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DETECTING MINORS IN MATROIDS THROUGH TRIANGLES

BORIS ALBAR, DANIEL GONÇALVES, AND JORGE L. RAMÍREZ ALFONSÍN

Dedicated to the memory of Michel Las Vergnas

Abstract. In this note we investigate some matroid minor structure results. In partic-
ular, we present sufficient conditions, in terms of triangles, for a matroid to have either
U2,4 or F7 or M(K5) as a minor.

1. Introduction

In [5] Mader proved that, for each 3 ≤ r ≤ 7, if a graph G on n vertices has no Kr minor
then it has at most n(r − 2) −

(
r−1
2

)
edges. The latter was used by Nevo [6] to show

that, for 3 ≤ r ≤ 5, if each edge of G belongs to at least r − 2 triangles then G has a Kr

minor. The latter also holds when r = 6, 7 (see [1]). In the same flavour, we investigate
similar conditions for a matroid in order to have certain minors. For general background
in matroid theory we refer the reader to [7, 11]. A triangle in a matroid is just a circuit
of cardinality three. Our main result is the following.

Theorem 1. Let M be a simple matroid. If every element of M belongs to at least three
triangles then M has U2,4, F7 or M(K5) as a minor.

We notice that excluding U2,4 as a submatroid (instead of as a minor) would not be
sufficient as shown by the matroid AG(2, 3). Note that AG(2, 3) doesn’t contain M(K4)
as a minor. Hence, it doesn’t contain M(K5) nor F7 as a minor. Moreover each element
of the matroid AG(2, 3) belongs to 4 triangles but it has no U2,4 submatroid. In the same
way, graphic matroids (that are U2,4 and F7-minor free) imply that M(K5) cannot be
simply excluded as a submatroid. We do not know if excluding F7 as a submatroid in
Theorem 1 would be sufficient.
A natural question is whether similar triangle conditions can be used to determine if a
matroid admits M(K4) as a minor. More precisely,

is it true that if every element of a matroid M of rank r ≥ 3 belongs to at
least two triangles then M contains M(K4) as a minor ?

The answer to this question is yes if M is regular (we discuss this at the end of this section
see (1)). Moreover, the answer is still yes if M is binary since the class of binary matroids
without a M(K4)-minor is the class of series-parallel graphs (a result due to Brylawski
[2]). Unfortunately, the answer is no in general, for instance, the reader may take the
matroid P7, illustrated in Figure 1, as a counterexample.
In the case of ternary matroids, we prove the following.

Theorem 2. Every simple ternary matroid M such that every element belongs to at least
3 triangles contains a P7 or a M(K4) minor or contains the matroid U2,4 as a submatroid.
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Figure 1. Matroid P7.

The above yielded us to consider the following

Question 1. Does there exist two finite lists L and S of matroids such that (a) for each
M ∈ L ∪ S, each element e ∈ M belongs to at least t triangles, and (b) for any matroid
M such that each of its elements belong to t triangles, M contains one of the matroids in
L as a minor or M contains one of the matroids in S as a submatroid ?

It is easy to see that U2,k will belong to either L or S since it is a matroid with smallest rank
such that each element belong to t triangles for k big enough (depending on t). Moreover,
the matroid M(Kt+2) will also always be contained in one of these lists since each edge
of Kt+2 belongs to exactly t triangles. We finally mention the following generalization of
Nevo’s result:

If every element of a simple regular matroid M belongs to at least r − 2(1)

triangles, with 3 ≤ r ≤ 7, then M has M(Kr) as a minor.

Although this can be proved by applying essentially the same methods as those used in
the proof of Theorem 1, we rather prefer to avoid to do this here since the arguments
need a more detailed treatment (specially when r = 6, 7).

2. Proof of Theorem 1

We start by recalling some basic definitions and results needed throughout the paper. We
shall denote by C(M) the set of circuits of a matroid M . Let k be a positive integer. Then,
for a matroid M , a partition (X, Y ) of E(M) is a k-separation if min{|X|, |Y |} ≥ k and
r(X)+r(Y )−r(M) ≤ k−1. (X, Y ) is called an exact k-separator if r(X)+r(Y )−r(M) =
k − 1. M is called k-separated if it has a k-separation. If M is k-separated for some k,
then the connectivity λ(M) of M is min{j : M is j-separated }; otherwise we take λ(M)
to be ∞. We say that a matroid is k-connected if λ(M) ≥ k.

Let M1 and M2 be two matroid with non-empty ground set E1 and E2 respectively. Let

C ′ = C(M1 \ (E1 ∩ E2)) ∪ C(M2 \ (E1 ∩ E2)) ∪ {C1∆C2 : Ci ∈ C(Mi) for i = 1, 2}.
We denote by C the set of minimal elements (by inclusion) of C ′.

• If |E1 ∩ E2| = 0, then C is the set of circuits of a matroid with support E1∆E2

called the 1-sum or direct sum of M1 and M2 and denoted by M1 ⊕1 M2.
• If |E1 ∩ E2| = 1, |E1|, |E2| ≥ 3 and E1 ∩ E2 is not a loop or a coloop of either M1

or M2, then C is the set of circuits of a matroid with support E1∆E2 called the
2-sum of M1 and M2 and denoted by M1 ⊕2 M2.
• If M1 and M2 are binary matroids with |E1 ∩ E2| = 3, |E1|, |E2| ≥ 7, such that
E1∩E2 is a circuit of both M1 and M2 and such that E1∩E2 contains no cocircuit
of either M1 or M2, then C is the set of circuits of a binary matroid with support
E1∆E2 called the 3-sum of M1 and M2 and denoted by M1 ⊕3 M2.
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The following structural result is a consequence of Seymour’s results in [10] (see also [7,
Corollary 11.2.6]):

[10, (6.5)] Every binary matroid with no F7 minor can be obtained by a sequence(2)

1- and 2-sums of regular matroids and copies of F ∗7 .

The following results, in relation with k-separations, are also due to Seymour [9].

[9, (2.1)] If (X, Y ) is a 1-separator of M then M is the 1-sum of M |X and M |Y ;(3)

and conversely, if M is the 1-sum of M1 and M2 then (E(M1), E(M2)) is a

1-separation of M , and M1,M2 are isomorphic to proper minors of M .

[9, (2.6)] If (X, Y ) is an exact 2-separator of M then there are matroids M1(4)

M2 on X ∪ {z}, Y ∪ {z} respectively (where z is a new element) such that

M is the 2-sum of M1 and M2. Conversely, if M is the 2-sum of M1 and M2

then (E(M1)− E(M2), E(M2)− E(M1)) is an exact 2-separation of M ,

and M1,M2 are isomorphic to proper minors of M .

[9, (4.1)] If M is a 3-connected binary matroid and is the 3-sum of two(5)

matroids M1 and M2, then M1 and M2 are isomorphic to proper minors of M .

[9, (2.10)] A 2-connected matroid M is not 3-connected if and only if(6)

M = M1 ⊕2 M2 for some matroids M1 and M2, each of which is isomorphic

to a proper minor of M .

We shall use (2)-(6) and the following three lemmas to prove our main theorem. We will
denote by si(M) the matroid obtained from M by deleting all its loops and by identifying
parallel elements.

Lemma 1. Let M1 and M2 be two matroids with ground sets E1 and E2 respectively such
that M = M1 ⊕k M2, 1 ≤ k ≤ 3 and such that M is a simple matroid. Moreover, we
suppose that M is binary when k = 3. Let e ∈ E1 \ E2 such that {e, x} ∈ I(M1) for any
element x ∈ E1 ∩ E2 and suppose that e belongs to t triangles of M . Then, e belongs to
at least t triangles of si(M1).

Proof. Let e ∈ E1 \E2 such that {e, x} ∈ I(M1) for any element x ∈ E1∩E2 and suppose
that e belongs to t triangles of M . We shall show that e belongs to at least t triangles of
si(M1).

Let T = {e, f, g} be one of the t triangles of M containing e and note that e, g, f 6∈ E1∩E2.
By definition of the k-sum, either T is a circuit of C(M1) and we are done, or T can be
written as C1∆C2 where Ci is a circuit of Mi, i = 1, 2. Since M is simple and E1 ∩ E2

contains no loop (by definition of k-sum) then neither M1 nor M2 contain a loop, and
thus |C1|, |C2| ≥ 2.

If |C1| = 2, say C1 = {e, x}, then x ∈ E1 ∩ E2 (otherwise e and x would be parallel
elements in M , contradicting the simplicity of M). So, e is parallel to an element x with
x ∈ E1 ∩ E2 contradicting the hypothesis of the lemma. We have then that |C1| ≥ 3
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If |C2| = 2, say C2 = {g, x}, then x ∈ E1 ∩ E2 (otherwise g and x would be parallel
elements in M , contradicting the simplicity of M). Since f ∈ T = C1∆C2 then f ∈ E1

and since x ∈ E1 is parallel to g then {e, f, x} is a triangle of M1.

Let us suppose now that |C1|, |C2| ≥ 3. Since |C1∆C2| = |T | = 3 then |C1 ∩ C2| ≥ 2. So
we are in the case where k = 3 and thus we can suppose that M is binary. Moreover since
E1 ∩ E2 is a circuit of both M1 and M2, then C1 and C2 contain at most two elements
of E1 ∩ E2 or they are equal to E1 ∩ E2. In the latter, we have that e ∈ E1 ∩ E2 which
is a contradiction since e ∈ E1 \ E2. We thus suppose that we are in the former. Hence
|C1| + |C2| = 7 and we can write C1 ∩ C2 = {x, y}. Therefore one of |C1| or |C2| has
cardinality at least 4.

We shall use a result due to Fournier [4] stating that a matroid M is binary if and only
if whenever C1 and C2 are distinct circuits and {p, q} are elements of C1 ∩C2, then there
is a circuit in M contained in C1 ∪ C2 \ {p, q}.
We have two cases.
Case a) |C2| = 4 and |C1| = 3. We write C1 = {e, x, y}. By applying Fournier’s result
to circuits E1 ∩ E2 = {x, y, z} and C1 = {e, x, y} we obtain that {e, z} contains a circuit
and since by hypothesis neither e nor z is a loop, then e and z are parallel elements,
contradicting the hypothesis because z ∈ E1 ∩ E2.

Case b) |C1| = 4 and |C2| = 3. We write C2 = {x, y, g}. By Fournier’s result applied to
circuits {x, y, z} and C2, we deduce that g and z are parallel elements. Thus (T \ g)∪{z}
is a triangle of si(M1) and is not a triangle of M .

It remain to check that two different triangles of M containing e induce, by the previous
construction, two different triangles in si(M1). Let T and T ′ be two different triangles of
M containing e that are not triangles of M1. Note that T and T ′ have two elements of
M1 because otherwise, as we have previously seen, e would be parallel to an element of
E1 ∩ E2, contradicting the hypothesis. We denote by w (resp. w′) the only element of
T (resp. T ′) that belongs to M2. By construction the two triangles of si(M1) obtained
from T and T ′ respectively contain T \ {w} and T ′ \ {w′}. If T \ {w} 6= T ′ \ {w′}, the
resulting triangles of si(M1) are different. Suppose now that T \ {w} = T ′ \ {w}. In the
above construction, the elements w and w′ are replaced by elements of E1∩E2 repectively
parallel to w and w′ respectively. Note that w and w′ cannot be parallel to a common
element of E1 ∩E2 (indeed if w and w′ were parallel, it would contradict the simplicity of
M). So w and w′ are parallel to two distinct elements of E1 ∩ E2, and thus the triangles
T and T ′ induces two different triangles in si(M1). �

Lemma 2. Let M be a simple connected graphic matroid such that each of its elements
belongs to at least three triangles except maybe for one element e or for some elements of
a given triangle T of M . If M is not isomorphic to e or T , then M contains M(K5) as
a minor.

Proof. Let G be a graph such that M = M(G). We will prove that G contains a K5 minor.
We will denote by X the set of vertices corresponding to the extremities of the edge e or to
the vertices of the triangle T depending on the case. In particular, we have that |X| ≤ 3.
Since M(G) is simple, then G has at least 4 vertices, so there exists u ∈ V (G) \X. Since
M(G) is connected then G is connected too and so deg(u) ≥ 1. Moreover, every edge
incident to u belongs to at least 3 triangles, so the graph induced by N(u) (the set of
neighbors of u) has minimum degree at least 3. Dirac [3] proved that if G is a non-null
simple graph with no subgraph contractible to K4, then G has a vertex of degree ≤ 2.
Therefore, by Dirac’s result, the graph induced by the vertices in N(u) contain a K4 minor
and so the graph induced by N(u) together with u contain a K5 minor. �
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Lemma 3. Let M be a simple matroid and let X be a set of element of M consisting of
either an element e or of the elements of a given triangle T of M . If each element of M
belongs to at least three triangles except for the elements of X and if M is not isomorphic
to M |X , then M is not a cographic matroid.

Proof. We proceed by contradiction. Suppose that there exists a cographic matroid M
contradicting the lemma. Let G be the graph such that E(G) is the ground set of M , and
such that the circuits of M are the edge cuts of G. We can suppose that G is connected.
Moreover, since M is simple (i.e. it contains no loop no parallel elements), the graph G
has no edge cut of size one or two and thus G is 3-edge connected. Let us call an edge
cut trivial if it corresponds to all the edges incident to a given vertex v. Note that an
edge that belongs to (at least) three 3-edge cuts of G, belongs to at least one non-trivial
3-edge cut.

In the case where M has an element a that does not belong to three triangles, we denote
v one of the endpoints of a in G. Now in the case where M has a triangle T = {a, b, c}
which elements do not necessarily belong to three triangles, the edge cut {a, b, c} in G is
either trivial and then we denote v the degre 3 vertex incident to a, b and c, or non-trivial
and then every edge of G (including a, b and c) belongs to a non-trivial 3-edge cut. For
every vertex v ∈ V (G), the graph G \ {v} is not a stable set. Indeed, suppose that every
edge of G is incident to v then the graph G is isomorphic to a star (with eventually
multiples edges and loops on v), and so, by a result of Whitney [12] the dual matroid of
M(G) (which is isomorphic to M) is a graphic matroid associated to the dual graph G∗.
Thus, since G is a star (with eventually multiple edges and loops on its center), then G∗

is also a star (with eventually multiple edges and loops on its center) of multiples edges.
This contradict the fact that each element of M except at most 3 belongs to at least 3
triangles. which contradicts the simplicity of M .
We claim that

there is no 3-edge connected graph G, with a vertex v, such that every edge(7)

e ∈ E(G \ {v}) belongs to some non-trivial 3-edge cut of G and

such that G \ {v} is not a stable set.

It is clear that the above claim contradicts the existence of G and thus implies the lemma.
We may now prove (7) by contradiction. So let us consider a graph G that is 3-edge
connected with a distinguished vertex v, and such that every edge e ∈ E(G\{v}) belongs
to at least one non-trivial 3-edge cut of G. By hypothesis, the graph G \ {v} is not
a stable set, so there are edges in G \ {v}, G has some non-trivial 3-edge cuts. Let
{e1, e2, e3} ⊂ E(G) be a non-trivial 3-edge cut of G, partitioning V (G) into two sets V1
and V2 such that v ∈ V1 and such that |V2| is minimal (see Figure 2). As this edge cut
is non-trivial, there are at least two vertices in V2, and as G is 3-edge connected there is
an edge f1 in G[V2]. By hypothesis, let {f1, f2, f3} ⊂ E(G) be a non-trivial 3-edge cut of
G, partitioning V (G) into two sets X and Y such that v ∈ X. Consider now the refined
partition defined by the following sets: V X

1 = V1 ∩X, V Y
1 = V1 ∩ Y , V X

2 = V2 ∩X, and
V Y
2 = V2 ∩ Y . Note that as v ∈ V X

1 and as f1 has both ends in V2, the sets V X
1 V X

2 and
V Y
2 are non-empty. Note also that by definition |V2| ≤ |Y |, and thus |V X

2 | ≤ |V Y
1 |. This

implies that the set V Y
1 is also non-empty.

By construction, there are at most 6 edges across this partition (if {e1, e2, e3} and {f1, f2, f3}
are disjoint). On the other hand, as G is 3-edge connected each subset of the partition
(as they are non-empty) has at least 3 edges leaving it. This implies that there are ex-
actly 6 edges across the partition and that each set has exactly 3 of them leaving it. Let
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v

V X
1

V Y
1

V1 f1 V2

V X
2

V Y
2

Figure 2. The 3-edge connected graph G, with edges cuts {e1, e2, e3} and {f1, f2, f3}.

0 ≤ ke ≤ 3 be the number of edges from {e1, e2, e3} adjacent to V X
2 , and note that V Y

2 is
adjacent to k′e = 3− ke of these edges. On the other hand, there is no edge of {f1, f2, f3}
going across V1 and V2, thus the number kf of edges from this set that are incident to V X

2

is the same as the number k′f of edges from this set that are incident to V Y
2 . As ke 6= k′e

this contradicts the fact that both V X
2 and V Y

2 are incident to exactly ke+kf = k′e+k′f = 3
edges. This concludes the proof of the claim. �

We may now prove Theorem 1.

Proof of Theorem 1. We proceed by contradiction. Let M be a matroid such that every
element belongs to at least three triangles except maybe for one element e or for some
elements of a given triangle T of M and assume that M does not contain U2,4, F7 and
M(K5) as a minor. We also supposeM minimal (for the minor relation) with this property.

We first notice that M must be binary (since it contains no U2,4-minor). Moreover M
is 2-connected otherwise, by (3), M can be written as M1 ⊕1 M2, where M1 and M2 are
two matroids, but then by Lemma 1, one of M1,M2 (say M1) is such that every element
belongs to at least 3 triangles, and since both M1 and M2 are proper minors of M by
(6), then M1 contradicts the minimality of M . Now suppose that M is 2-connected but
not 3-connected, so by (4), M can be written as a 2-sum of M1 and M2 and since M
is such that each element belongs to at least 3 triangles, by Lemma 1, each element of
si(M1) except the ones of E(M1) ∩ E(M2) belongs to at least 3 triangles. But since
|E(M1) ∩ E(M2)| ≤ 1 (by definition of 2-sum) and si(M1) is a proper minor of M , then
si(M1) contradicts the minimality of M . So we can assume that M is 3-connected.

Since M is binary and without F7-minor then, by (2), either M is isomorphic to F ∗7 ,
either M is a regular matroid or M can be written as 2-sum of two smaller matroids. But
since M is 3-connected, by (6), the latter does not hold and for the former, it is easy to
check that no element of F ∗7 belongs to at least three triangles, a contradiction. So M is
a 3-connected regular matroid.

By Seymour’s regular matroid characterization [9], M is either graphic, cographic, iso-
morphic to R10 or is a 3-sum of smaller matroids.

Suppose that M is isomorphic to R10. Note that for every element e ∈ E(R10), we have
that R10\e is isomorphic to M(K3,3). Since M(K3,3) is triangle free then every element of
R10 should be contained in every triangle of R10 implying that every triangle contains 10
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elements, which is a contradiction. Thus R10 is triangle-free, a contradiction. Moreover
by Lemmas 2 and 3, M is neither graphic nor cographic. Thus, M can be written as a
3-sum of smaller matroids. Suppose that M = M1 ⊕3 M2. Since the only elements of M
not belonging to three triangles of M are either a single element or elements that belongs
to a triangle of M , then these elements are contained either in M1 or M2. Without loss of
generality we can assume that they are contained in M2. But then since M is 3-connected
and binary then, by (6), si(M1) is a proper minor of M and, by Lemma 1, is such that
every element except maybe the elements of E(si(M1)) ∩ E(M2) belong to at least 3
triangles. This contradicts the minimality of M . �

3. Proof of Theorem 2

In this section, we will prove Theorem 2 using the following theorem of Oxley [8].

Any 3-connected ternary matroid with no M(K4) minor is either isomorphic(8)

to a whirl W r, to the matroid J or to one of the 15 3-connected minors of

the Steiner matroid S(5, 6, 12).

We will first prove the following lemma about 3-connected matroids.

Lemma 4. Let M be a 3-connected ternary matroid with no M(K4)-minor with at least
2 elements such that every element belongs to at least 2 triangles, except maybe for one
element e, then M contains P7 as a minor or is isomorphic to U2,4.

Proof. By the (8), M is isomorphic to a whirl W r, to J or is isomorphic to a 3-connected
minor of the Steiner matroid S(5, 6, 12). Every whirl W r for r ≥ 3 has at least 2 lments
that does not belongs to at least two triangles and the matroid J has a P7 minor ([8,
(2,9)]). Moreover we checked by computer that all the 3-connected minors of S(5, 6, 12)
has at least 2 elements that does not belongs to at least two triangles or contain a P7

minor. So either M contain P7 as a minor or M is isomorphic to the whirl W 2, that is,
M is isomorphic to U2,4, and the result follows. �

We may now prove Theorem 2.

Proof of Theorem 2. Let M be a simple ternary matroid with no M(K4) minor such that
every elements belongs to at least 2 triangles. If M is 3-connected then, by Lemma 4, the
result follows.
Suppose now that M is not 3-connected. By (3) and (6), M can be written as M1 ⊕k M2

where k ≤ 2 and where M1 and M2 are two strict minors of M . Without loss of generality,
we can suppose that M1 is 3-connected (by taking M1 and M2 such that |E(M1)| is
minimal). Moreover, by Lemma 1, every element of M1 belongs to at least 2 triangles
except maybe for the only element of E(M1) ∩ E(M2). So by the (8), M1 contains P7

as a minor or is isomorphic to U2,4. In the first case, since M1 is a minor of M , then
M contain P7 as a minor and we are done. In the second case, suppose by contradiction
that M does not contain U2,4 as a submatroid. If M is the direct sum of M1 and M2,
then M1 is a submatroid of M and thus M contain U2,4 as a submatroid, contradicting
the hypothesis. We thus deduce that M is the 2-sum of M1 and M2. Let p be the
only element of E(M1) ∩ E(M2). We claim that every element of E(M1) \ {p} belongs
to at most one triangle in M . Suppose that one element of M1 \ {p} belongs to two
triangles. As |E(M1) \ {p}| = 3, one of the two triangles denoted by T , can be written,
by the definition of 2-sum, as C1∆C2 where Ci is a circuit of Mi for 1 ≤ i ≤ 2. Since
|T | = |C1|+ |C2| − 2|C1 ∩ C2| = 3 and |C1 ∩ C2| ≤ 1, we deduce that either |C1| ≤ 3 and
|C2| = 2, either |C1| = 2 and |C2| ≤ 3. The latter cannot happen because otherwise C1

would be a circuit of M1 of size 2 which is not possible since M1 is isomorphic to U2,4. In
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the former case, since |C2| = 2 and p ∈ C2 (by definition of the 2-sum), we may denote
C2 = {p, q}. Since p ∈ M2 and q is parallel to p, M|E(M1)\{q} is isomorphic to U2,4 and
thus M contain U2,4 as a submatroid, which is again a contradiction. Thus every element
of E(M1)\{p} belong to at most one triangle in M . Therefore all elements of M |E(M1)\{p}
belong to at most one triangle, contradicting the hypothesis, and the result follows. �
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2, Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France and
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