Mamadou Moustapha Kanté 
email: mamadou.kante@isima.fr
  
Eun Jung Kim 
  
O-Joung Kwon 
email: ojoungkwon@gmail.com
  
Christophe Paul 
email: christophe.paul@lirmm.fr
  
© Mamadou 
  
Moustapha Kanté 
  
  
An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion

Keywords: 1998 ACM Subject Classification F.2.2 Computation on Discrete Structures, G.2.1 Combinatorics Algorithms, G.2.2 Graph Agorithms Keywords and phrases (linear) rankwidth, distance-hereditary graphs, thread graphs, parameterized complexity, kernelization Digital Object Identifier 10.4230/LIPIcs.IPEC.2015

Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.], and it is similar to pathwidth, which is the linearized variant of treewidth. Motivated from the results on graph modification problems into graphs of bounded treewidth or pathwidth, we investigate a graph modification problem into the class of graphs having linear rankwidth at most one, called the Linear Rankwidth-1 Vertex Deletion (shortly, LRW1-Vertex Deletion). In this problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most one and if one exists, find such a vertex set. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f (k) • n 3 for some function f , it is not clear whether this problem allows a runtime with a modest exponential function. We establish that LRW1-Vertex Deletion can be solved in time 8 k • n O(1) . The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define the necklace graphs and investigate their structural properties. We also show that the LRW1-Vertex Deletion has a polynomial kernel.

Introduction

In a parameterized problem, we are given an instance (x, k), where k is a secondary measurement, called as the parameter. The central question in parameterized complexity is whether a parameterized problem admits an algorithm with runtime f (k) • |x| O (1) , equivalently an FPT algorithm, where f is a function depending on the parameter k alone, and |x| is the input size. As we study a parameterized problem when its unparameterized decision version is NP-hard, the function f is super-polynomial in general. A parameterized problem admitting such an algorithm is said to be fixed-parameter tractable, or FPT in short. For many natural parameterized problems, the function f is overwhelming [START_REF] Frick | The complexity of first-order and monadic second-order logic revisited[END_REF] or even non-explicit [START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF], especially when the algorithm is indicated by a meta-theorem. Therefore, a lot of research effort focus on designing an FPT algorithm with affordable super-exponential part in the runtime. We are especially interested in solving a parameterized problem in single-exponential time, that is, in time c k • n O (1) for some constant c.

A powerful technique to handle parameterized problems is the kernelization algorithm. A kernelization algorithm takes an instance (x, k) and outputs an instance (x , k ) in time polynomial in |x| + k satisfying that (1) (x, k) is a Yes-instance if and only if (x , k ) is a Yes-instance, (2) k ≤ k, and |x | ≤ g(k) for some function g. The reduced instance is called a kernel and the function g is called the size of the kernel. A parameterized problem is said to admit a polynomial kernel if there is a kernelization algorithm that reduces the input instance into an instance with size bounded by a polynomial function g(k) in k.

Many natural graph problems can be expressed as a graph modification problem. Generally, given an input graph G and a fixed set O of elementary operations and a graph property Π, the objective is to transform G into a graph H ∈ Π by applying at most k operations from O. Vertex deletion, edge deletion/addition or contraction are examples of such elementary operations.

The graph property Π having treewidth or pathwidth at most w has received in-depth attention as many problems become tractable on graphs of small treewidth. The celebrated Courcelle's theorem [START_REF] Courcelle | The Monadic Second-Order Theory of Graphs. I. Recognizable Sets of Finite graphs[END_REF] implies that every graph property expressible in monadic second order logic of the second type (MSO 2 ) can be verified in time f (w) • n, when the input n-vertex graph has treewidth at most w. Furthermore, having small treewidth frequently facilitates the design of a dynamic programming algorithm whose runtime is much faster than that of the all-round algorithm from the Courcelle's meta-theorem. Therefore, it is reasonable to measure how close an instance is from "an island of tractability within an ocean of intractable problems" [START_REF] Gaspers | The Multivariate Algorithmic Revolution and Beyond -Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday[END_REF].

In the context of treewidth, the deletion problems for the special cases of w = 0 and w = 1 correspond to the well-known Vertex Cover and Feedback Vertex Set problems respectively. More generally, for any fixed w, the corresponding graph modification problem Treewidth-w Vertex Deletion can be solved in time f (w, k) • n implied by Graph Minor Theory [START_REF] Robertson | Graph minors. XX. Wagner's conjecture[END_REF] and Courcelle's meta-theorem [START_REF] Courcelle | The Monadic Second-Order Theory of Graphs. I. Recognizable Sets of Finite graphs[END_REF]. As the function f subsumed in the meta theorem is gigantic, it is natural to ask whether the exponential function in the runtime can be rendered realistic. Recent endeavor pursuing this question culminated in establishing that for any fixed w, the Treewidth-w Vertex Deletion is single-exponential fixed parameter tractable with the deletion number k as the parameter [START_REF] Fedor | Planar f-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Jung | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF].

As for pathwidth, Pathwidth-1 Vertex Deletion was first studied by Philip, Raman, Villanger [START_REF] Philip | A quartic kernel for pathwidth-one vertex deletion[END_REF], and later Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk [START_REF] Cygan | An improved fpt algorithm and a quadratic kernel for pathwidth one vertex deletion[END_REF] showed that Pathwidth-1 Vertex Deletion can be solved in time 4.65 k • n O (1) and it admits a quadratic kernel. Using the general method developed for Treewidth-w Vertex Deletion [START_REF] Fedor | Planar f-deletion: Approximation, kernelization and optimal FPT algorithms[END_REF][START_REF] Jung | Linear kernels and single-exponential algorithms via protrusion decompositions[END_REF], the Pathwidth-w Vertex Deletion problem admits a single exponential FPT algorithm.

Linear rankwidth.

Rankwidth was introduced by Oum and Seymour [START_REF] Oum | Approximating clique-width and branch-width[END_REF] for efficiently approximating clique-width. Linear rankwidth is a linearized variation of rankwidth like

I P E C ' 1 5
Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion pathwidth is the linearized variant of treewidth. While treewidth and pathwidth are small only on sparse graphs, dense graphs may have small rankwidth or linear rankwidth. For instance, complete graphs, complete bipartite graphs, and threshold graphs [START_REF] Chvátal | Studies in integer programming, chapter Aggregation of inequalities in integer programming[END_REF] have linear rankwidth at most one even though all of them have unbounded treewidth. Rankwidth and linear rankwidth have been intensively studied to generalize the known results for treewidth and pathwidth [START_REF] Adler | Linear rank-width of distance-hereditary graphs[END_REF][START_REF] Courcelle | Graph operations characterizing rankwidth[END_REF][START_REF] Ganian | On parse trees and myhill-nerode-type tools for handling graphs of bounded rank-width[END_REF][START_REF] Oum | Rank-width and vertex-minors[END_REF][START_REF] Oum | Approximating clique-width and branch-width[END_REF].

Ganian [START_REF] Ganian | Thread graphs, linear rank-width and their algorithmic applications[END_REF] pointed out that some NP-hard problems, such as computing pathwidth, can be solved in polynomial time on graphs of linear rankwidth at most 1. Generally, the meta-theorem by Courcelle, Makowsky, Rotics [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] states that for every graph property Π expressible in monadic second order logic of the first type (MSO 1 ) and fixed k, there is a cubic-time algorithm for testing whether a graph of rankwidth at most k has property Π. As rankwidth is always less than or equal to linear rankwidth, those problems are tractable on graphs of bounded linear rankwidth as well.

In the same context, it is natural to ask whether there is an FPT algorithm for (Linear) Rankwidth-w Vertex Deletion, that is, a problem asking whether for a given graph G and a positive integer k, G contains a vertex subset of size at most k whose deletion makes G a graph of (linear) rankwidth at most w. It is only known that for fixed w, both problems are FPT from the meta-theorem on graphs of bounded rankwidth [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] and the fact that one vertex deletion can decrease rankwidth or linear rankwidth by at most one. We discuss it in more detail in the last section. However, as the function of k obtained from the meta-theorem is enormous, it is interesting to know whether there is a single-exponential FPT algorithm for both problems, like Treewidth-w Vertex Deletion. Also, to the best of our knowledge, there was no known previous result whether (Linear) Rankwidth-w Vertex Deletion admits a polynomial kernel for any integer w.

Our contributions. In this paper, we show that the Linear Rankwidth-1 Vertex Deletion problem admits a single-exponential FPT algorithm and a polynomial kernel. This is a first step towards a goal of investigating whether (Linear) Rankwidth-w Vertex Deletion is single-exponential FPT or has a polynomial kernel. We note that several graph classes with a certain path-like structure have been studied for parameterized vertex deleting problems. Such classes include graphs of pathwidth 1, proper interval graphs [START_REF] Fedor | A polynomial kernel for proper interval vertex deletion[END_REF]25], unit interval graphs [24,[START_REF] Cao | Unit interval editing is fixed-parameter tractable[END_REF], and interval graphs [START_REF] Cao | Interval deletion is fixed-parameter tractable[END_REF]. A common approach in the previous work is to use the characterization of the structures obtained after removing small obstructions. We also characterize graphs excluding small obstructions for graphs of linear rankwidth at most 1 to develop an FPT algorithm and a polynomial kernel.

The main ingredient is to investigate a new class of graphs, called necklace graphs, which are close to graphs of linear rankwidth at most 1. To define this class, we use the induced subgraph obstructions for graphs of linear rankwidth at most 1, which are listed in Figures 1

house gem domino hole 1 Figure 1
The induced subgraph obstructions for distance-hereditary graphs.

α 1 α 2 α 3 α 4 α 5 α 6 β 1 β 2 β 3 β 4 γ 1 γ 2 γ 3 γ 4 1 Figure 2
The distance-hereditary induced subgraph obstructions for thread graphs.

and 2 [START_REF] Adler | Obstructions for linear rankwidth at most 1[END_REF]. Briefly speaking, necklace graphs, when viewed locally, are graphs of linear rankwidth at most 1, but they may have a long induced cycle. We show that every connected graph having no obstructions of size at most 8 is a necklace graph, and we can easily find a minimum deleting set on a connected necklace graph. In our FPT algorithm, we first use a simple branching algorithm to remove the obstructions of size at most 8 with the time complexity 8 k • n O (1) . Since a final instance does not have obstructions of size at most 8, it is a disjoint union of thread graph and necklace graphs, and we compare the remaining budget with the sum of minimum deleting set over all necklace components to decide whether it is a Yes-instance.

To obtain a polynomial kernel, we start with packing obstructions of size at most 8 using the Sunflower lemma, and taking a minimum deleting set on the remaining necklace graph. The union of two sets will have size bounded by a polynomial in k, and its removal makes an input graph into a graph of linear rankwidth at most 1. Graphs of linear rankwidth at most 1 can be seen as graphs obtained by connecting certain blocks, called thread blocks, like a path (Theorem 2.1). The main difficulty for reducing the remaining part is to shrink a large thread block. Even though there is a simple pattern of constructions on thread blocks, it is not at all obvious how to find an irrelevant vertex in a sufficiently large thread block regarding all individual small obstructions. We can resolve this issue using the set obtained by the Sunflower lemma, which has the nice property that any minimum deleting set for the small obstructions in G is contained in the prescribed set. Using this, we will show how to find another obstruction from the long induced cycle containing a potential irrelevant vertex. We remark that a similar idea was used by Fomin, Saurabh, and Villanger [START_REF] Fedor | A polynomial kernel for proper interval vertex deletion[END_REF] to obtain a polynomial kernel for the Proper Interval Vertex Deletion problem. 

Preliminaries

In this paper, all graphs are finite and undirected, if not mentioned otherwise. For a graph G, we denote by V (G) and E(G) the vertex set and the edge set of G, respectively, if they are not specified. Let G = (V, E) be a graph. Let N G (x) denote the neighborhood of a vertex x ∈ V . For S ⊆ V , G[S] denotes the subgraph of G induced on S and we denote by

G \ S := G[V \ S]. For W ⊆ E, we denote by G \ W := (V, E \ W ). For short we write G \ x instead of G \ {x} for x ∈ V ∪ E. A vertex v of G is called a pendant vertex if |N G (x)| = 1.
An edge e of a connected graph G is called a cut-edge if G \ e is disconnected. The length of a path is defined as the number of edges in the path. For n ≥ 3, we denote by C n the cycle with n vertices. For a set F of graphs, a graph G is F-free if G has no induced subgraph isomorphic to a graph in F.

A (linear) ordering on a finite set S is a bijective mapping σ : S → {1, . . . , |S|}, and we write x < σ y if σ(x) < σ(y), and σ -1 as the inverse bijective mapping. For an X × Y -matrix M and X ⊆ X, Y ⊆ Y , let M [X , Y ] be the submatrix of M whose rows and columns are indexed by X and Y , respectively.

Linear rankwidth and thread graphs. The adjacency matrix of a graph G = (V, E), which is a (0, 1)-matrix over the binary field, will be denoted by A G . The width of a linear ordering

σ of V in G is max 1≤i≤|V | rank(A G [{σ -1 (1), . . . , σ -1 (i)}, V \ {σ -1 (1), . . . , σ -1 (i)}])
, where the rank is computed over the binary field. The linear rankwidth of a graph G is defined as the minimum width over all linear orderings of V .

Graphs of linear rankwidth at most one are called thread graphs by Ganian [START_REF] Ganian | Thread graphs, linear rank-width and their algorithmic applications[END_REF], and each connected thread graph consists of a sequence of thread blocks. We follow the definition of thread blocks given by Adler, Farley, and Proskurowski [START_REF] Adler | Obstructions for linear rankwidth at most 1[END_REF], and develop a more convenient way to create a thread graph, which is useful to define necklace graphs.

A triple B(x, y) = (G, σ, ), where x and y are two vertices of the graph G = (V, E), σ is a ordering on V , and is a function from V to {{L}, {R}, {L, R}}, is a thread block if:

1. (x) = {R} and (y) = {L}, 2. for v, w ∈ V with v < σ w, vw ∈ E(G) if and only if R ∈ (v) and L ∈ (w), 3. (σ -1 (2)) = {L} if σ -1 (2) = y.
See Figure 3 for an example. The aim of the third condition is to guarantee a unique decomposition of thread graphs into thread blocks. For a digraph D = (V D , A D ), a set of thread blocks {B(x, y) = (G xy , σ xy , xy ) | xy ∈ A D } is said to be mergeable with D if for any two arcs A connected graph G is a thread graph if G is an one vertex graph or G = P B P for some directed path P , called the underlying path, and some set of thread blocks B P mergeable with P . A graph is a thread graph if each of its connected components is a thread graph.

x 1 y 1 , x 2 y 2 of A D , V (G x1y1 ) ∩ V (G x2y2 ) = {x 1 , y 1 } ∩ {x 2 , y 2 }.
The induced subgraph obstructions for graphs of linear rankwidth at most 1 consist of the set of induced subgraph obstructions for graphs of rankwidth at most 1 (equivalently, distance-hereditary graphs) [START_REF] Bandelt | Distance-hereditary graphs[END_REF], which are a house, a gem, a domino, and induced cycles of length at least 5 in Figure 1, and the set of 14 induced subgraph obstructions for linear rankwidth at most 1 that are graphs of rankwidth 1, depicted in Figure 2. For convenience, we define that Ω U is the set of 14 graphs in Figure 2, It is known that one can recognize a graph of linear rankwidth 1 in polynomial time using split decompositions of graphs [START_REF] Bui-Xuan | A note on graphs of linear rank-width 1[END_REF][START_REF] Adler | Linear rank-width of distance-hereditary graphs[END_REF], and easily decompose a connected thread graph into thread blocks.

Ω T := {house, gem, domino} ∪ {C k | k ≥ 5} ∪ Ω U ,

Theorem 2.2 ([4, 2]

). Let G be a graph on with n vertices and m edges. Then in time O(n + m), we can test whether G is a thread graph, and if G is a thread graph, then we can decompose each connected component into a sequence of thread blocks in the same time.

In the remaining part, we frequently use the term 'thread graphs' for graphs of linear rankwidth at most 1. For a graph G and S ⊆ V , S is called a LRW1-deletion set if G \ S is a thread graph.

Necklace graphs. We generalize the construction of thread graphs from directed paths to directed cycles. A connected graph G is called a necklace graph if G = C B C for some directed cycle C, called the underlying cycle, and some set of thread blocks B C mergeable with C. Our FPT algorithm and the construction of a polynomial kernel relies on the following characterization of Ω N -free graphs.

Theorem 2.3. A connected Ω N -free graph is either a connected thread graph or a necklace graph whose underlying cycle has length at least 9.

Let us sketch the proof of Theorem 2.3, which constructs the underlying cycle and a set of thread blocks as follows. Let G = (V, E) be a connected Ω N -free graph and suppose that G is not a thread graph. Since G is Ω N -free and it is not a thread graph, by Theorem 2.1, G has an induced subgraph isomorphic to C k for some k ≥ 9. We prove by induction on |V | that if C is a shortest cycle among induced cycles of length at least 9 in G, then G is a necklace graph whose underlying cycle is C. 

Let C := v 1 v 2 • • • v k v 1

3

An FPT algorithm for LRW1-Vertex Deletion

Our FPT algorithm is a branching algorithm that reduces an input instance to a Ω N -free graph. As each graph of Ω N has size at most 8, the announced complexity follows. It remains to prove that given a Ω N -free graph, a minimum vertex deletion set for LRW1-Vertex Deletion can be found in polynomial time. In fact, we prove that such a set has size at most one per necklace component and identifying such a vertex requires polynomial time.

Using the following proposition, we can find a minimum LRW1-deletion set of a Ω N -free graph in polynomial time. To prove it, we use the following lemma.

Lemma 3.2. Let G be a connected necklace graph with the underlying cycle

C of length at least 4. For each v ∈ V (C), G \ v is a thread graph.
Proof of Proposition 3.1. Let k be the minimum size of a LRW1-deletion set of G. We remark that each connected component of G is either a thread graph or a necklace graph by Theorem 2.3. For each component H of G, we test whether H is a thread graph or not in time O(|V (H)| + |E(H)|) using Theorem 2.2. Note that we should remove at least one vertex for each necklace component of G, and moreover, by Lemma 3.2, it is enough to remove exactly one vertex for each component. Thus, k is the number of its necklace components.

To identify such a vertex in each necklace component, it is sufficient to find a vertex on the underlying cycle by Lemma 3.2. Let H be a necklace component and C be the underlying cycle of H. Observe that for v ∈ V (H) \ V (C), H \ v is still a connected necklace graph with the same underlying cycle, because we can adjust the ordering of the thread block containing v into an ordering without v with the restricted labeling. We first test whether H has a cut vertex, and if it has a cut vertex w, then w ∈ V (C). Otherwise, we search a vertex cut of size 2. Since every necklace graph whose underlying cycle has length at least 4 contains a vertex cut of size 2, we can find it, say {v, w}. Then one of the two vertices should be contained in C. We test whether H \ v or H \ w is a thread graph or not. If H \ v is a thread graph, then v ∈ V (C), and otherwise, w ∈ V (C). Since finding a cut vertex or a vertex cut of size two can be done in linear time, we are done with the time complexity.

Proof of Theorem 1.1. Let (G, k) be an instance of the LRW1-Vertex Deletion problem. First find an induced subgraph of G isomorphic to a graph in Ω N and branch by removing one of the vertices in the subgraph. Because the maximum size of graphs in Ω N is 8, we can find such a vertex subset in time O(n 8 ) if exists. After the branching algorithm, we transform the given instance (G, k) into at most 8 k sub-instances (G , k ) such that each sub-instance consists of a Ω N -free graph G and a remaining budget k . Clearly, (G, k) is a Yes-instance if and only if one of sub-instances (G , k ) is a Yes-instance.

Let (G , k ) be a sub-instance obtained from the branching algorithm. Since G is Ω N -free, by Theorem 2.3, each connected component of G is either a thread graph or a necklace graph with the underlying cycle of length at least 9. By Proposition 3.1, we can compute a minimum LRW1-deletion set of G in time O(|V (G | + |E(G )|), and decide whether (G , k ) is a Yes-instance. By checking all sub-instances, we can decide whether (G, k) is a Yesinstance in time 8 k • O(n + m) where m is the number of edges of G. We conclude that the LRW1-Vertex Deletion problem can be solved in time 8 k • O(n 8 ).

4

A polynomial kernel for LRW1-Vertex Deletion

We use the Sunflower lemma for packing obstructions of small size. It consists in finding a subset T of the input graph G = (V, E) whose removal turns G into a thread graph with the property that for every set S ⊆ V of size at most k, the following are equivalent (Lemma 4.2): S is a minimal vertex set such that G \ S has no obstructions in Ω N . S is a minimal vertex set such that G[T ] \ S has no obstructions in Ω N . From this property, if we choose a minimal LRW1-deletion set S in the input graph, then the vertices of S \ T should be used to remove at least one long induced cycle. This property is essentially used to find an irrelevant vertex in a large thread block. Moreover, with this set, we can preprocess the instance so that there is no obstruction containing exactly one vertex of T . This would be used to bound the length of the sequence of thread blocks in each connected component, and the number of non-trivial components.

Let (G = (V, E), k) be an instance of LRW1-Vertex Deletion. We start with an easy reduction rule.

Reduction Rule 1.

If G has a component that is a thread graph, then we remove it from G.

Packing small obstructions

Let F be a family of subsets over a set U . A subset U ⊆ U is called a hitting set of F if for every set F ∈ F, F ∩ U = ∅. For a graph G and a family of graphs F, a set S ⊆ V (G) is also called a hitting set for F if for every induced subgraph H of G that is isomorphic to a graph in F, V (H) ∩ S = ∅. The following lemma can be obtained from the Sunflower lemma. From now on, we assume that G is reduced under Reduction Rules 1 and2

. A vertex v of G is called irrelevant if (G, k) is a Yes-instance if and only if (G \ v, k) is a Yes-instance.

Bounding the size of components of G \ T

The goal is to shrink G \ T while preserving the solutions. For convenience, let µ(k) := 8 • 8!(k + 1) 8 + k. We first show that if a thread block in G \ T is large, then we can always find an irrelevant vertex in there. We mainly use the following lemma. Proof of Proposition 4.4. Suppose that G \ T contains a thread block of size at least (k + 2)(µ(k) + 2) 2 + 1. We can find such a thread block in polynomial time using Theorem 2.2. Let B := B(x, y) = (B, σ, ) be a thread block of size at least (k + 2)(µ(k) + 2) 2 + 1. For convenience, let σ be the ordering obtained from σ by removing the end vertices x and y.

In the following procedure, we mark some vertices of B in order to find an irrelevant vertex in B. We set Z := ∅. (1) For each v of T , choose the first k + 2 vertices z of σ that are neighbors of v with R ∈ (z), and choose the last k + 2 vertices z of σ that are neighbors of v with L ∈ (z), and add them to Z. (2) For each pair of two vertices v, v in T , choose k + 2 common neighbors of v and v in B, and add them to Z. (3) Choose the first k + 2 vertices z of σ with R ∈ (z), and choose the last k + 2 vertices z of σ with L ∈ (z), and add them to Z. In each case, If there are at most k + 1 such vertices, then we add all of them to Z. Then

|Z| ≤ |T |(2k + 4) + |T | 2 (k + 2) + (2k + 4) ≤ (k + 2)(µ(k) + 2) 2 -2. Since |V (B)| ≥ (k + 2)(µ(k) + 2) 2 + 1, there exists a vertex w in V (B) \ Z \ {x, y}. We claim that w is an irrelevant vertex. If (G, k) is a Yes-instance, then (G \ w, k) is clealry a Yes-instance.
Suppose that (G \ w, k) is a Yes-instance and let X ⊆ V (G) \ {w} such that |X| ≤ k and G \ (X ∪ {w}) is a thread graph. We may assume that G \ X is not a thread graph. So, G \ X must have an obstruction in Ω T that contains the vertex w. Let X ⊆ X ∪ {w} be a minimal hitting set for Ω N in G. From the property of the set T , X is a minimal hitting set for Ω N in G[T ], which implies that X ⊆ T . Thus G \ X must have an induced cycle of length at least 9 that contains w. Let C be an induced cycle of length at least 9 containing w in G \ X.

We will find an induced subgraph of G \ (X ∪ {w}) that is isomorphic to a graph in Ω N using Lemma 4.5, which leads a contradiction. Let v 1 , v 2 , w, v 3 , v 4 be the consecutive vertices on C. To apply Lemma 4.5, we will find two vertices that are adjacent to v 2 and v 3 .

Parameterized Complexity of Linear Rankwidth-1 Vertex Deletion

Let us now piece everything together and analyze the kernel size. Proof. Let (G = (V, E), k) be an instance of LRW1-Vertex Deletion. By Reduction Rule 1, we may safely assume that G has no components that are thread graphs. Let T ⊂ V be a vertex subset satisfying Lemma 4.2, and we preprocess using Reduction Rule 2.

By Lemma 4.3, we may assume that for every vertex subset S ⊆ V such that G[S] is a graph of {β 1 , β 2 , β 3 , β 4 }, |S ∩ T | ≥ 2. Combining Proposition 4.4 and Lemma 4.6, we can assume that every connected component of G\T has size at most (k+2)(µ(k)+2) 2 •19(6µ(k)+1) (otherwise the instance can be reduced in polynomial time). Note that for each connected component H of G \ T , there exists a vertex in H that has a neighbor in T , otherwise, H is a component of G that is a thread graph. Therefore, by Lemma 4.7, we can assume that the number of non-trivial components of G \ T is at most 2µ(k) and the number of isolated vertices in G \ T is at most µ(k) 2 (k + 2). It follows that

|T | + |V \ T | ≤ µ(k) + 2µ(k) • 19(6µ(k) + 1) • (k + 2)(µ(k) + 2) 2 + µ(k) 2 • (k + 2) = O(k • µ(k) 4 ) = O(k 33 ).

Concluding remarks

We consider the problem Linear rankwidth-w Vertex Deletion when w = 1. A next step is to investigate the problem for bigger w, or for any fixed w. A closely related problem is Rankwidth-w Vertex Deletion, which asks whether G has a vertex subset of size at most k such that G \ S has rankwidth at most w. This problem is fixed-parameter tractable for the following reason. Note that any Yes-instance has rankwidth at most w + k.

Having bounded rankwith can be characterized by a finite list of forbidden vertex-minors [START_REF] Oum | Rank-width and vertex-minors[END_REF].

From [START_REF] Courcelle | Vertex-minors, monadic second-order logic, and a conjecture by Seese[END_REF], having a vertex-minor can be expressed in C 2 MSO, i.e., monadic second order logic without edge set quantification where we can express the parity of |X| for a vertex set X. Fixed-parameter tractability follows as a consequence of Courcelle, Makowsky, Rotics [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]. This result can be turned into a constructive algorithm as [START_REF] Oum | Rank-width and vertex-minors[END_REF] provides an explicit upper bound on the size of vertex-minor obstructions for rankwidth k. However, the exponential blow-up in the runtime is huge with respect to both w and k. It is a challenging question whether a reasonable dependency on k can be achieved. A single-exponential time would be ideal, which was achievable for its treewidth counterpart. A first realistic goal is to consider the case when w = 1, i.e. the Distance-Hereditary Vertex Deletion. We leave it as an open question whether this problem can be solved in time c k • n O (1) time for some constant c.

Linear Rankwidth- 1 Theorem 1 . 1 .Theorem 1 . 2 .

 11112 Vertex Deletion (LRW1-Vertex Deletion) Input : A graph G, a positive integer k Parameter : k Question : Does G have a vertex subset S of size at most k whose removal makes G a graph of linear rankwidth at most one? For fixed k and a given graph G with n vertices, the LRW1-Vertex Deletion problem can be solved in 8 k • n O(1) time. The LRW1-Vertex Deletion problem has a polynomial kernel.

Figure 3

 3 Figure 3 An example of a thread block.

  For a digraph D = (V D , A D ) and a mergeable set of thread blocks B D = {B(x, y) = (G xy , σ xy , xy ) | xy ∈ A D }, G = D B D is the graph with the vertex set V = xy∈A D V (G xy ) and the edge set E = xy∈A D E(G xy ).

  be a shortest cycle among induced cycles of length at least 9 in G and for convenience, let v k+1 := v 1 and v k+2 := v 2 . We regard C as a directed cycle where for each 1≤ j ≤ k, v j v j+1 is an arc. If G = C,then we are done because C itself is a necklace graph with the underlying cycle C. We may assume that |V | > |V (C)|, and choose a vertex v ∈ V \ V (C) such that G \ v is I P E C ' 1 5 connected. Clearly, G \ v is again Ω N -free graph, and C is a shortest cycle among induced cycles of length at least 9 in G \ v. By the induction hypothesis, there exists some set of thread blocks B C mergeable with C such that G \ v = C B C . The rest of the proof consists in showing that G = C B C for some set of thread blocks B C mergeable with C.

Proposition 3 . 1 .

 31 Let G be a Ω N -free graph with n vertices and m edges. We can compute the minimum size of a LRW1-deletion set of G in time O(n + m), and find such a set S in the same time.

Lemma 4 . 1 (Lemma 4 . 2 .Lemma 4 . 3 .

 414243 [START_REF] Fedor | A polynomial kernel for proper interval vertex deletion[END_REF]). Let F be a family of sets of size at most d over a set U , and let k be a positive integer. Then in time O(|F|(k + |F|)), we can find a nonempty set F ⊆ F such that 1. for every U ⊆ U of size at most k, U is a minimal hitting set of F if and only if U is a minimal hitting set of F , and2. |F | ≤ d!(k + 1) d .Using Proposition 3.1 and Lemma 4.1, we identify a subset T of vertices of G of polynomial size in k that allows us to forget about small obstructions in G. Let (G = (V, E), k) be an instance of LRW1-Vertex Deletion. There is a polynomial time algorithm that either concludes that (G, k) is a No-instance or finds a non-empty set T ⊆ V such that 1. G \ T is a thread graph, 2. for every set S ⊆ V of size at most k, S is a minimal hitting set for Ω N in G if and only if it is a minimal hitting set for Ω N contained in G[T ], and3. |T | ≤ 8 • 8!(k + 1) 8 + k.Let us fix a subset T of V obtained by Lemma 4.2. We preprocess using the following reduction rule.Reduction Rule 2. Let U ⊆ T such that for every u ∈ U , there exists an induced subgraphH of G isomorphic to a graph in Ω N with V (H) ∩ T = {u}. If |U | > k, then (G, k) is a No-instance; otherwise, remove U fromG and reduce k by |U |, and use T \ U instead of T .It can be done in polynomial time because we only need to look at obstructions of Ω N in G. Reduction Rule 2 is safe.

Proposition 4 . 4 .

 44 If G \ T contains a thread block (G xy , σ xy , xy ) of size at least (k + 2)(µ(k) + 2) 2 + 1, then we can find an irrelevant vertex in G xy in polynomial time.

Lemma 4 . 5 .

 45 Let G be a graph and letv 1 v 2 v 3 v 4 v 5 be an induced path of length 4 in G. If two distinct vertices w 1 , w 2 in V (G) \ {v 1 , v 2 , . . . , v 5 } have the neighbors v 2 and v 4 in G, then G \ v 3 contains an induced subgraph isomorphic to a graph in Ω N .

Theorem 4 . 8 .

 48 The LRW1-Vertex Deletion problem has a kernel of size O(k 33 ).

  andΩ N := {house, gem, domino, C 5 , C 6 , C 7 , C 8 } ∪ Ω U .

Theorem 2.1

([16, 1]

). Let G be a graph. The following are equivalent. G has linear rankwidth at most 1. G is a thread graph. G has no induced subgraph isomorphic to a graph in Ω T .

I P E C ' 1 5

René van Bevern, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Measuring indifference: unit interval vertex deletion. In International Workshop on Graph Theoretic Concepts in Computer Science -WG, volume 6410 of Lecture Notes in Computer Science, pages 232-243, 2010.

Pim van't Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845-867, 2013.

Supported by ERC Starting Grant PARAMTIGHT (No. 280152). † Supported by the "Chercheur d'avenir -Languedoc-Roussillon" project KERNEL

We choose two vertices of them that are not in X. In case when L ∈ (w) and v 3 < σ w, we use the last k + 2 vertices z of σ that are neighbors of v 2 with L ∈ (z) to identify two vertices similarly.

(Case Neither

happen. Thus, both of v 2 and v 3 appear either before w in σ or after w in σ. By the symmetry, we may assume that v 2 and v 3 appear before w in σ. So, R ∈ (v 2 ), R ∈ (v 3 ), and L ∈ (w). Since Z contains the last k + 2 vertices z of σ with L ∈ (z), there exist two vertices w 1 , w 2 from those k + 2 vertices that are not in X and C.

In all cases, G \ (X ∪ {w}) has an induced subgraph isomorphic to a graph in Ω N by Lemma 4.5. It contradicts to the assumption that X ∪ {w} is a LRW1-deletion set of G. Therefore, G \ X is a thread graph, and we conclude that (G, k) is a Yes-instance.

We show that if a vertex v in T has neighbors on 7 distinct blocks, then we can find a subgraph H isomorphic to one of {β 1 , β 2 , β 3 , β 4 } such that V (H) ∩ T = {v}. However, there is no obstruction in Ω N containing exactly one vertex from T by Reduction Rule 2. Thus, if a component of G \ T has many thread blocks, then we can identify a sequence of consecutive thread blocks not touched by any obstruction in Ω N . This allows us to contract one of these "safe" thread blocks, say B(x, y), to a vertex v such that N G\T (v) = (N G\T (x) ∪ N G\T (y)) \ B(x, y). 

Kernel size

We bound the number of connected components using the following lemma.