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Abstract
In this paper we design FPT-algorithms for two parameterized problems. The first is List
Digraph Homomorphism: given two digraphs G and H and a list of allowed vertices of H for
every vertex of G, the question is whether there exists a homomorphism from G to H respecting
the list constraints. The second problem is a variant of Multiway Cut, namely Min-Max
Multiway Cut: given a graph G, a non-negative integer `, and a set T of r terminals, the
question is whether we can partition the vertices of G into r parts such that (a) each part
contains one terminal and (b) there are at most ` edges with only one endpoint in this part. We
parameterize List Digraph Homomorphism by the number w of edges of G that are mapped
to non-loop edges of H and we give a time 2O(`·log h+`2·log `) · n4 · logn algorithm, where h is the
order of the host graph H. We also prove that Min-Max Multiway Cut can be solved in time
2O((`r)2 log `r) · n4 · logn. Our approach introduces a general problem, called List Allocation,
whose expressive power permits the design of parameterized reductions of both aforementioned
problems to it. Then our results are based on an FPT-algorithm for the List Allocation
problem that is designed using a suitable adaptation of the randomized contractions technique
(introduced by [Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk, FOCS 2012]).
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1 Introduction

The Multiway Cut problem asks, given a graph G, a set of r terminals T , and a non-negative
integer `, whether it is possible to partition V (G) into r parts such that each part contains
exactly one of the terminals of T and there are at most ` edges between different parts
(i.e., at most ` crossing edges). In the special case where |T | = 2, this gives the celebrated
Minimum Cut problem, which is polynomially solvable [31]. In general, when there is no
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restriction on the number of terminals, the Multiway Cut problem is NP-complete [8]
and a lot of research has been devoted to the study of this problem and its generalizations,
including several classic results on its polynomial approximability [18, 3, 14, 17, 24, 30].

More recently, special attention to the Multiway Cut problem was given from the
parameterized complexity point of view. The existence of an FPT-algorithm for Multiway
Cut (when parameterized by `), i.e., an f(`) ·nO(1)-step algorithm, had been a long-standing
open problem. This question was answered positively by Marx in [26] with the use of
the important separators technique which was also used for the design of FPT-algorithms
for several other problems such as Directed Multiway Cut [4], Vertex Multicut,
and Edge Multicut [28]. This technique has been extended to the powerful framework
of randomized contractions technique, introduced in [5]. This made it possible to design
FPT-algorithms for several other problems such as Unique Label Cover, Steiner Cut,
Edge/Vertex Multiway Cut-Uncut. We stress that this technique is quite versatile.

In this paper we use it in order to design FPT-algorithms for parameterizations of two
problems that do not seem to be directly related to each other: the Min-Max-Multiway
Cut problem [32] and the List Digraph Homomorphism problem.

1.1 Min-Max-Multiway Cut
In the Multiway Cut problem the parameter ` bounds the total number of crossing edges
(i.e., edges with endpoints in different parts). Svitkina and Tardos [32] considered a “min-max”
variant of this problem, namely the Min-Max-Multiway Cut, where ` bounds the maximum
number of outgoing edges of the parts1. In [32], it was proved that Min-Max-Multiway Cut
is NP-complete even when the number of terminals is r = 4. As a consequence of the results
in [32] and [29], Min-Max-Multiway Cut admits an O(log2 n)-approximation algorithm.
This was improved recently in [1] to a O((logn · log r)1/2)-approximation algorithm.

To our knowledge, nothing is known about the parameterized complexity of this problem.
We prove the following.

I Theorem 1. There exists an algorithm that solves the Min-Max-Multiway Cut problem
in 2O((r`)2 log r`) · n4 · logn steps, i.e., Min-Max-Multiway Cut belongs to FPT when
parameterized by both r and `.

(Throughout the paper, we use n = |V (G)| when we refer to the number of vertices of the
graph G in the instance of the considered problem.)

1.2 List Digraph Homomorphism
Given two directed graphs G and H, an H-homomorphism of G is a mapping χ : V (G)→
V (H) such that if (x, y) is an arc of G, then (χ(x), χ(y)) is also an arc in H. In the List
Digraph Homomorphism problem, we are given two graphs G and H and a list function
λ : V (G)→ 2V (H) and we ask whether G has a H-homomorphism such that for every vertex
v of G, χ(v) ∈ λ(v). Graph and digraph homomorphisms have been extensively studied both
from the combinatorial and the algorithmic point of view (see e.g., [21, 2, 13, 15, 16]).

Especially for the List Digraph Homomorphism problem, a dichotomy characterizing
the instantiations of H for which the problem is hard was given in [22] (see also [12]). Notice
that the standard parameterization of List Digraph Homomorphism by the size of the

1 Notice that under this viewpoint Multiway Cut can be seen as Min-Sum-Multiway Cut.
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80 Min-Max Multiway Cut and List Digraph Homomorphism

graph H is para-NP-complete as it yields the 3-Coloring problem when G is restricted to be
a simple graph and H = K3. A more promising parameterization of List Homomorphism
(for undirected graphs) has been introduced in [10], where the parameter is a bound on the
number of pre-images of some prescribed set of vertices of H (see also [9, 11, 27]). Another
parameterization, again for the undirected case, was introduced in [6], where the parameter
is the number of vertices to be removed from the graph G so that the remaining graph has a
list H-homomorphism.

We introduce a new parameterization of List Digraph Homomorphism where the
parameter is, apart from h = |V (H)|, the number of “crossing edges”, i.e., the edges of G
whose endpoints are mapped to different vertices of H. For this, we enhance the input with
an integer ` and ask for a list digraph homomorphism with at most ` crossing edges. Clearly,
when ` = |E(G)|, this yields the original problem. We call the new problem Bounded List
Digraph Homomorphism (in short, BLDH). Notice that the fact that List Digraph
Homomorphism is NP-complete even when h = 3, implies that BLDH is para-NP-complete
when parameterized only by h. The input of BLDH is a quadruple (G,H, λ, `) where G is
the guest graph, H is the host graph, λ : V (G)→ 2V (H) is the list function and ` is a non-
negative integer. Our next step is to observe that BLDH is W[1]-hard, when parameterized
only by `. To see this consider an input (G, k) of the Clique problem and construct the
input (K, Ḡ, λ, `) where K is a the complete digraph on k vertices, Ḡ is the digraph obtained
by G by replacing each edge by two opposite direction arcs between the same endpoints,
λ = {(v, V (G)) | v ∈ V (K)}, and ` = k(k − 1). Notice that (G, k) is a yes-instance of
Clique iff (K, Ḡ, λ, `) is a yes-instance of BLDH.

We conclude that when BLDH is parameterized by ` or h only, then one may not expect
it to be fixed parameter tractable. This means that the parameterization of BLDH by h
and ` is meaningful to consider. Our result is the following.

I Theorem 2. There exists an algorithm that solves the Bounded List Digraph Ho-
momorphism problem in 2O(`·log h+`2·log `) · n4 · logn steps, i.e., Bounded List Digraph
Homomorphism belongs to FPT when parameterized by the number ` of crossing edges and
the number h of vertices of H.

1.3 List Allocation
In order to prove Theorems 1 and 2, we prove that both problems are Turing FPT-reducible2
to a single new problem that we call List Allocation (in short, LA).

The List Allocation problem is defined as follows: We are given a graph G and a set
of r “boxes” indexed by numbers from {1, . . . , r}. Each vertex v of G is accompanied with a
list λ(v) of indices corresponding to the boxes where it is allowed to be allocated. Moreover,
there is a weight function α assigning to every pair of different boxes a non-negative integer.
The question is whether there is a way to place each of the vertices of G into some box of
its list such that, for any two different boxes i and j, the number of crossing edges between
them is exactly α(i, j).

As we easily see in Subsection 2.3, List Allocation is NP-complete, even when r = 2.
Throughout this paper, we parameterize the List Allocation problem by the total number
w of “crossing edges” between different boxes, i.e., w =

∑
1≤i<j≤r α(i, j).

2 Let A and B be two parameterized problems. We say that a parameterized problem A is Turing FPT-
reducible to B when the existence of an FPT-algorithm for B implies the existence of an FPT-algorithm
for A. (For brevity, in this paper, we write “T-FPT” instead of “Turing FPT”.)
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Our main result is that this parameterization of LA is in FPT (the basic ideas of the
algorithm are given in Section 4.

I Theorem 3. There exists an algorithm that, given as input an instance I = (G, r, λ, α) of
List Allocation, returns an answer to this problem in 2O(w2·log w) · n4 · logn steps, where
w =

∑
1≤i<j≤r α(i, j).

To witness the expressive power of List Allocation, let us first exemplify why Multi-
way Cut, parameterized by w, is T-FPT-reducible to List Allocation. Given an instance
of Multiway Cut, we first discard from its graph all the connected components that have
at most 1 terminal. Clearly, this gives an equivalent instance (G,T = {t1, . . . , tr}, w) where
r ≤ w + 1.

Next, we consider the setA containing every weight function α such that
∑

1≤i<j≤r α(i, j) ≤
w. Let also λ : V (G) → 2[r] be the list function such that if v = ti ∈ T , then λ(v) = {i},
otherwise λ(v) = {1, . . . , r}. It is easy to verify that (G,T,w) is a yes-instance of Multiway
Cut if and only if there exists some α ∈ A such that (G, r, λ, α) is a yes-instance of List
Allocation. This yields the claimed reduction, as |A| is clearly bounded by some function
of w. This reduction to the List Allocation problem turns out to be quite flexible and, as
we will see in Subsection 3.1 (Theorem 4), it can easily be adapted to a T-FPT-reduction
of Min-Max-Multiway Cut to List Allocation. The reduction of Bounded List
Digraph Homomorphism to List Allocation is more complicated and is described in
Subsection 3.2 (Theorem 10). Theorem 3, together with the aforementioned reductions,
yields Theorems 1 and 2.

2 Preliminaries and the definition of List Allocation

2.1 Functions and allocations
We use the notation log(n) to denote dlog2(n)e for n ∈ Z≥1 and we agree that log(0) = 1.
Given a non-negative integer n, we denote by [n] the set of all positive integers no bigger
than n. Given a finite set A and an integer s ∈ Z≥0, we denote by

(
A
s

)
(resp.

(
A
≤s

)
) the set

of all subsets of A with exactly (resp. at most) s elements. Given a function f : A→ Z≥0
we define

∑
f =

∑
x∈A f(x). An r-allocation of a set S is an r-tuple V = (V1, . . . , Vr) of,

possibly empty, sets that are pairwise disjoint and whose union is the set S. We refer to the
elements of V as the parts of V and we denote by V(i) the i-th part of V, i.e., V(i) = Vi.

2.2 Definitions about graphs
In this paper, when giving the running time of an algorithm of some problem whose instance
involves a graph G, we agree that n = |V (G)| and m = |E(G)|.

All graphs in this paper are loopless and they may have multiple edges. The only exception
to this agreement is in Subsection 3.2 where we also allow loops. If G is a graph and X,
Y are two disjoint vertex subsets of V (G), we define δG(X,Y ) as the set of edges with one
endpoint in X and the other in Y . Given a graph G, denote by C(G) the collection of all
connected components of G.

2.3 The list allocation problem
We define the problem LA as follows.

IPEC’15



82 Min-Max Multiway Cut and List Digraph Homomorphism

List Allocation (LA)
Input: A tuple I = (G, r, λ, α) where G is a graph, r ∈ Z≥1, λ : V (G) → 2[r], and
α :
([r]

2
)
→ Z≥0.

Output: An r-allocation V of V (G) such that
1. ∀{i, j} ∈

([r]
2
)
, |δG(V(i),V(j))| = α(i, j) and

2. ∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v),
or a correct report that no such r-allocation exists.

For simplicity, in the above definition we write α({i, j}) as α(i, j) and we agree that α(i, j) =
α(j, i). Also, given an instance I of LA, we denote3 w(I) =

∑
α. We will also use w instead

of w(I) when it is clear what is the instance we are working with. We assume that the
multiplicity of each edge in G does not exceed w as, if this happens, then reducing it to w
creates an equivalent instance of the problem.

In the definition of LA each vertex v of G carries a list λ(v) indicating the parts where v
can be possibly allocated. Moreover, α is a function assigning weights to pairs of parts in V.
The weights defined by α prescribe the precise number of crossing edges between distinct
parts of V.

Notice that LA is an NP-hard problem by a simple reduction from the Max Cut problem,
asking whether, for an input graph G and some w ∈ Z≥0, whether there is a partition V1,
V2 of V (G) such that there are exactly4 w edges each with endpoints in both V1 and V2.
Indeed, given an instance I = (G,w) of Max Cut, construct the instance I ′ = (G, 2, λ, α)
where λ(v) = {1, 2} for every v ∈ V (G) and α(1, 2) = w. Note also that when r = 2, LA is
polynomially solvable on planar graphs as it directly reduces to Planar Max Cut that is
polynomially solvable [20].

3 Main reductions

In this section we formally define Min-Max-Multiway Cut and List Digraph Homo-
morphism and we reduce them to List Allocation.

3.1 Min-Max-Multiway Cut
The Min-Max-Multiway Cut problem is formally defined as follows:

Min-Max-Multiway Cut
Input: A tuple I = (G, `, r, T ) where G is an undirected graph, `, r ∈ Z≥0, and T ⊆ V (G)
with |T | = r.
Output: A partition {P1, . . . ,Pr} of V (G) such that for every i ∈ [r], it holds that
|Pi ∩ T | = 1 and |δG(Pi, V (G) \ Pi)| ≤ `, or a correct report that no such partition exists.

Similarly to the case of LA, we assume that the multiplicity of each edge in G does not
exceed `.

I Theorem 4. If there is an algorithm that solves LA in T (n,w(I)) steps, then there exists
an algorithm that solves Min-Max-Multiway Cut in 2O(r·min{`·log r,r·log `}) · T (n, r`) steps.

3 Given a function τ : A → Z≥0, we denote
∑

τ =
∑

x∈A
τ(x).

4 It is straightforward to see that the standard reduction from Nae-3-Sat also works when the question
of Max Cut asks for exactly w crossing edges instead of at least w crossing edges.
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Proof. Given an input I = (G, `, r, T ) of Min-Max-Multiway Cut, we fix (arbitrarily) a
bijection µ : V (T )→ [r] and we define λ : V (G)→ 2[r] such that

λ(x) =
{

[r] if x ∈ V (G) \ T
{µ(x)} if x ∈ T.

We now consider the family U(I) of instances of LA containing one element I ′ = (G, r, λ, α)
for each choice of function α :

([r]
2
)
→ Z≥0 satisfying

∀i ∈ [r],
∑

j∈[r]\i

α(i, j) ≤ `.

Notice that I is a yes-instance of Min-Max-Multiway Cut if and only if there exists
some I ′ ∈ U(I) that is a yes-instance of LA. As |U(I)| = 2O(r·min{`·log r,r·log `}) and for each
I ′ ∈ U(I) it holds that w(I ′) = O(r`), the result follows. J

3.2 List Digraph Homomorphism
Let G and H be directed graphs where G is simple and H may have loops but not multiple
directed edges. A (directed) edge in the digraph G from the vertex x to the vertex y is
denoted by (x, y). Let also λ : V (G) → 2V (H). We denote by E1(H) the loops of H and
by E2(H) the edges of H between distinct vertices. An λ-list H-homomorphism of G is a
function χ : V (G)→ V (H) such that

χ(v) ∈ λ(v) for every v ∈ V (G), and
(χ(u), χ(v)) ∈ E(H) for every (u, v) ∈ E(G).

Given a list H-homomorphism χ of G and an edge e = (a, b) ∈ E2(H) we define

C(e) = {(u, v) ∈ E(G) | χ(u) = a and χ(v) = b}.

Bounded List Digraph Homomorphism is formally defined as follows.

Bounded List Digraph Homomorphism (BLDH)
Input: A tuple I = (G,H, λ, `) where G and H are digraphs, λ : V (G) → 2V (H), and
` ∈ N≥0.
Output: A λ-list H-homomorphism of G where

∑
e∈E(H) |C(e)| ≤ ` or a correct report

that no such homomorphism exists.

We now define the following more general problem.

Arc-Specified List Digraph Homomorphism (ASLDH)
Input: A tuple I = (G,H, λ, α) where G and H are digraphs, λ : V (G) → 2V (H), and
α : E2(H)→ Z≥0.
Output: A λ-list H-homomorphism χ of G such that ∀e∈E2(H) |C(e)| = α(e) or a correct
report that no such λ-list H-homomorphism exists.

Given an instance I = (G,H, λ, α) of ASLDH we define d(I) =
∑
α. As we already did for

the cases of LA and Min-Max-Multiway Cut, we assume that the multiplicity of the
edges of the instance of BLDH (resp. ASLDH) does not exceed ` (resp. d(I)).

In the next sections we will prove that there exists an FPT-algorithm for ASLDH, when
parameterized by both h = |V (H)| and d = d(I). This fact together with the following result
yields Theorem 2.
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84 Min-Max Multiway Cut and List Digraph Homomorphism

I Theorem 5. If there is an algorithm that solves ASLDH in T (n, d(I)) steps, then there
exists an algorithm that solves BLDH in 2O(` log h) · T (n, `) steps where h = |V (H)|.

Proof. Given an instance I = (G,H, λ, `) of BLDH we set U(I) = {(G,H, λ, α) |
∑
α ≤ `}

and we observe that I is a yes-instance of BLDH if and only if some I ′ ∈ U(I) is a
yes-instance of ASLDH. The lemma follows as |U(I)| = 2O(` log h) and d(I ′) ≤ `. J

3.3 A sparsifier for ASLDH
In order to prove that ASLDH admits an FPT-algorithm when parameterized by both
h = |V (H)| and d = d(I), we will give a Turing-FPT reduction of ASLDH to LA in
Subsection 3.4. The latter problem can be solved by an FPT-algorithm due to the result
of Section 4. The reduction of Subsection 3.4 receives an instance (G,H, λ, α) of ASLDH
and returns an equivalent instance (G′, r, λ′, α′) of LA where |V (G′)| = O(|E(G)|) which is
O(w · |V (G)|2), in general. In order to avoid this blow-up in the polynomial running time of
our final FPT-algorithm, we give a way to transform the instances of ASLDH to equivalent
instances of the same problem whose graphs are sparse. This “sparsification” procedure is
described below.

A graph is d-edge connected if it has at least two vertices and for every two vertices there
are d edge disjoint paths between them. We use the following result from [25].

I Proposition 6. For every d ∈ Z≥1, every graph G where |E(G)| ≥ d · (|V (G)|−1) contains
a d-edge connected subgraph.

We also need the following result.

I Lemma 7. Let G be a graph and let C = {C1, . . . , Cr} be a collection of vertex disjoint
connected subgraphs of G. Let also G′ be the graph obtained if we contract in G all edges
in the graphs in C. If G′ is d-edge connected and each graph in C is d-edge connected or a
single vertex, then G contains a subgraph that is d-edge connected.

Given a graph H and a positive integer d, we say that a subgraph H of G is a d-edge
connected core of G if every connected component of H is d-edge connected and, among all
such subgraphs of G, H has maximum number of edges. The proof of the next lemma uses
Proposition 6.

I Lemma 8. For every d ∈ Z>0, every graph G with m ≥ d · (n − 1) contains a unique
d-edge connected core that can be found in O(d · n4) steps.

Proof. The claimed d-edge connected core exists because of Proposition 6. Also, it is unique
because if there are two d-edge connected cores J1 and J2, then it can be easily checked that
the graph J1 ∪ J2 is also a d-edge connected core of G. The algorithm repetitively removes
from G edges of min-cuts of size at most d− 1 in its connected components (each can be
found in O(d ·n3) steps according to [31]) until this is not possible anymore (isolated vertices,
when appearing during this procedure, are removed).

Note that the total number of steps of this procedure is bounded by the running time of
the algorithm in [31] times the number of connected components of the resulting graph. This
justifies the claimed running time. Let J be the d-edge connected core of G. Notice that none
of the edges of J will be deleted by this procedure. Indeed, assuming the opposite, let G′ be
the graph where for the first time a cut (V1, V2) is found where the set F of crossing edges
contains some edge e = {x, y} in J . Let also C be the connected component of G′ containing
this cut and let CJ be a connected component of J that is a subgraph of C containing e.
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Notice that x and y belong to different connected components of C \ F and therefore
also to different connected components of CJ \ F , contradicting the fact that CJ is d-edge
connected. We just proved that the output of the algorithm will be a subgraph of J . Notice
also that each connected component of this output is d-edge connected. By the maximality
of J , this output is necessarily J . J

I Lemma 9. There is an O(d(I) · n4)-step algorithm that given in instance I = (G,H, λ, α)
of ASLDH, outputs an equivalent instance I ′ = (G′, H, λ′, α) of the same problem where
|E(G′)| = O(d(I) · |V (G′)|).

Proof. Let G̃ be the underlying graph of G (multiplicities of edges of opposite direction are
summed up) and d = d(I). If G̃ does not contains a (d+ 1)-edge connected core, then, from
Proposition 6, |E(G)| = O(d · |V (G)|).

Suppose now that G̃ has a (d+1)-edge connected core J that, from Lemma 8, can be found
in O(d · |V (G)|4) steps. We create a new graph G′ as follows: for each C ∈ C(J) we contract
all vertices of C to a single vertex vC and we update λ to λ′ so that if x 6∈ {vC | C ∈ C(J)},
then λ′(x) = λ(x) and if x = vC , then λ′(x) = ∩y∈V (C)λ(y). We claim that I ′ = (G′, H, λ′, α)
is an equivalent instance of ASLDH. Indeed, this is based on the fact that, given a λ-list
H-homomorphism χ of G and a connected component C of J , all vertices of J should be the
preimages via χ of the same vertex of H. To verify this fact, just observe that, if this is not the
case, then the removal of the ≤ d crossing edges from C (i.e., edges with endpoints mapped
to different vertices of H) will disconnect C, a contradiction to the (d+ 1)-edge-connectivity
of C.

It now remains to prove that |E(G′)| = O(d · |V (G′)|). If |E(G′)| ≥ (d+ 1) · (|V (G)′| − 1),
then, again from Proposition 6, G′ contains a (d+1)-edge connected subgraph. This, because
of Lemma 7, implies that G contains a subgraph that is (d+ 1)-edge connected and has more
edges than J , a contradiction. J

3.4 A reduction of ASLDH to LA

Given the results of the previous section we are now in position to prove the following.

I Theorem 10. If there is an algorithm that solves LA in T (n,w(I)) steps, then there exists
an algorithm that solves ASLDH in T

(
O(d(I) · n), O(d(I))

)
+O(d(I) · n4) steps.

Proof. Let I = (G,H, λ, α) be an instance of ASLDH. Using the algorithm of Lemma 9,
we may assume that |E(G)| = O(d(I) · |V (G)|). We then use I to generate an instance
I ′ = (G′, r, λ′, α′) of LA, as follows:

G′ = (V ′, E′), where
V ′ = V ∪ VF ∪ VL, where V = V (G), VF = {fuv | (u, v) ∈ E(G)}, and VL = {`uv |
(u, v) ∈ E(G)} and
E′ = E ∪ EF ∪ EL, where E = {{fuv, `uv} | (u, v) ∈ E(G)}, EF = {{u, fuv} | (u, v) ∈
E(G)}, EL = {{`uv, v} | (u, v) ∈ E(G)}.

r = |V (H)|+ 2 · |E2(H)| and σ : V (H̃)→ [r] is a bijection where H̃ is the graph obtained
from H by subdividing twice each of its arcs that are not loops. For each arc (x, y) ∈
E2(H), we denote its corresponding path in H̃ as Pxy, where V (Pxy) = {x, f̃xy, ˜̀

xy, y}.
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λ′ : V (G′)→ [r] such that

λ′(w) =



{σ(x) | x ∈ λ(w)} if w ∈ V

{σ(f̃xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪
{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = fuv ∈ VF

{σ(˜̀
xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪

{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = `uv ∈ VL.

α′ :
([r]

2
)
→ Z≥0 such that

α′(i, j) =


α(x, y) if there exists some (x, y) ∈ E2(H) such that

(i, j) ∈
{

(σ(x), σ(f̃xy)), (σ(f̃xy)), σ(˜̀
xy)), (σ(˜̀

xy), σ(y))
}

0 otherwise.

Let χ : V (G)→ V (H) be a λ-list H-homomorphism of G where ∀e∈E2(H) |C(e)| = α(e). We
construct an r-allocation V of V (G′) as follows:

for every u ∈ V = V (G), u belongs to the part Vi, where i = σ(χ(u))
for every fuv ∈ VF , fuv belongs to the part Vi, where

i =
{
σ(χ(u)) if χ(u) = χ(v)
σ(f̃xy) if x = χ(u) 6= y = χ(v)

for every `uv ∈ VL, `uv belongs to the part Vi, where

i =
{
σ(χ(u)) if χ(u) = χ(v)
σ(˜̀

xy) if x = χ(u) 6= y = χ(v)

It is easy to verify that V is a solution for I ′.

Now consider a solution V for I ′. From V, we define a mapping χ : V (G) → V (H) so
that for every u ∈ V , we have that χ(u) = σ−1(i) if and only if u ∈ V(i). We claim that χ
is a λ-list H-homomorphism of G where ∀e∈E2(H) |C(e)| = α(e). For this, we investigate χ
upon two conditions: firstly, we verify that χ is a λ-list H-homomorphism, and secondly that
∀e∈E2(H) |C(e)| = α(e).

Let us prove that χ is a λ-list H-homomorphism. To see that χ(u) ∈ λ(u) for every
u ∈ V (G), let u be in the i-th part of V. Since i ∈ λ′(u), the construction of λ′ implies
that σ−1(i) ∈ λ(u), and thus χ(u) ∈ λ(u). To see that χ is an H-homomorphism, for an
arbitrary edge (u, v) ∈ E(G) we shall show that (χ(u), χ(v)) ∈ E1(H) ∪ E2(H). Let u and
v respectively belong to σ(x)-th and σ(y)-th parts of V, for some x, y ∈ V (H̃). Note that
x ∈ λ(u) ⊆ V (H) and y ∈ λ(v) ⊆ V (H). There are two possibilities: x 6= y or x = y.

Case 1: x 6= y. Since σ is a bijection, this means σ(x) 6= σ(y). From the way we construct
α′, the vertices fuv and `uv can be only allocated into the σ(f̃xy)-th part and the σ(˜̀

xy)-
th part, respectively, in the solution V. Furthermore, the construction of α′ also implies
(x, y) ∈ E2(H).
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Case 2: x = y. This means σ(x) = σ(y). The construction of α′ implies fuv and `uv

are allocated into the σ(x)-th part of V as well. This, in turn, means that σ(x) ∈ λ′(fuv)
and σ(x) ∈ λ′(`uv). Recall that λ′(fuv) contains σ(x) only when (x, x) ∈ E1(H). Hence,
(x, y) ∈ E1(H).

Now we verify that ∀e∈E2(H) |C(e)| = α(e). Consider an arc e = (x, y) ∈ E2(H). Note
that for every directed edge (u, v) in the χ-arc charge C(e), the (u, fuv) of E(G′) contributes
to α′(σ(x), σ(f̃xy)) exactly by one unit. Conversely, for every edge (u, fuv) of E(G′) which
contributes to α′(σ(x), σ(f̃xy)), we have χ(v) = y and thus the directed arc (u, v) contributes
to C(e) by one unit. This establishes that ∀e∈E2(H) |C(e)| = α(e).

The claimed running time follows from the fact that w(I ′) =
∑
α′ = 3 ·

∑
α = O(d(I))

and |V (G′)| = O(|E(G)|) = O(d(I) · |V (G)|). J

4 An FPT-algorithm for List Allocation

In this section we give a brief description of the T-FPT-reductions required to prove that LA
admits an FPT-algorithm, i.e., the proof of Theorem 3. This is the most technical part of
our paper. Below we summarize the main steps.

1. List Allocation is T-FPT-reduced to its restriction, called CLA, where G is a connected
graph and only O(w) boxes are used. This reduction takes care of the different ways
connected components of G can entirely be placed into the boxes and is based on dynamic
programming.

2. CLA is T-FPT-reduced to a restriction of it, called HCLA, where G is highly connected
in the sense that there is no set of w edges that can separate G into two “big” connected
components. This reduction uses the technique of recursive understanding, introduced
in [23] and further developed in [7] and [5] (see also [19]), for generalizations of the
Multiway Cut problem).

3. HCLA is T-FPT-reduced to a special enhancement of it, called S-HCLA, whose input
additionally contains some set S ⊆ V (G) and the problem asks for a solution where
all vertices of S are placed in a unique “big” box and all vertices of this box which are
incident to crossing edges are contained in S. This variant of the problem permits the
application of the technique of randomized contractions, introduced in [5].

4. Finally, S-HCLA is T-FPT-reduced to List Allocation restricted to instances whose
sizes are bounded by a function of the parameter. It is a dynamic programming based
on the fact that an essentially equivalent instance of the problem can be constructed if,
apart from S, we remove from G all but a bounded number of the connected components
of G \ S.

5 Further research

In the definition of List Allocation we ask for a λ-list H-homomorphism of G where∑
e∈E(H) |C(e)| ≤ `. A different parameterization of List Allocation, that is similar in

flavor to Min-Max Multiway Cut, may instead ask for a λ-list H-homomorphism of G
where maxv∈V (H)

∑
e is incident to v |C(e)| ≤ `. We call this new problem Max Bounded

List Digraph Homomorphism (in short MBLDH) As it is straightforward to prove
an analogue of Theorem 5, where BLDH is now replaced by MBLDH and instead of
2O(` log h) · T (n, `) steps we now have a reduction that takes 2O(`2 log h) · T (n, `) steps. This
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88 Min-Max Multiway Cut and List Digraph Homomorphism

implies that MBLDH, when parameterized by ` and h admits an FPT-algorithm that runs
in 2O(`2·max{log `,log h}) · n4 · logn steps.

A natural research direction is to improve the running time of our FPT-algorithms for
Min-Max Multiway Cut and Bounded List Digraph Homomorphism. If we want to
improve our running times using the techniques used in this paper it seems that we need to
crucially improve upon the recursive understanding and randomized contractions technique.

Acknowledgement. We would like to thank the anonymous referees of an earlier version of
this paper for their thorough remarks and suggestions that improved the presentation and
some proofs of the paper.
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