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Abstract
Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approxi-
mating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514–528, 2006.], and it
is similar to pathwidth, which is the linearized variant of treewidth. Motivated from the results
on graph modification problems into graphs of bounded treewidth or pathwidth, we investigate a
graph modification problem into the class of graphs having linear rankwidth at most one, called
the Linear Rankwidth-1 Vertex Deletion (shortly, LRW1-Vertex Deletion). In this
problem, given an n-vertex graph G and a positive integer k, we want to decide whether there
is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most
one and if one exists, find such a vertex set. While the meta-theorem of Courcelle, Makowsky,
and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k) · n3 for some
function f , it is not clear whether this problem allows a runtime with a modest exponential
function. We establish that LRW1-Vertex Deletion can be solved in time 8k · nO(1). The
major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this
issue, we define the necklace graphs and investigate their structural properties. We also show
that the LRW1-Vertex Deletion has a polynomial kernel.
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1 Introduction

In a parameterized problem, we are given an instance (x, k), where k is a secondary measure-
ment, called as the parameter. The central question in parameterized complexity is whether a
parameterized problem admits an algorithm with runtime f(k) · |x|O(1), equivalently an FPT
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algorithm, where f is a function depending on the parameter k alone, and |x| is the input
size. As we study a parameterized problem when its unparameterized decision version is
NP-hard, the function f is super-polynomial in general. A parameterized problem admitting
such an algorithm is said to be fixed-parameter tractable, or FPT in short. For many natural
parameterized problems, the function f is overwhelming [15] or even non-explicit [23], espe-
cially when the algorithm is indicated by a meta-theorem. Therefore, a lot of research effort
focus on designing an FPT algorithm with affordable super-exponential part in the runtime.
We are especially interested in solving a parameterized problem in single-exponential time,
that is, in time ck · nO(1) for some constant c.

A powerful technique to handle parameterized problems is the kernelization algorithm.
A kernelization algorithm takes an instance (x, k) and outputs an instance (x′, k′) in time
polynomial in |x|+ k satisfying that (1) (x, k) is a Yes-instance if and only if (x′, k′) is a
Yes-instance, (2) k′ ≤ k, and |x′| ≤ g(k) for some function g. The reduced instance is called
a kernel and the function g is called the size of the kernel. A parameterized problem is said
to admit a polynomial kernel if there is a kernelization algorithm that reduces the input
instance into an instance with size bounded by a polynomial function g(k) in k.

Many natural graph problems can be expressed as a graph modification problem. Generally,
given an input graph G and a fixed set O of elementary operations and a graph property Π,
the objective is to transform G into a graph H ∈ Π by applying at most k operations from
O. Vertex deletion, edge deletion/addition or contraction are examples of such elementary
operations.

The graph property Π having treewidth or pathwidth at most w has received in-depth
attention as many problems become tractable on graphs of small treewidth. The celebrated
Courcelle’s theorem [8] implies that every graph property expressible in monadic second order
logic of the second type (MSO2) can be verified in time f(w) · n, when the input n-vertex
graph has treewidth at most w. Furthermore, having small treewidth frequently facilitates
the design of a dynamic programming algorithm whose runtime is much faster than that of
the all-round algorithm from the Courcelle’s meta-theorem. Therefore, it is reasonable to
measure how close an instance is from “an island of tractability within an ocean of intractable
problems” [18].

In the context of treewidth, the deletion problems for the special cases of w = 0 and
w = 1 correspond to the well-known Vertex Cover and Feedback Vertex Set problems
respectively. More generally, for any fixed w, the corresponding graph modification problem
Treewidth-w Vertex Deletion can be solved in time f(w, k) ·n implied by Graph Minor
Theory [23] and Courcelle’s meta-theorem [8]. As the function f subsumed in the meta
theorem is gigantic, it is natural to ask whether the exponential function in the runtime can
be rendered realistic. Recent endeavor pursuing this question culminated in establishing that
for any fixed w, the Treewidth-w Vertex Deletion is single-exponential fixed parameter
tractable with the deletion number k as the parameter [13, 19].

As for pathwidth, Pathwidth-1 Vertex Deletion was first studied by Philip, Ra-
man, Villanger [22], and later Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk [12] showed that
Pathwidth-1 Vertex Deletion can be solved in time 4.65k · nO(1) and it admits a
quadratic kernel. Using the general method developed for Treewidth-w Vertex Dele-
tion [13, 19], the Pathwidth-w Vertex Deletion problem admits a single exponential
FPT algorithm.

Linear rankwidth. Rankwidth was introduced by Oum and Seymour [21] for efficiently
approximating clique-width. Linear rankwidth is a linearized variation of rankwidth like
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140 Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion

pathwidth is the linearized variant of treewidth. While treewidth and pathwidth are small
only on sparse graphs, dense graphs may have small rankwidth or linear rankwidth. For
instance, complete graphs, complete bipartite graphs, and threshold graphs [7] have linear
rankwidth at most one even though all of them have unbounded treewidth. Rankwidth and
linear rankwidth have been intensively studied to generalize the known results for treewidth
and pathwidth [2, 9, 17, 20, 21].

Ganian [16] pointed out that some NP-hard problems, such as computing pathwidth,
can be solved in polynomial time on graphs of linear rankwidth at most 1. Generally, the
meta-theorem by Courcelle, Makowsky, Rotics [10] states that for every graph property Π
expressible in monadic second order logic of the first type (MSO1) and fixed k, there is a
cubic-time algorithm for testing whether a graph of rankwidth at most k has property Π. As
rankwidth is always less than or equal to linear rankwidth, those problems are tractable on
graphs of bounded linear rankwidth as well.

In the same context, it is natural to ask whether there is an FPT algorithm for (Linear)
Rankwidth-w Vertex Deletion, that is, a problem asking whether for a given graph
G and a positive integer k, G contains a vertex subset of size at most k whose deletion
makes G a graph of (linear) rankwidth at most w. It is only known that for fixed w, both
problems are FPT from the meta-theorem on graphs of bounded rankwidth [10] and the fact
that one vertex deletion can decrease rankwidth or linear rankwidth by at most one. We
discuss it in more detail in the last section. However, as the function of k obtained from the
meta-theorem is enormous, it is interesting to know whether there is a single-exponential
FPT algorithm for both problems, like Treewidth-w Vertex Deletion. Also, to the best
of our knowledge, there was no known previous result whether (Linear) Rankwidth-w
Vertex Deletion admits a polynomial kernel for any integer w.

Our contributions. In this paper, we show that the Linear Rankwidth-1 Vertex Deletion
problem admits a single-exponential FPT algorithm and a polynomial kernel. This is a first
step towards a goal of investigating whether (Linear) Rankwidth-w Vertex Deletion
is single-exponential FPT or has a polynomial kernel.

Linear Rankwidth-1 Vertex Deletion (LRW1-Vertex Deletion)
Input : A graph G, a positive integer k
Parameter : k
Question : Does G have a vertex subset S of size at most k whose removal makes G a
graph of linear rankwidth at most one?

I Theorem 1.1. For fixed k and a given graph G with n vertices, the LRW1-Vertex
Deletion problem can be solved in 8k · nO(1) time.

I Theorem 1.2. The LRW1-Vertex Deletion problem has a polynomial kernel.

We note that several graph classes with a certain path-like structure have been studied for
parameterized vertex deleting problems. Such classes include graphs of pathwidth 1, proper
interval graphs [14, 25], unit interval graphs [24, 5], and interval graphs [6]. A common
approach in the previous work is to use the characterization of the structures obtained after
removing small obstructions. We also characterize graphs excluding small obstructions for
graphs of linear rankwidth at most 1 to develop an FPT algorithm and a polynomial kernel.

The main ingredient is to investigate a new class of graphs, called necklace graphs, which
are close to graphs of linear rankwidth at most 1. To define this class, we use the induced
subgraph obstructions for graphs of linear rankwidth at most 1, which are listed in Figures 1
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house gem domino hole
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Figure 1 The induced subgraph obstructions for distance-hereditary graphs.
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Figure 2 The distance-hereditary induced subgraph obstructions for thread graphs.

and 2 [1]. Briefly speaking, necklace graphs, when viewed locally, are graphs of linear
rankwidth at most 1, but they may have a long induced cycle. We show that every connected
graph having no obstructions of size at most 8 is a necklace graph, and we can easily find a
minimum deleting set on a connected necklace graph. In our FPT algorithm, we first use
a simple branching algorithm to remove the obstructions of size at most 8 with the time
complexity 8k ·nO(1). Since a final instance does not have obstructions of size at most 8, it is
a disjoint union of thread graph and necklace graphs, and we compare the remaining budget
with the sum of minimum deleting set over all necklace components to decide whether it is a
Yes-instance.

To obtain a polynomial kernel, we start with packing obstructions of size at most 8 using
the Sunflower lemma, and taking a minimum deleting set on the remaining necklace graph.
The union of two sets will have size bounded by a polynomial in k, and its removal makes
an input graph into a graph of linear rankwidth at most 1. Graphs of linear rankwidth at
most 1 can be seen as graphs obtained by connecting certain blocks, called thread blocks, like
a path (Theorem 2.1). The main difficulty for reducing the remaining part is to shrink a
large thread block. Even though there is a simple pattern of constructions on thread blocks,
it is not at all obvious how to find an irrelevant vertex in a sufficiently large thread block
regarding all individual small obstructions. We can resolve this issue using the set obtained
by the Sunflower lemma, which has the nice property that any minimum deleting set for the
small obstructions in G is contained in the prescribed set. Using this, we will show how to
find another obstruction from the long induced cycle containing a potential irrelevant vertex.
We remark that a similar idea was used by Fomin, Saurabh, and Villanger [14] to obtain a
polynomial kernel for the Proper Interval Vertex Deletion problem.
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142 Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion

Figure 3 An example of a thread block.

2 Preliminaries

In this paper, all graphs are finite and undirected, if not mentioned otherwise. For a graph
G, we denote by V (G) and E(G) the vertex set and the edge set of G, respectively, if they
are not specified. Let G = (V,E) be a graph. Let NG(x) denote the neighborhood of a
vertex x ∈ V . For S ⊆ V , G[S] denotes the subgraph of G induced on S and we denote by
G \ S := G[V \ S]. For W ⊆ E, we denote by G \W := (V,E \W ). For short we write G \ x
instead of G \ {x} for x ∈ V ∪E. A vertex v of G is called a pendant vertex if |NG(x)| = 1.
An edge e of a connected graph G is called a cut-edge if G \ e is disconnected. The length of
a path is defined as the number of edges in the path. For n ≥ 3, we denote by Cn the cycle
with n vertices. For a set F of graphs, a graph G is F-free if G has no induced subgraph
isomorphic to a graph in F .

A (linear) ordering on a finite set S is a bijective mapping σ : S → {1, . . . , |S|}, and we
write x <σ y if σ(x) < σ(y), and σ−1 as the inverse bijective mapping. For an X × Y -matrix
M and X ′ ⊆ X,Y ′ ⊆ Y , let M [X ′, Y ′] be the submatrix of M whose rows and columns are
indexed by X ′ and Y ′, respectively.

Linear rankwidth and thread graphs. The adjacency matrix of a graph G = (V,E), which
is a (0, 1)-matrix over the binary field, will be denoted by AG. The width of a linear ordering
σ of V in G is max1≤i≤|V | rank(AG[{σ−1(1), . . . , σ−1(i)}, V \ {σ−1(1), . . . , σ−1(i)}]), where
the rank is computed over the binary field. The linear rankwidth of a graph G is defined as
the minimum width over all linear orderings of V .

Graphs of linear rankwidth at most one are called thread graphs by Ganian [16], and each
connected thread graph consists of a sequence of thread blocks. We follow the definition of
thread blocks given by Adler, Farley, and Proskurowski [1], and develop a more convenient
way to create a thread graph, which is useful to define necklace graphs.

A triple B(x, y) = (G, σ, `), where x and y are two vertices of the graph G = (V,E), σ is
a ordering on V , and ` is a function from V to {{L}, {R}, {L,R}}, is a thread block if:
1. `(x) = {R} and `(y) = {L},
2. for v, w ∈ V with v <σ w, vw ∈ E(G) if and only if R ∈ `(v) and L ∈ `(w),
3. `(σ−1(2)) 6= {L} if σ−1(2) 6= y.

See Figure 3 for an example. The aim of the third condition is to guarantee a unique
decomposition of thread graphs into thread blocks. For a digraph D = (VD, AD), a set of
thread blocks {B(x, y) = (Gxy, σxy, `xy) | xy ∈ AD} is said to be mergeable with D if for
any two arcs x1y1, x2y2 of AD, V (Gx1y1) ∩ V (Gx2y2) = {x1, y1} ∩ {x2, y2}. For a digraph
D = (VD, AD) and a mergeable set of thread blocks BD = {B(x, y) = (Gxy, σxy, `xy) | xy ∈
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AD}, G = D � BD is the graph with the vertex set V =
⋃
xy∈AD

V (Gxy) and the edge set
E =

⋃
xy∈AD

E(Gxy).
A connected graph G is a thread graph if G is an one vertex graph or G = P �BP for some

directed path P , called the underlying path, and some set of thread blocks BP mergeable
with P . A graph is a thread graph if each of its connected components is a thread graph.

The induced subgraph obstructions for graphs of linear rankwidth at most 1 consist of
the set of induced subgraph obstructions for graphs of rankwidth at most 1 (equivalently,
distance-hereditary graphs) [3], which are a house, a gem, a domino, and induced cycles
of length at least 5 in Figure 1, and the set of 14 induced subgraph obstructions for linear
rankwidth at most 1 that are graphs of rankwidth 1, depicted in Figure 2. For convenience,
we define that

ΩU is the set of 14 graphs in Figure 2,
ΩT := {house, gem, domino} ∪ {Ck | k ≥ 5} ∪ ΩU , and
ΩN := {house, gem, domino, C5, C6, C7, C8} ∪ ΩU .

I Theorem 2.1 ([16, 1]). Let G be a graph. The following are equivalent.
G has linear rankwidth at most 1.
G is a thread graph.
G has no induced subgraph isomorphic to a graph in ΩT .

It is known that one can recognize a graph of linear rankwidth 1 in polynomial time using
split decompositions of graphs [4, 2], and easily decompose a connected thread graph into
thread blocks.

I Theorem 2.2 ([4, 2]). Let G be a graph on with n vertices and m edges. Then in time
O(n+m), we can test whether G is a thread graph, and if G is a thread graph, then we can
decompose each connected component into a sequence of thread blocks in the same time.

In the remaining part, we frequently use the term ‘thread graphs’ for graphs of linear
rankwidth at most 1. For a graph G and S ⊆ V , S is called a LRW1-deletion set if G \ S is
a thread graph.

Necklace graphs. We generalize the construction of thread graphs from directed paths to
directed cycles. A connected graph G is called a necklace graph if G = C � BC for some
directed cycle C, called the underlying cycle, and some set of thread blocks BC mergeable
with C. Our FPT algorithm and the construction of a polynomial kernel relies on the
following characterization of ΩN -free graphs.

I Theorem 2.3. A connected ΩN -free graph is either a connected thread graph or a necklace
graph whose underlying cycle has length at least 9.

Let us sketch the proof of Theorem 2.3, which constructs the underlying cycle and a set
of thread blocks as follows. Let G = (V,E) be a connected ΩN -free graph and suppose that
G is not a thread graph. Since G is ΩN -free and it is not a thread graph, by Theorem 2.1,
G has an induced subgraph isomorphic to Ck for some k ≥ 9. We prove by induction on
|V | that if C is a shortest cycle among induced cycles of length at least 9 in G, then G is a
necklace graph whose underlying cycle is C. Let C := v1v2 · · · vkv1 be a shortest cycle among
induced cycles of length at least 9 in G and for convenience, let vk+1 := v1 and vk+2 := v2.
We regard C as a directed cycle where for each 1 ≤ j ≤ k, vjvj+1 is an arc.

If G = C, then we are done because C itself is a necklace graph with the underlying cycle
C. We may assume that |V | > |V (C)|, and choose a vertex v ∈ V \ V (C) such that G \ v is
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144 Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion

connected. Clearly, G \ v is again ΩN -free graph, and C is a shortest cycle among induced
cycles of length at least 9 in G \ v. By the induction hypothesis, there exists some set of
thread blocks BC mergeable with C such that G \ v = C �BC . The rest of the proof consists
in showing that G = C � B′C for some set of thread blocks B′C mergeable with C.

3 An FPT algorithm for LRW1-Vertex Deletion

Our FPT algorithm is a branching algorithm that reduces an input instance to a ΩN -free
graph. As each graph of ΩN has size at most 8, the announced complexity follows. It remains
to prove that given a ΩN -free graph, a minimum vertex deletion set for LRW1-Vertex
Deletion can be found in polynomial time. In fact, we prove that such a set has size at
most one per necklace component and identifying such a vertex requires polynomial time.

Using the following proposition, we can find a minimum LRW1-deletion set of a ΩN -free
graph in polynomial time.

I Proposition 3.1. Let G be a ΩN -free graph with n vertices and m edges. We can compute
the minimum size of a LRW1-deletion set of G in time O(n+m), and find such a set S in
the same time.

To prove it, we use the following lemma.

I Lemma 3.2. Let G be a connected necklace graph with the underlying cycle C of length at
least 4. For each v ∈ V (C), G \ v is a thread graph.

Proof of Proposition 3.1. Let k be the minimum size of a LRW1-deletion set of G. We
remark that each connected component of G is either a thread graph or a necklace graph by
Theorem 2.3. For each component H of G, we test whether H is a thread graph or not in
time O(|V (H)|+ |E(H)|) using Theorem 2.2. Note that we should remove at least one vertex
for each necklace component of G, and moreover, by Lemma 3.2, it is enough to remove
exactly one vertex for each component. Thus, k is the number of its necklace components.

To identify such a vertex in each necklace component, it is sufficient to find a vertex on
the underlying cycle by Lemma 3.2. Let H be a necklace component and C be the underlying
cycle of H. Observe that for v ∈ V (H) \ V (C), H \ v is still a connected necklace graph with
the same underlying cycle, because we can adjust the ordering of the thread block containing
v into an ordering without v with the restricted labeling. We first test whether H has a cut
vertex, and if it has a cut vertex w, then w ∈ V (C). Otherwise, we search a vertex cut of size
2. Since every necklace graph whose underlying cycle has length at least 4 contains a vertex
cut of size 2, we can find it, say {v, w}. Then one of the two vertices should be contained in
C. We test whether H \ v or H \w is a thread graph or not. If H \ v is a thread graph, then
v ∈ V (C), and otherwise, w ∈ V (C). Since finding a cut vertex or a vertex cut of size two
can be done in linear time, we are done with the time complexity. J

Proof of Theorem 1.1. Let (G, k) be an instance of the LRW1-Vertex Deletion problem.
First find an induced subgraph of G isomorphic to a graph in ΩN and branch by removing
one of the vertices in the subgraph. Because the maximum size of graphs in ΩN is 8, we
can find such a vertex subset in time O(n8) if exists. After the branching algorithm, we
transform the given instance (G, k) into at most 8k sub-instances (G′, k′) such that each
sub-instance consists of a ΩN -free graph G′ and a remaining budget k′. Clearly, (G, k) is a
Yes-instance if and only if one of sub-instances (G′, k′) is a Yes-instance.

Let (G′, k′) be a sub-instance obtained from the branching algorithm. Since G′ is ΩN -free,
by Theorem 2.3, each connected component of G′ is either a thread graph or a necklace



M. Kanté, E. Kim, O. Kwon, and C. Paul 145

graph with the underlying cycle of length at least 9. By Proposition 3.1, we can compute a
minimum LRW1-deletion set of G′ in time O(|V (G′|+ |E(G′)|), and decide whether (G′, k′)
is a Yes-instance. By checking all sub-instances, we can decide whether (G, k) is a Yes-
instance in time 8k · O(n+m) where m is the number of edges of G. We conclude that the
LRW1-Vertex Deletion problem can be solved in time 8k · O(n8). J

4 A polynomial kernel for LRW1-Vertex Deletion

We use the Sunflower lemma for packing obstructions of small size. It consists in finding a
subset T of the input graph G = (V,E) whose removal turns G into a thread graph with the
property that for every set S ⊆ V of size at most k, the following are equivalent (Lemma 4.2):

S is a minimal vertex set such that G \ S has no obstructions in ΩN .
S is a minimal vertex set such that G[T ] \ S has no obstructions in ΩN .

From this property, if we choose a minimal LRW1-deletion set S in the input graph, then
the vertices of S \ T should be used to remove at least one long induced cycle. This property
is essentially used to find an irrelevant vertex in a large thread block. Moreover, with this
set, we can preprocess the instance so that there is no obstruction containing exactly one
vertex of T . This would be used to bound the length of the sequence of thread blocks in
each connected component, and the number of non-trivial components.

Let (G = (V,E), k) be an instance of LRW1-Vertex Deletion. We start with an easy
reduction rule.

I Reduction Rule 1. If G has a component that is a thread graph, then we remove it from G.

4.1 Packing small obstructions
Let F be a family of subsets over a set U . A subset U ′ ⊆ U is called a hitting set of F if for
every set F ∈ F , F ∩ U ′ 6= ∅. For a graph G and a family of graphs F , a set S ⊆ V (G) is
also called a hitting set for F if for every induced subgraph H of G that is isomorphic to a
graph in F , V (H)∩ S 6= ∅. The following lemma can be obtained from the Sunflower lemma.

I Lemma 4.1 ([14]). Let F be a family of sets of size at most d over a set U , and let k be a
positive integer. Then in time O(|F|(k + |F|)), we can find a nonempty set F ′ ⊆ F such
that
1. for every U ′ ⊆ U of size at most k, U ′ is a minimal hitting set of F if and only if U ′ is a

minimal hitting set of F ′, and
2. |F ′| ≤ d!(k + 1)d.

Using Proposition 3.1 and Lemma 4.1, we identify a subset T of vertices of G of polynomial
size in k that allows us to forget about small obstructions in G.

I Lemma 4.2. Let (G = (V,E), k) be an instance of LRW1-Vertex Deletion. There is
a polynomial time algorithm that either concludes that (G, k) is a No-instance or finds a
non-empty set T ⊆ V such that
1. G \ T is a thread graph,
2. for every set S ⊆ V of size at most k, S is a minimal hitting set for ΩN in G if and only

if it is a minimal hitting set for ΩN contained in G[T ], and
3. |T | ≤ 8 · 8!(k + 1)8 + k.

Let us fix a subset T of V obtained by Lemma 4.2. We preprocess using the following
reduction rule.

IPEC’15



146 Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion

I Reduction Rule 2. Let U ⊆ T such that for every u ∈ U , there exists an induced subgraph
H of G isomorphic to a graph in ΩN with V (H) ∩ T = {u}. If |U | > k, then (G, k) is a
No-instance; otherwise, remove U from G and reduce k by |U |, and use T \ U instead of T .

It can be done in polynomial time because we only need to look at obstructions of ΩN in G.

I Lemma 4.3. Reduction Rule 2 is safe.

From now on, we assume that G is reduced under Reduction Rules 1 and 2. A vertex v
of G is called irrelevant if (G, k) is a Yes-instance if and only if (G \ v, k) is a Yes-instance.

4.2 Bounding the size of components of G \ T

The goal is to shrink G \ T while preserving the solutions. For convenience, let µ(k) :=
8 · 8!(k + 1)8 + k. We first show that if a thread block in G \ T is large, then we can always
find an irrelevant vertex in there.

I Proposition 4.4. If G \ T contains a thread block (Gxy, σxy, `xy) of size at least (k +
2)(µ(k) + 2)2 + 1, then we can find an irrelevant vertex in Gxy in polynomial time.

We mainly use the following lemma.

I Lemma 4.5. Let G be a graph and let v1v2v3v4v5 be an induced path of length 4 in G.
If two distinct vertices w1, w2 in V (G) \ {v1, v2, . . . , v5} have the neighbors v2 and v4 in G,
then G \ v3 contains an induced subgraph isomorphic to a graph in ΩN .

Proof of Proposition 4.4. Suppose that G \ T contains a thread block of size at least
(k+ 2)(µ(k) + 2)2 + 1. We can find such a thread block in polynomial time using Theorem 2.2.
Let B := B(x, y) = (B, σ, `) be a thread block of size at least (k + 2)(µ(k) + 2)2 + 1. For
convenience, let σ′ be the ordering obtained from σ by removing the end vertices x and y.

In the following procedure, we mark some vertices of B in order to find an irrelevant
vertex in B. We set Z := ∅. (1) For each v of T , choose the first k + 2 vertices z of σ′ that
are neighbors of v with R ∈ `(z), and choose the last k+ 2 vertices z of σ′ that are neighbors
of v with L ∈ `(z), and add them to Z. (2) For each pair of two vertices v, v′ in T , choose
k + 2 common neighbors of v and v′ in B, and add them to Z. (3) Choose the first k + 2
vertices z of σ′ with R ∈ `(z), and choose the last k + 2 vertices z of σ′ with L ∈ `(z), and
add them to Z. In each case, If there are at most k + 1 such vertices, then we add all of
them to Z. Then

|Z| ≤ |T |(2k + 4) + |T |2(k + 2) + (2k + 4) ≤ (k + 2)(µ(k) + 2)2 − 2.

Since |V (B)| ≥ (k + 2)(µ(k) + 2)2 + 1, there exists a vertex w in V (B) \ Z \ {x, y}. We
claim that w is an irrelevant vertex. If (G, k) is a Yes-instance, then (G \ w, k) is clealry a
Yes-instance.

Suppose that (G \ w, k) is a Yes-instance and let X ⊆ V (G) \ {w} such that |X| ≤ k

and G \ (X ∪ {w}) is a thread graph. We may assume that G \X is not a thread graph. So,
G \X must have an obstruction in ΩT that contains the vertex w. Let X ′ ⊆ X ∪ {w} be a
minimal hitting set for ΩN in G. From the property of the set T , X ′ is a minimal hitting
set for ΩN in G[T ], which implies that X ′ ⊆ T . Thus G \X must have an induced cycle of
length at least 9 that contains w. Let C be an induced cycle of length at least 9 containing
w in G \X.

We will find an induced subgraph of G \ (X ∪ {w}) that is isomorphic to a graph in ΩN
using Lemma 4.5, which leads a contradiction. Let v1, v2, w, v3, v4 be the consecutive vertices
on C. To apply Lemma 4.5, we will find two vertices that are adjacent to v2 and v3.
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Figure 4 Cases 1–3 in Proposition 4.4.

1. (Case 1. v2, v3 ∈ T .) Since v2 and v3 have a common neighbor w in V (B) \ Z, Z
contains k + 2 common neighbors of v2 and v3. Since |X| ≤ k, there exist two vertices
w1, w2 ∈ Z \X that are common neighbors of v2 and v3.

2. (Case 2. One of v2 and v3 is contained in T .) From the symmetry, we may assume that
v2 ∈ T and v3 /∈ T . Since w /∈ {x, y}, v3 is contained in B. If R ∈ `(w) and w <σ v3,
then Z contains the first k + 2 vertices z of σ′ that are neighbors of v2 with R ∈ `(z).
We choose two vertices of them that are not in X. In case when L ∈ `(w) and v3 <σ w,
we use the last k + 2 vertices z of σ′ that are neighbors of v2 with L ∈ `(z) to identify
two vertices similarly.

3. (Case 3. Neither v2 nor v3 is contained in T .) Since w /∈ {x, y}, v2 and v3 are contained
in B. If v2 <σ w <σ v3, then R ∈ `(v2), L ∈ `(v3) and it implies that v2v3 ∈ E, which
is contradiction. Also, v3 <σ w <σ v2 cannot happen. Thus, both of v2 and v3 appear
either before w in σ or after w in σ. By the symmetry, we may assume that v2 and v3
appear before w in σ. So, R ∈ `(v2), R ∈ `(v3), and L ∈ `(w). Since Z contains the
last k + 2 vertices z of σ′ with L ∈ `(z), there exist two vertices w1, w2 from those k + 2
vertices that are not in X and C.

In all cases, G \ (X ∪ {w}) has an induced subgraph isomorphic to a graph in ΩN by
Lemma 4.5. It contradicts to the assumption that X ∪ {w} is a LRW1-deletion set of G.
Therefore, G \X is a thread graph, and we conclude that (G, k) is a Yes-instance. J

We show that if a vertex v in T has neighbors on 7 distinct blocks, then we can find
a subgraph H isomorphic to one of {β1, β2, β3, β4} such that V (H) ∩ T = {v}. However,
there is no obstruction in ΩN containing exactly one vertex from T by Reduction Rule 2.
Thus, if a component of G \ T has many thread blocks, then we can identify a sequence
of consecutive thread blocks not touched by any obstruction in ΩN . This allows us to
contract one of these “safe” thread blocks, say B(x, y), to a vertex v such that NG\T (v) =
(NG\T (x) ∪NG\T (y)) \B(x, y).

I Lemma 4.6. If G \ T has a connected component with at least 19(6µ(k) + 1) thread blocks,
then we can in polynomial time transform G into a graph G′ = (V ′, E′) with |V ′| < |V | such
that (G, k) is a Yes-instance if and only if (G′, k) is a Yes-instance.

4.3 Kernel size
We bound the number of connected components using the following lemma.

I Lemma 4.7.
1. The graph G \ T has at most 2µ(k) connected components containing at least two vertices.
2. If G \ T has at least µ(k)2 · (k + 2) + 1 isolated vertices, then we can find an irrelevant

vertex in polynomial time.
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Let us now piece everything together and analyze the kernel size.

I Theorem 4.8. The LRW1-Vertex Deletion problem has a kernel of size O(k33).

Proof. Let (G = (V,E), k) be an instance of LRW1-Vertex Deletion. By Reduction
Rule 1, we may safely assume that G has no components that are thread graphs. Let T ⊂ V
be a vertex subset satisfying Lemma 4.2, and we preprocess using Reduction Rule 2.

By Lemma 4.3, we may assume that for every vertex subset S ⊆ V such that G[S] is a
graph of {β1, β2, β3, β4}, |S ∩ T | ≥ 2. Combining Proposition 4.4 and Lemma 4.6, we can
assume that every connected component ofG\T has size at most (k+2)(µ(k)+2)2·19(6µ(k)+1)
(otherwise the instance can be reduced in polynomial time). Note that for each connected
component H of G \ T , there exists a vertex in H that has a neighbor in T , otherwise, H is
a component of G that is a thread graph. Therefore, by Lemma 4.7, we can assume that
the number of non-trivial components of G \ T is at most 2µ(k) and the number of isolated
vertices in G \ T is at most µ(k)2(k + 2). It follows that

|T |+ |V \ T | ≤ µ(k) +
(
2µ(k) · 19(6µ(k) + 1) · (k + 2)(µ(k) + 2)2 + µ(k)2 · (k + 2)

)
= O(k · µ(k)4) = O(k33). J

5 Concluding remarks

We consider the problem Linear rankwidth-w Vertex Deletion when w = 1. A next
step is to investigate the problem for bigger w, or for any fixed w. A closely related problem
is Rankwidth-w Vertex Deletion, which asks whether G has a vertex subset of size
at most k such that G \ S has rankwidth at most w. This problem is fixed-parameter
tractable for the following reason. Note that any Yes-instance has rankwidth at most w + k.
Having bounded rankwith can be characterized by a finite list of forbidden vertex-minors [20].
From [11], having a vertex-minor can be expressed in C2MSO, i.e., monadic second order logic
without edge set quantification where we can express the parity of |X| for a vertex set X.
Fixed-parameter tractability follows as a consequence of Courcelle, Makowsky, Rotics [10].

This result can be turned into a constructive algorithm as [20] provides an explicit upper
bound on the size of vertex-minor obstructions for rankwidth k. However, the exponential
blow-up in the runtime is huge with respect to both w and k. It is a challenging question
whether a reasonable dependency on k can be achieved. A single-exponential time would be
ideal, which was achievable for its treewidth counterpart. A first realistic goal is to consider
the case when w = 1, i.e. the Distance-Hereditary Vertex Deletion. We leave it as an
open question whether this problem can be solved in time ck ·nO(1) time for some constant c.
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