where uv is an edge.

Case u = xi and v = xj :
[mn,mn+m] ⊆ I1(xi) ∩ I1(xj).

Case u = xi and v = ak, where l(k) 6= i:
If l(k) > i, then mi ∈ I1(ak) ∩ I1(xi). If on the other hand, l(k) < i, then mn + mi ∈
I1(xi) ∩ I2(ak).

Case u = xi and v = bk:
mn ∈ I1(xi) ∩ I1(bk).

Case u = xi and v = ck:
mn+m ∈ I1(xi) ∩ I1(ck).

Case u = xi and v = dk, where r(k) 6= i:
If r(k) > i, then 4mn + mi + m ∈ I1(dk) ∩ I2(xi) and if r(k) < i, then 5mn + mi + 1 ∈
I2(xi) ∩ I2(dk).

Case u = ak and v = ak′ :
0 ∈ I1(ak) ∩ I1(ak′ ).

Case u = ak and v = bk′ , where k 6= k′:
If l(k′) < l(k), then m(l(k)− 1) ∈ I1(ak)∩ I1(bk′) and if l(k) < l(k′), then 4mn−ml(k)+ 1 ∈
I2(ak)∩I2(bk′ ). Suppose l(k) = l(k′). Now, if k′ < k, then m(l(k)−1)+k−1 ∈ I1(ak)∩I1(bk′)
and if k′ > k, then 4mn+m−ml(k)− k + 1 ∈ I2(ak) ∩ I2(bk′).

Case u = ak and v = ck′ :
2mn+ 1 ∈ I2(ak) ∩ I1(ck′ ).

Case u = ak and v = dk′ :
3mn+ 1 ∈ I2(ak) ∩ I1(dk′ ).

Case u = bk and v = bk′ :
mn ∈ I1(bk) ∩ I1(bk′ ).

Case u = bk and v = ck′ , where k 6= k′:
If k < k′, then mn+m− k ∈ I1(bk) ∩ I1(ck′ ).
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Case u = bk and v = dk′ :
4mn+ 1 ∈ I2(bk) ∩ I1(dk′ ).

Case u = ck and v = ck′ :
[mn+m, 2mn+ 1] ⊆ I1(ck) ∩ I1(ck′ ).

Case u = ck and v = dk′ , where k 6= k′:
If r(k) < r(k′), then 3mn−mr(k)+1 ∈ I1(ck)∩I1(dk′ ) and if r(k′) < r(k), then 5mn+mr(k)+
1 ∈ I2(ck)∩ I2(dk′). Suppose r(k) = r(k′). Now, if k < k′, 3mn−mr(k)+ 1 ∈ I1(ck)∩ I1(dk′ )
and if k′ < k, then 5mn+mr(k) + k ∈ I2(ck) ∩ I2(dk′ ).

Case u = dk and v = dk′ :
6mn+m+ 1 ∈ I2(dk) ∩ I2(dk′ ).

Let us now consider the case where uv is not an edge. In particular, let us show that I1(u) <
I1(v) < I2(u) < I2(v), where [u, u′] < [v, v′] means that u′ < v.

Case u = xi and v = ak, where l(k) = i:
I1(ak) < I1(xi) < I2(ak) < I2(xi).

Case u = xi and v = dk, where r(k) = i:
I1(xi) < I1(dk) < I2(xi) < I2(dk).

Case u = ak and v = bk:
I1(ak) < I1(bk) < I2(ak) < I2(bk).

Case u = bk and v = ck:
I1(bk) < I1(ck) < I2(bk) < I2(ck).

Case u = ck and v = dk:
I1(ck) < I1(dk) < I2(ck) < I2(dk).

Therefore, we have a valid 2-interval representation of Subd4(G) and this representation can
obviously be constructed in linear time.

4.2 Unit 3-interval graphs

Theorem 5. Given any graph G, Subd2(G) is a unit 3-interval graph and a unit 3-interval repre-
sentation for it can be constructed in linear time.

Proof. Recall that each edge ek = xixj of G where i < j, corresponds to the path (xi, ak, bk, xj)
in Subd2(G). We define I1, I2 and I3 as follows (see also Figure 2). Here again, 1 ≤ i ≤ n and
1 ≤ k ≤ m.

I1(bk) = [m(l(k)− 1) + k,m(l(k)− 1) +m2 + k]
I1(ak) = [m(l(k)− 1) +m2 + k + 1,m(l(k)− 1) + 2m2 + k + 1]
I1(xi) = [mi+ 2m2 + 2,mi+ 3m2 + 2]
I2(bk) = [mr(k) + 3m2 + k + 2,mr(k) + 4m2 + k + 2]
I2(xi) = [mi+ 4m2 +m+ 3,mi+ 5m2 +m+ 3]
I2(ak) = [ml(k) + 5m2 +m+ k + 3,ml(k) + 6m2 +m+ k + 3]
I3(bk) = [ml(k) + 6m2 +m+ k + 4,ml(k) + 7m2 +m+ k + 4]
I3(ak) = [15m2, 16m2]
I3(xi) = [17m2, 18m2]

This representation can be constructed in linear time and it is easy to verify that I1, I2 and I3
assign intervals of length m2 to the vertices of Subd2(G). Then one can also easily check in the figure
that this is a valid unit 3-interval representation of Subd2(G).
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bk

(r(k), k)

xi

i

xi

i

ak

(l(k), k)

bk

(l(k), k)

ak

(l(k), k)

bk

(l(k), k)

Fig. 2. The unit 3-interval representation of Subd2(G).

4.3 3-track graphs

Theorem 6. Given any graph G, Subd2(G) is a 3-track graph and a 3-track representation for it
can be constructed in linear time.

Proof. We define a 3-track representation for Subd2(G) as follows (see also Figure 3). For 1 ≤ i ≤ n
and 1 ≤ k ≤ m:

I1(ak) = [0, l(k)]
I1(xi) = [i+ 1, n+ i+ 1]
I1(bk) = [n+ r(k) + 2, 2n+ 3]
I2(xi) = [0, i]
I2(ak) = [l(k) + 1, n+ k]
I2(bk) = [n+ k + 1,m+ n+ 2]
I3(ak) = [0,m+ 1− k]
I3(bk) = [m+ 2− k,m+ r(k)]
I3(xi) = [m+ i+ 1,m+ n+ 2]

ak

l(k)

xi

i i

bk

r(k)

xi

i

ak

l(k) k

bk

k

ak

k

bk

k r(k)

xi

i

Fig. 3. The 3-track representation of Subd2(G).

This representation can be constructed in linear time and one can easily check in the figure that
this is a valid 3-track representation of Subd2(G).

4.4 Unit 4-track graphs

Theorem 7. Given any graph G, Subd2(G) is a unit 4-track graph and a unit 4-track representation
for it can be constructed in linear time.
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Proof. We define I1, I2, I3 and I4 as follows (see also Figure 4). As usual, 1 ≤ i ≤ n and 1 ≤ k ≤ m.

I1(ak) = [m(l(k)− 1) + k,m(l(k)− 1) +m2 + k]
I1(xi) = [mi+m2 + 1,mi+ 2m2 + 1]
I1(bk) = [2m2 +mr(k) + k + 1, 3m2 +mr(k) + k + 1]
I2(bk) = [m(r(k) − 1) + k,m(r(k) − 1) +m2 + k]
I2(xi) = [mi+m2 + 1,mi+ 2m2 + 1]
I2(ak) = [2m2 +ml(k) + k + 1, 3m2 +ml(k) + k + 1]
I3(ak) = [k, k +m2]
I3(bk) = [k +m2 + 1, k + 2m2 + 1]
I3(xi) = [5m2, 6m2]
I4(bk) = [k, k +m2]
I4(ak) = [k +m2 + 1, k + 2m2 + 1]
I4(xi) = [5m2, 6m2]

ak

(l(k), k)

xi

i

bk

(r(k), k)

bk

(r(k), k)

xi

i

ak

(l(k), k)

ak

k

bk

k

xi

bk

k

ak

k

xi

Fig. 4. The unit 4-track representation of Subd2(G).

This representation can be constructed in linear time and it is easy to verify that I1, I2, I3 and
I4 assign intervals of length m2 to the vertices of Subd2(G). Then one can also easily check in the
figure that this is a valid unit 4-track representation of Subd2(G).

4.5 Unit 2-circular interval graphs

Theorem 8. Given any graph G, Subd2(G) is a unit 2-circular interval graph and a unit 2-circular
interval representation for it can be constructed in linear time.

Proof. Let C be a circle of circumference 6m2 + 2m+4. The mappings I1 and I2, which map V (G)
to arcs on this circle, are defined as follows (see also Figure 5).
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I1(bk) = [ml(k) + 6m2 +m+ k + 4,m(l(k)− 1) +m2 + k]
I1(ak) = [m(l(k)− 1) +m2 + k + 1,m(l(k)− 1) + 2m2 + k + 1]
I1(xi) = [mi+ 2m2 + 2,mi+ 3m2 + 2]
I2(bk) = [mr(k) + 3m2 + k + 2,mr(k) + 4m2 + k + 2]
I2(xi) = [mi+ 4m2 +m+ 3,mi+ 5m2 +m+ 3]
I2(ak) = [ml(k) + 5m2 +m+ k + 3,ml(k) + 6m2 +m+ k + 3]

bk

(r(k), k)

xi

i

xi

i

ak

(l(k), k)

bk

(l(k), k)

ak

(l(k), k)

bk

(l(k), k)

Fig. 5. The unit 2-circular interval representation of Subd2(G).

Note that this representation is almost the same as the unit 3-interval representation given
for Subd2(G) in the proof of Theorem 5, the only difference being that I1(bk) and I3(bk) have
now been fused to form I1(bk) of the unit 2-circular interval representation being constructed. This
representation can be constructed in linear time and it is easy to verify that the arcs have length m2.
Then one can also easily check in the figure that this is a valid unit 2-circular interval representation
of Subd2(G).

4.6 2-circular track graphs

Theorem 9. Given any graph G, Subd2(G) is a 2-circular track graph and a 2-circular track rep-
resentation for it can be constructed in linear time.

Proof. We define a 2-circular track representation using circles C1 and C2, each having circumference
at least 3n+ 1, and mappings I1 and I2 defined as follows (see also Figure 6).

I1(xi) = [i, i+ n]
I1(ak) = [l(k) + n+ 1, l(k) + 2n]
I1(bk) = [l(k) + 2n+ 1, r(k)− 1]
I2(xi) = [i, i+ n]
I2(bk) = [r(k) + n+ 1, r(k) + 2n]
I2(ak) = [r(k) + 2n+ 1, l(k)− 1]

Clearly, this representation can be constructed in linear time, and as before, it can be checked
that the circles C1 and C2 together with the mappings I1 and I2 form a valid 2-circular track
representation of Subd2(G).

5 NP-hardness in unit 2-interval and unit 3-track graphs

Valiant [25] has shown that every planar graph of degree at most 4 can be drawn on a grid of linear
size such that the vertices are mapped to points of the grid and the edges to piecewise linear curves
made up of horizontal and vertical line segments whose endpoints are also points of the grid. It

10



xi

ii

xi

ii

ak

l(k)l(k)

bk

r(k)r(k)

bkbk

l(k)r(k)

ak

r(k)

ak

l(k)

Fig. 6. The 2-circular track representation of Subd2(G).

is immediately clear that every planar graph G has a subdivision G′ that is an induced subgraph
of a grid graph such that each edge of G corresponds to a path of length at most O(|V (G)|2)
(see Figure 7). Note that here, some paths have even length and some have odd length. An even
subdivision (resp. odd subdivision) of G is a graph obtained from G by subdividing each edge e of G
an even (resp. odd) number of times, and at most |V (G)|O(1) times.

Fig. 7. Embedding a planar graph in a grid.

Note that for any integer k, we can embed G in a fine enough grid so that every horizontal and
vertical segment in the original drawing of G becomes a path that contains at least k vertices in G′.
In Figure 7, we have chosen k = 5.

Let R(w, h) be the rectangular grid of height h and width w. A path in R(w, h) that contains
only vertices from one row of the grid is called a horizontal grid-path and one that contains vertices
from only one column is called a vertical grid-path. We denote by R′(w, h) the graph obtained by
subdividing each edge of R(w, h) once and by adding paths of length 3 between the newly introduced
vertices as shown in Figure 8.

Lemma 1. Any planar graph G, on n vertices and of maximum degree 4, has an even subdivision
that is an induced subgraph of R′(w, h) for some values of w and h that are linear in n.

Proof. Let H be the subdivision of G that is an induced subgraph of the grid R(w, h). Let Pe denote
the path in H corresponding to an edge e in G. We assume that Pe is the union of horizontal
and vertical grid-paths of length at least 5. We now transform the grid R(w, h) into R′(w, h) by
subdividing each edge once and by adding paths of length 3 between the newly introduced vertices

11



Fig. 8. The graph R′(11, 7). The vertices of the grid are not shown.

as explained before. Clearly, a 1-subdivision of H , which we shall denote by H ′, is an induced
subgraph of R′(w, h). It is also clear that H ′ is an odd subdivision of G. Let P ′

e denote the path in
H ′ corresponding to an edge e of G. Note that P ′

e consists of 1-subdivisions of vertical and horizontal
grid-paths.

For every edge e of G, we do the following procedure on P ′

e in H ′ to obtain a new graph H ′′: we
replace one of the subdivided horizontal or vertical grid-paths that make up P ′

e to obtain P ′′

e which
has an even number of vertices as shown in Figure 9. The new graph H ′′ so obtained is an even
subdivision of G and is also an induced subgraph of R′(w, h).

Fig. 9. Modifying the paths in H ′ to obtain H ′′: A part of the graph in Figure 7 is shown. The grid vertices
are not drawn.
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Lemma 2. For any w and h the graph R′(w, h) is both a unit 2-interval graph as well as a unit
3-track graph. Thus since those classes are closed under taking induced subgraphs, they also contain
the induced subgraphs of R′(w, h).

Proof. The graph Q(w, l) is defined as follows. V (Q(w, l)) = Xo ∪Xe ∪A ∪B ∪C ∪D where Xo =
{xo

1, . . . , x
o
w(l+1)}, X

e = {xe
1, . . . , x

e
wl}, A = {a1, . . . , a2wl}, B = {b1, . . . , b2wl}, C = {c1, . . . , c2wl}

and D = {d1, . . . , d2wl}.

E(Q(w, l)) =

wl⋃

i=1

{xo
ia2i−1, x

o
i a2i} ∪

w(l+1)⋃

i=w+1

{xo
i b2(i−w)−2, x

o
i b2(i−w)−1}

∪
wl⋃

i=1

{xe
ia2i−2, x

e
ia2i−1, x

e
i b2i−1, x

e
i b2i}

∪
2wl−1⋃

i=1

{aici, cidi, dibi+1}

Figure 10 shows a drawing of the graph Q(w, l). The vertices in (
⋃l

i=1{a2wi, b2wi}∪
⋃2wl

i=1{ci, di})
are not shown to avoid clutter. It can be seen that R′(w, h) is an induced subgraph of Q(w, ⌈w+h

2 ⌉−

x
o
1 x

o
2 x

o
3 x

o
w−1 x

o
w

a1 a2 a3
a2w−2

a2w−1

x
e
1 x

e
2 x

e
3 x

e
w−1

x
e
w

b1 b2 b3
b2w−2

b2w−1

x
o
w+1 x

o
w+2 x

o
w+3 x

o
2w−1

x
o
2w

x
o

wl+1 x
o

wl+2 x
o

wl+3 x
o

w(l+1)−1 x
o

w(l+1)

x
e

w(l−1)+1
x
e

wl

b2w(l−1)+1

b2wl−1

a2w+1 a2w+2 a2w+3 a4w−1

a2w(l−1)+1

a2wl−1

Fig. 10. Part of the graph Q(w, l).

1) (see Figure 11). Thus, to show that for any w and h, R′(w, h) is a unit 2-interval graph and a
unit 3-track graph, we only need to show that Q(w, l) for any w and l is both a unit 2-interval graph
as well as a unit 3-track graph.

We construct a unit 2-interval representation f for Q(w, l) as follows (see also Figure 12).
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Fig. 11. R′(w, h) is an induced subgraph of Q(w, l) where l = ⌈w+h

2
⌉−1). The vertices in (

⋃
l

i=1
{a2wi, b2wi}∪

⋃
2wl

i=1
{ci, di}) are not shown.

I1(ai) = [2i, 2i+ 6n]
I1(ci) = [2i+ 6n+ 2, 2i+ 12n+ 2]
I1(x

o
i ) = [4i+ 6n+ 1, 4i+ 12n+ 1]

I2(ai) = [2i+ 12n+ 4, 2i+ 18n+ 4]
I1(x

e
i ) = [4i+ 6n− 1, 4i+ 12n− 1]

I1(di) = [2i, 2i+ 6n]
I1(bi) = [18n+ 6− 2i, 24n+ 6− 2i]
I2(di) = [24n+ 6− 2i, 30n+ 6− 2i]
I2(bi) = [30n+ 10− 2i, 36n+ 10− 2i]
I2(x

e
i ) = [24n+ 9− 4i, 30n+ 9− 4i]

I2(x
o
i ) = [24n+ 11− 4i+ 4w, 30n+ 11− 4i+ 4w]

I2(ci) = [30n+ 8− 2i, 36n+ 8− 2i]

ai

ci

ai

di bi

di

bi

x
e
i

x
o
i

ci

i i

ii i

i

i

i

i

i

x
o
i

i

x
e
i

Fig. 12. Unit 2-interval representation of Q(w, l).
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It is easy to verify that all the intervals have length 6n. Then one can also check in the figure
that this is a valid unit 2-interval representation of Q(w, l). Note that this construction is slightly
more involved than the previous ones. Here the second blocks xe

i and xo
i are slightly shifted. This

is due to the fact that xe
i is adjacent to every bj, except bi and bi+1, and that xo

i has to avoid a
distinct b’s. Indeed xo

i is adjacent to every bj , except bi−w−1 and bi−w. We construct now a unit

3-track representation for Q(w, l) as follows (see also Figure 13).

I1(bi) = [i, i+ 2n]
I1(x

e
i ) = [2i+ 2n+ 1, 2i+ 4n+ 1]

I1(x
o
i ) = [2i− 2w + 2n, 2i− 2w + 4n]

I1(ai) = [i+ 4n+ 4, i+ 6n+ 4]
I1(ci) = [i+ 2n+ 3, i+ 4n+ 3]
I1(di) = [i+ 4n+ 4, i+ 6n+ 4]
I2(ai) = [i, i+ 2n]
I2(x

e
i ) = [2i+ 2n, 2i+ 4n]

I2(x
o
i ) = [2i+ 2n+ 1, 2i+ 4n+ 1]

I2(bi) = [i+ 2w + 4n+ 4, i+ 2w + 6n+ 4]
I2(di) = [i+ 2w + 2n+ 4, i+ 2w + 4n+ 4]
I2(ci) = [i+ 2w + 4n+ 5, i+ 2w + 6n+ 5]
I3(x

o
i ) = [2i, 2i+ 4n]

I3(ai) = [i+ 4n+ 2, i+ 8n+ 2]
I3(ci) = [i+ 8n+ 3, i+ 12n+ 3]
I3(bi) = [8n+ 3− i, 12n+ 3− i]
I3(di) = [4n+ 1− i, 8n+ 1− i]
I3(x

e
i ) = [12n+ 5− 2i, 16n+ 5− 2i]

It is easy to verify that all the intervals have length 4n. Then one can also check in the figure
that this is a valid unit 3-track representation of Q(w, l). Note that here also one has to be carefull
with the bi’s that x

e
i and xo

i have to avoid.

Theorem 10. MAXIMUM CLIQUE is NP-complete for unit 2-interval and unit 3-track graphs.

Proof. It is known that the MAXIMUM INDEPENDENT SET problem is NP-complete even when
restricted to planar graphs of degree at most 3 [9]. It is folklore that the instance (G, k) of MAXIMUM
INDEPENDENT SET is equivalent to an instance (H, k+ k′), where H is an even subdivision of G
with |V (G)|+2k′ vertices. Thus according to Lemma 1, MAXIMUM INDEPENDENT SET is NP-
complete on the class of induced subgraphs of R′(w, h). MAXIMUM CLIQUE is thus NP-complete
on the class of induced subgraphs of R′(w, h). Finally by Lemma 2 this class of graphs is contained in
unit 2-interval and unit 3-track graphs. MAXIMUM CLIQUE is thus NP-complete on these classes.

6 Complements of t-interval graphs

Very recently, Jiang and Zhang studied the class of complements of t-interval graphs [14]. In par-
ticular they proved that MINIMUM (INDEPENDENT) DOMINATING SET parameterized by the
solution size is in W[1] for co-2-interval graphs, and they proved that MINIMUM DOMINATING
SET is W[1]-hard for co-3-track graphs.

15



bi
i

x
e
i

i

x
o
i

i

ai
i

ci
i

di
i

ai
i

x
e
i

i

bi
i

di
i

ci
i

x
o
i

i

ai
i

ci
i

bi
i

di
i

x
e
i

i

x
o
i

Fig. 13. Unit 3-track representation of Q(w, l).

16



Following the same line of proof as for Theorem 3 we can prove the following APX-hardness
results, for this kind of graph classes.

Theorem 11.

(i) MINIMUM VERTEX COVER is APX-complete in co-2-interval graphs, and the complement
classes of all the classes of Theorem 2.

(ii) For any graph G, Subd3(G) is a co-2-interval, a co-unit-3-interval, a co-3-track, a co-unit-4-
track, and a co-2-circular track graph, and MINIMUM (INDEPENDENT) DOMINATING SET
is APX-hard for these classes of graphs.

Proof. The first item follows from the fact that MINIMUM VERTEX COVER is 2-approximable [20]
and the first item of the following theorem.

Theorem 12 ([7]).

(i) MINIMUM VERTEX COVER is APX-complete when restricted to 2k-subdivisions of 3-regular
graphs for any fixed integer k ≥ 0.

(ii) The problems MINIMUM DOMINATING SET, and MINIMUM INDEPENDENT DOMINAT-
ING SET are APX-complete when restricted to 3k-subdivisions of degree at most 3 graphs for
any fixed integer k ≥ 0.

For the second item the constructions are described in the following figures. Here an edge ek =
xixj ofG, with i < j, corresponds to a path (xl(k), ak, bk, ck, xr(k)) of Subd3(G). Then Theorem 12.(ii)
clearly implies the APX-hardness.

(l(k), k)

xi

ii

(l(k), k)

(l(k), k)

(l(k), k)

bk

ak ak

(r(k), k)

xi

ii

(r(k), k)

(r(k), k)

(r(k), k)

bk

ck ck

Fig. 14. The 2-interval representation of Subd3(G).

7 Concluding remarks

The difference between the 4t-approximation of Kammer et al. [16] and our t-approximation lies
in two places. In their paper they proved that t-interval graphs are 2t-perfectly orientable, but
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Fig. 15. The unit 3-interval representation of Subd3(G).
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Fig. 16. The 3-track representation of Subd3(G).
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Fig. 17. The unit 4-track representation of Subd3(G).
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Fig. 18. The 2-circular track representation of Subd3(G).
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following the lines of Theorem 1 one can see that those graphs are t-perfectly orientable. This im-
proves their approximation for MAXIMUM WEIGHTED INDEPENDENT SET, MINIMUM VER-
TEX COLORING, and MINIMUM CLIQUE PARTITION in t-interval graphs. For MAXIMUM
WEIGHTED INDEPENDENT SET and MINIMUM VERTEX COLORING this reaches the best
known ratio of t [3] in a simpler way, and for the other problems it improves the best known ap-
proximation ratios [16]. Then Kammer et al. proved that MAXIMUM WEIGHTED CLIQUE can be
2k-approximated in k-perfectly orientable graphs. Again, following the lines of Theorem 1 one can see
that MAXIMUM WEIGHTED CLIQUE can be k-approximated for those graphs. This improves (by
2) their approximation for MAXIMUM WEIGHTED CLIQUE in t-fat objects intersection graphs.

In our approximation algorithm (as in the previous algorithms) we assume that we are given an
interval representation. We wonder what we can do if we are not given such representation.

Open question. Can MAXIMUM (WEIGHTED) CLIQUE be polynomially c(t)-approximated in
t-interval graphs, for some function c, if we are not given an interval representation?

This would be the case if there is an algorithm that computes, given a t-interval graph G, a c(t)-
interval representation of G. Actually even when we are given a representation, the approximation
ratio might be far from the optimal.

Open question. Does there exists an approximation algorithm for MAXIMUM (WEIGHTED)
CLIQUE in t-interval graphs with a better approximation ratio?

Let us call f(t) the better ratio a polynomial algorithm can achieve on t-interval graphs (actually
f(t) should be an infimum). For any graph G on n vertices, it is easy to construct a n-interval
representation of G. Thus since for any ǫ > 0, one cannot O(n1−ǫ)-approximate the MAXIMUM
CLIQUE unless P = NP [27], we certainly have f(t) = Ω(t1−ǫ).

The current status of the complexity of the MAXIMUM CLIQUE problem for the various classes
of multiple interval graphs that were studied are shown in the table below (where “Unres.” stands
for “Unrestricted”).

t
t-track t-interval Circular t-track Circular t-interval

Unit Unres. Unit Unres. Unit Unres. Unit Unres.

1 P P P P P P P P
2 P P NP-c APX-c ? APX-c APX-c APX-c
3 NP-c APX-c APX-c APX-c NP-c APX-c APX-c APX-c

≥ 4 APX-c APX-c APX-c APX-c APX-c APX-c APX-c APX-c

The blanks in this table clearly imply the following questions.

Open question. Is MAXIMUM CLIQUE for unit 2-interval graphs, unit 3-track graphs or unit
3-circular track graphs APX-hard, or does it admit a PTAS?

Open question. Is MAXIMUM CLIQUE for unit 2-circular track graphs Polynomial or NP-
complete?

Koenig [17] explains that 2-track graphs have a polynomial-time algorithm for MAXIMUM
CLIQUE because for any 2-track representation of a clique, there is a transversal of size 2 (i.e.
two points such that for every vertex, at least one of its intervals contains one of these points). We
note that this is not true for unit 2-circular track graphs as the complete graph on 5 vertices has a
unit 2-circular track representation in which each circular track induces a cycle on 5 vertices. This
representation clearly does not have a transversal of size 2.
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ing the 2-interval pattern problem. In Proc. of the 13th Annual European Symposium on Algorithms,
ESA ’05, 426–437, 2005.

9. Michael R. Garey and David S. Johnson. Rectilinear steiner tree problem is NP-complete. SIAM J.

Appl. Math. 6: 826–834, 1977.

10. Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph.
Networks, 3: 261–273, 1973.

11. Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of filaments. Infor-
mation Processing Letters, 73(56):181–188, 2000.

12. Dorit S. Hochbaum, and Asaf Levin. Cyclical scheduling and multi-shift scheduling: Complexity and
approximation algorithms. Disc. Optimiz. 3(4):327340, 2006.

13. Wen-Lian Hsu. Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J.

Comput. 14(1):224–231, 1985.

14. Minghui Jiang and Yong Zhang Parameterized Complexity in Multiple-Interval Graphs: Domination,
Partition, Separation, Irredundancy. arXiv, http://arxiv.org/pdf/1110.0187v1.pdf, Oct 2011.
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