I. Adler, A. M. Farley, and A. Proskurowski, Obstructions for linear rankwidth at most 1, Discrete Applied Mathematics, vol.168, pp.3-13, 2014.

I. Adler, O. Mamadou-moustapha-kanté, and . Kwon, Linear rank-width of distance-hereditary graphs, International Workshop Graph-Theoretic Concepts in Computer Science-WG, vol.8747, pp.42-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02083519

J. Hans-, H. M. Bandelt, and . Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, vol.41, issue.2, pp.182-208, 1986.

B. Bui-xuan, M. Moustapha-kanté, and V. Limouzy, A note on graphs of linear rank-width 1. CoRR, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02083532

Y. Cao, Unit interval editing is fixed-parameter tractable, International Colloquium on Automata, Languages, and Programming-ICALP, vol.9134, pp.306-317, 2015.
DOI : 10.1016/j.ic.2017.01.008

URL : http://arxiv.org/pdf/1504.04470

Y. Cao and D. Marx, Interval deletion is fixed-parameter tractable, ACM Transactions on Algorithms, vol.11, issue.3, pp.21-35, 2015.

V. Chvátal and P. L. Hammer, Studies in integer programming, chapter Aggregation of inequalities in integer programming, Number 1 in Annals of Discrete Mathematics, pp.145-162, 1977.

B. Courcelle, The Monadic Second-Order Theory of Graphs. I. Recognizable Sets of Finite graphs, Information and Computation, vol.85, pp.12-75, 1990.

B. Courcelle, . Mamadou-moustapha, and . Kanté, Graph operations characterizing rankwidth, Discrete Applied Mathematics, vol.157, issue.4, pp.627-640, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00334159

B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, vol.33, pp.125-150, 2000.

B. Courcelle and S. Oum, Vertex-minors, monadic second-order logic, and a conjecture by Seese, Journal of Combinatorial Theory, Series B, vol.97, issue.1, pp.91-126, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00334147

M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk, An improved fpt algorithm and a quadratic kernel for pathwidth one vertex deletion, Algorithmica, vol.64, issue.1, pp.170-188, 2012.

V. Fedor, D. Fomin, N. Lokshtanov, S. Misra, and . Saurabh, Planar f-deletion: Approximation, kernelization and optimal FPT algorithms, Annual IEEE Symposium on Foundations of Computer Science-FOCS, pp.470-479, 2012.

V. Fedor, S. Fomin, Y. Saurabh, and . Villanger, A polynomial kernel for proper interval vertex deletion, SIAM Journal on Discrete Mathematics, vol.27, issue.4, pp.1964-1976, 2013.

M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited, Annals of Pure and Applied Logic, vol.130, issue.1-3, pp.3-31, 2004.

R. Ganian, Thread graphs, linear rank-width and their algorithmic applications, International Workshop on Combinatorial Algorithms-IWOCA, vol.6460, pp.38-42, 2011.

R. Ganian and P. Hlinený, On parse trees and myhill-nerode-type tools for handling graphs of bounded rank-width, Discrete Applied Mathematics, vol.158, issue.7, pp.851-867, 2010.

S. Gaspers and S. Szeider, Backdoors to satisfaction, The Multivariate Algorithmic Revolution and Beyond-Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, vol.7370, pp.287-317, 2012.

E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith et al., Linear kernels and single-exponential algorithms via protrusion decompositions, International Colloquium on Automata, Languages, and Programming-ICALP, vol.7965, pp.613-624, 2013.
DOI : 10.1145/2797140

URL : https://hal.archives-ouvertes.fr/lirmm-01288472

S. Oum, Rank-width and vertex-minors, Journal of Combinatorial Theory, Series B, vol.95, issue.1, pp.79-100, 2005.

. Sang, P. Oum, and . Seymour, Approximating clique-width and branch-width, Journal of Combinatorial Theory, Series B, vol.96, issue.4, pp.514-528, 2006.

G. Philip, V. Raman, and Y. Villanger, A quartic kernel for pathwidth-one vertex deletion, International Workshop on Graph Theoretic Concepts in Computer Science-WG, vol.6410, pp.196-207, 2010.

N. Robertson and P. D. Seymour, Graph minors. XX. Wagner's conjecture, J. Combin. Theory Ser. B, vol.92, issue.2, pp.325-357, 2004.