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A 13k-kernel for Planar Feedback Vertex Set
via Region Decomposition∗

Marthe Bonamy† Łukasz Kowalik‡

Abstract

We show a kernel of at most 13k vertices for the Feedback Vertex Set problem
restricted to planar graphs, i.e., a polynomial-time algorithm that transforms an input
instance (G, k) to an equivalent instance with at most 13k vertices. To this end we
introduce a few new reduction rules. However, our main contribution is an application of
the region decomposition technique in the analysis of the kernel size. We show that our
analysis is tight, up to a constant additive term.

1 Introduction

A feedback vertex set in a graph G = (V,E) is a set of vertices S ⊆ V such that G − S is
a forest. In the Feedback Vertex Set problem, given a graph G and integer k one has
to decide whether G has a feedback vertex set of size k. This is one of the fundamental
NP-complete problems, in particular it is among the 21 problems considered by Karp [11]. It
has applications e.g. in operating systems (see [15]), VLSI design, synchronous systems and
artificial intelligence (see [8]).

In this paper we study kernelization algorithms, i.e., polynomial-time algorithms which,
for an input instance (G, k) either conclude that G has no feedback vertex set of size k or
return an equivalent instance (G′, k′), called kernel. In this paper, by the size of the kernel we
mean the number of vertices of G′. Burrage et al. [5] showed that Feedback Vertex Set
has a kernel of size O(k11), which was next improved to O(k3) by Bodlaender [3] and to 4k2

by Thomassé [16]. Actually, as argued by Dell and van Melkebeek [7] the kernel of Thomassé
can be easily tuned to have the number of edges bounded by O(k2). This cannot be improved
to O(k2−ε) for any ε > 0, unless coNP ⊆ NP/ poly [7].

In this paper we study Planar Feedback Vertex Set problem, i.e., Feedback Ver-
tex Set restricted to planar graphs. Planar versions of NP-complete graph problems often
enjoy kernels with O(k) vertices. Since an n-vertex planar graph has O(n) edges, this implies
they have O(k) edges, and hence are called linear kernels. The first nontrivial result of that
kind was presented in the seminal work of Alber, Fellows and Niedermeier [2] who showed a
kernel of size 335k for Planar Dominating Set. One of the key concepts of their paper
was the region decomposition technique in the analysis of the kernel size. Roughly, in this
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method the reduced plane instance is decomposed into O(k) regions (i.e. subsets of the plane)
such that every region contains O(1) vertices of the graph. It was next applied by Guo and
Niedermeier to a few more graph problems [10]. In fact it turns out that for a number of
problems on planar graphs, including Planar Dominating Set and Planar Feedback
Vertex Set, one can get a kernel of size O(k) by general method of protrusion decomposi-
tion [9]. However, in this general algorithm the constants hidden in the O notation are very
large, and researchers keep working on problem-specific linear kernels with the constants as
small as possible [6, 14, 17, 13, 12].

In the case of Planar Feedback Vertex Set, Bodlaender and Penninkx [4] gave an
algorithm which outputs a kernel of size at most 112k. This was next improved by Abu-
Khzam and Khuzam [1] to 97k. Very recently, and independently of our work, Xiao [18] has
presented an improved kernel of 29k vertices. However, neither of these papers uses the region
decomposition. Indeed, it seems non-obvious how the regions of the region decomposition can
be defined for Planar Feedback Vertex Set. Instead, the authors of the previous works
cleverly apply simple bounds on the number of edges in general and bipartite planar graphs.
Moreover, for certain problems these methods turned out to give better results and simpler
proofs than those based on region decomposition, see e.g., the work of Wang, Yang, Guo
and Chen [17] on Connected Vertex Cover, Edge Dominating Set, and Triangle
Packing in planar graphs improving previous results of Guo and Niedermeier [10].

Somewhat surprisingly, in this work we show that region decomposition can be successfully
applied to Planar Feedback Vertex Set, and moreover it gives much tighter bounds than
the previous methods. Furthermore, we add a few new reduction rules to improve the bound
even further, to 13k. More precisely, we show the following result.

Theorem 1. There is an algorithm that, given an instance (G, k) of Planar Feedback
Vertex Set, either reports that G has no feedback vertex set of size k or produces an equiva-
lent instance with at most 13k−24 vertices. The algorithm runs in expected O(n) time, where
n is the number of vertices of G.

We use the region decomposition approach in a slightly relaxed way: the regions are the
faces of a k-vertex plane graph and the number of vertices of the reduced graph in each region
is linear in the length of the corresponding face. We show that this gives a tight bound, i.e.,
we present a family of graphs which can be returned by our algorithm and have 13k − O(1)
vertices.

Organization of the paper. In Section 2 we present a kernelization algorithm which is
obtained from the algorithms in [4, 1] by generalizing a few reduction rules, and adding some
completely new rules. In Section 3 we present an analysis of the size of the kernel obtained
by our algorithm. In the analysis we assume that in the reduced graph, for every induced
path with ` internal vertices, the internal vertices have at least three neighbors outside the
path. Based on this, we get the bound of (2` + 3)k − (4` + 4) for the number of vertices in
the kernel. In Section 2 we present reduction rules which guarantee that in the kernel ` ≤ 6,
resulting in the kernel size bound of 15k−28. To get the claimed bound of 13k−24 vertices in
Section 4 we present a complex set of reduction rules, which allow us to conclude that ` ≤ 5.
In Section 5 we discuss the running time of the algorithm. Finally, in Section 6 we discuss
possibilities of further research.

Notation. In this paper we deal with multigraphs, though for simplicity we refer to them
as graphs. (Even if the input graph is simple, our algorithm may introduce multiple edges.)
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Figure 1: Reduction rules 1–7. Dashed edges are optional. We draw in black the vertices whose
incident edges are all already drawn (as solid or dashed edges), in white the vertices which might be
incident to other edges. Regardless of their color, vertices in the figures may not coincide.

By the degree of a vertex x in a multigraph G, denoted by degG(x), we mean the number
of edges incident to x in G. By NG(x), or shortly N(x), we denote the set of neighbors of
x, while N [x] = N(x) ∪ {x} is the closed neighborhood of x. Note that in a multigraph
|NG(x)| ≤ degG(x), but the equality does not need to hold. The neighborhood of a set
of vertices S is defined as N(S) = (

⋃
v∈S N(v)) \ S, while the closed neighborhood of S is

N [S] = (
⋃
v∈S N(v))∪S. For a face f in a plane graph, a facial walk of f is the shortest closed

walk induced by all edges incident with f . The length of f , denoted by d(f) is the length of
its facial walk.

2 Our kernelization algorithm

In this section we describe our algorithm which outputs a kernel for Planar Feedback
Vertex Set. The algorithm exhaustively applies reduction rules. Each reduction rule is a
subroutine which finds in polynomial time a certain structure in the graph and replaces it
by another structure, so that the resulting instance is equivalent to the original one. More
precisely, we say that a reduction rule for parameterized graph problem P is correct when for
every instance (G, k) of P it returns an instance (G′, k′) such that:

a) (G′, k′) is an instance of P ,

b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P , and

c) k′ ≤ k.

Below we state the rules we use. The rules are applied in the given order, i.e., in each rule
we assume that the earlier rules do not apply. We begin with some rules used in the previous
works [1, 4].

Rule 1 If there is a loop at a vertex v, remove v and decrease k by one.

Rule 2 Delete vertices of degree at most one.

Rule 3 If a vertex u is of degree two, with incident edges uv and uw, then delete u and add
the edge vw. (Note that if v = w then a loop is added.)

3



Rule 4 If a vertex u has exactly two neighbors v and w, edge uv is double, and edge uw is
simple, then delete v and u and decrease k by one.

Rule 5 If there are at least three edges between a pair of vertices, remove all but two of the
edges.

Rule 6 Assume that there are five vertices a, b, c, v, w such that 1) both v and w are neighbors
of each of a, b, c and 2) each vertex x ∈ {a, b, c} is incident with at most one edge xy such that
y 6∈ {v, w}. Then remove all the five vertices and decrease k by two.

The correctness of the above reduction rules was proven in [1]. (In [1], Rule 6 is formulated
in a slightly less general way which forbids multiplicity of some edges, but the correctness proof
stays the same.) Now we introduce a few new rules.

Rule 7 If a vertex u has exactly three neighbors v, w and x, v is also adjacent to w and x,
and both edges uw and ux are simple, then contract uv and add an edge wx (increasing its
multiplicity if it already exists). If edge uv was not simple, add a loop at v.

Lemma 2. Rule 7 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of Rule 7. Let S
be a feedback vertex set of size k in G′. We claim S is a feedback vertex set in G too. Assume
for a contradiction that there is a cycle C in G − S. Then u ∈ V (C), for otherwise C ⊆ G′.
If v ∈ S then {wu, ux} ⊆ C and C − {wu, ux} + {wx} is a cycle in G′, a contradiction. If
v 6∈ S, then w, x ∈ S and hence v is the only neighbor of u in G− S, so C is the 2-cycle uvu.
But then G′ − S contains a loop at v, a contradiction.

Let S be a feedback vertex set of size k in G. If |{u, v} ∩ S| = 2, then S \ {u} ∪ {w} is a
feedback vertex set of size k in G′. Assume |{u, v} ∩ S| = 1. Then we can assume v ∈ S for
otherwise we replace S by S \ {u}∪ {v}, which is also a feedback vertex set in G. If there is a
cycle C in G′−S , then wx ∈ E(C), for otherwise C ⊆ G−S. But then C−{wx}+{wu, ux}
is a cycle in G, a contradiction. Finally, if |{u, v} ∩ S| = 0 then both w and x are in S, so S
is also a feedback vertex set in G′.

The graph modification in Rule 7 is an example of a gadget replacement, i.e., a subgraph of
G is replaced by another subgraph in such a way that the answer to the Feedback Vertex
Set problem does not change. We will use many rules of this kind, and their correctness
proofs all use similar arguments. In order to make our proofs more compact, we define gadget
replacement formally below, and prove a technical lemma (Lemma 3 below) which will be
used in many rule correctness proofs.

Gadget replacement in graph A is a triple (X,Y,EI), whereX ⊆ V (A), Y is a set of vertices
disjoint with V (A), and EI is a set of edges with both endpoints in NA(X)∪Y . The result of
gadget replacement is a new graph B, obtained from A by deleting X and E(G[N [X]]) and
inserting Y and EI .

For an example, in Rule 7, G′ is a result of gadget replacement ({u}, ∅, {xv,wv, xw}). Note
that if (X,Y,EI) is a gadget replacement in A that results in B then (Y,X, {uv ∈ E(A) :
u, v ∈ NA[X]}) is a gadget replacement in B and its result is A.

Lemma 3. Let (X,Y,EI) be a gadget replacement in graph A, and let B be its result. Let
QA = A[NA[X]] and QB = B[Y ∪NA(X)]. Let SA be a feedback vertex set in A. Let SB be a
subset of vertices of B such that SA \V (QA) = SB \V (QB) and QB −SB is a forest. Finally,
assume that for every pair u, v ∈ NA(X) if there is a (u, v)-path in QB − SB then there is a
(u, v)-path in QA − SA. Then SB is a feedback vertex set of B.
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Figure 2: Reduction rules 8 and 9.

Proof. Assume for a contradiction that there is a cycle C in B − SB. Since QB − SB is a
forest, C has at least one vertex outside QB. Assume C has all vertices outside QB. But then
C ⊆ A and since SA \V (QA) = SB \V (QB) we also have C ⊆ A−SA, so SA is not a feedback
vertex set of A, a contradiction.

Hence we know that C has vertices both inside and outside QB. It follows that C can
be divided into subpaths of two kinds: subpaths in QB − SB and in (B − E(QB)) − SB.
Every such subpath PB in QB − SB is of the form v1, . . . , vt, where v1, vt ∈ NA(X) and
v2, . . . , vt−1 ∈ V (QB) − SB. Hence, by the assumption of the lemma, there is a (v1, vt)-path
PA in QA − SA. In particular, v1, vt 6∈ SA (we will use this observation later). Let C ′ be
the closed walk obtained from C by replacing every maximal subpath in QB − SB by a path
in QA − SA. Now consider a maximal subpath P ′B of C in (B − E(QB)) − SB. It is of the
form v1, . . . , vt, where v1, vt ∈ NA(X) and v2, . . . , vt−1 ∈ (V (B) \ V (QB)) \ SB. Since v1 and
vt are also endpoints of paths in QB − SB, it holds that v1, vt 6∈ SA as argued above. Since
SA \ V (QA) = SB \ V (QB), it holds that v2, . . . , vt−1 ∈ V (A) \ SA. Hence P ′B ⊆ A − SA. It
follows that C ′ is a closed walk in A−SA, hence there is a cycle in A−SA, a contradiction.

When applying Lemma 3, we will examine reachability relations inQA−SA and inQB−SB,
in order to check whether the last assumption holds. It will be convenient to introduce the
following notation. For a graph H and set of vertices S, let RH,S be the reachability relation
in H truncated to S, i.e., (a, b) ∈ RH,S iff a, b ∈ S and there is an (a, b)-path in H. The set S
does not need to be a subset of V (H); for every vertex a ∈ S \V (H), {a} forms an equivalence
class of RH,S .

Rule 8 Assume there are six vertices v1, v2, v3, u1, u2, w1, w2, such thatN(u1) = {w1, w2, u2},
N(v1) = {w1, w2, v2}, N(v2) = {w1, v1, v3}, and deg(v2) = deg(u1) = 3. Then contract the
edge v1v2 to a new vertex y and add an edge w1v3, as presented in Figure 2 (left).

Lemma 4. Rule 8 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of Rule 8. Note
that G′ is a result of a gadget replacement (X,Y,EI) with X = {v1, v2, u1} and Y = {y, u1}

Let S be a feedback vertex set of size k in G. We claim that there is a feedback vertex set S′

in G′ of size at most k. If |S∩{w1, w2, v1, v2, u1}| ≥ 2, then by Lemma 3 we see that S′ = (S \
{w1, w2, v1, v2, u1})∪{w1, w2} works. Hence we can assume |S∩{w1, w2, v1, v2, u1}| ≤ 1. Then
S′∩{w1, w2, v1, v2, u1} = {w1} or S′∩{w1, w2, v1, v2, u1} = {v1} to hit the triangle v1v2w1 and
the quadrangle v1w1u1w2. In the prior case we pick S = S′. Then RG[NG[X]]−S,{w1,w2,u2,v3} and
RG′[NG′ [Y ]]−S′,{w1,w2,u2,v3} are the same relations since the v3v2v1 path in G corresponds to the
v3y edge inG′, so Lemma 3 applies. We are left with the case S′∩{w1, w2, y1, u1} = {v1}. Then
we pick S = (S′ \ {v1}) ∪ {y}. Again, RG[NG[X]]−S,{w1,w2,u2,v3} = RG′[NG′ [Y ]]−S′,{w1,w2,u2,v3}
since the v3v2w1 path in G corresponds to the v3w1 edge in G′, so Lemma 3 applies.
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Let S′ be a feedback vertex set of size k in G′. We claim that there is a feedback vertex
set S in G of size at most k. If |S′ ∩ {w1, w2, y1, u1}| ≥ 2, then by Lemma 3 we see that
S = (S′ \ {y1, y2}) ∪ {w1, w2} works. Hence we can assume |S′ ∩ {w1, w2, y1, u1}| ≤ 1. Then
S′∩{w1, w2, y1, u1} = {w1} or S′∩{w1, w2, y1, u1} = {y} to hit the digon w1y. In the prior case
we pick S = S′. Then RG[NG[X]]−S,{w1,w2,u2,v3} = RG′[NG′ [Y ]]−S′,{w1,w2,u2,v3} since the v3v2v1
path in G corresponds to the v3y edge in G′, so Lemma 3 applies. We are left with the case
S′∩{w1, w2, y1, u1} = {y}. Then we pick S = S′\{y}∪{v1}. Again, RG[NG[X]]−S,{w1,w2,u2,v3} =
RG′[NG′ [Y ]]−S′,{w1,w2,u2,v3} since the v3v2w1 path in G corresponds to the v3w1 edge in G′, so
Lemma 3 applies.

Rule 9 Assume u1u2u3u4 is an induced path such that for two vertices w1, w2 outside the
path, N(u1) = {u2, w1, w2}, N(u2) = {u1, u3, w1} and N(u3) = {u2, u4, w2}, deg(u3) = 3, and
min{deg(u1),deg(u2)} = 3. Then replace G[{u1, u2, u3, w1, w2}] with the gadget presented in
Figure 2 (right), i.e., remove u1 and u2 and add a vertex y, edges yu3 and u3w1, and double
edges yw1 and yw2.

Lemma 5. Rule 9 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of Rule 9. Note
that G′ is a result of a gadget replacement (X,Y,EI) with X = {u1, u2} and Y = {y}

Let S be a solution of (G, k). If |S ∩ {w1, w2, u1, u2, u3}| ≥ 2 or S ∩ {w1, w2, u1, u2, u3} =
{w1} we proceed as in the proof of Lemma 4. Otherwise, to hit the triangle w1u1u2, S ∩
{w1, w2, u1, u2, u3} equals either {u1} or {u2}. In both cases, RG[NG[X]]−S,{w1,w2,u3} has exactly
one equivalence class {w1, w2, u3}. We observe that for S′ = S \ {u1, u2} ∪ {y} the relation
RG′[NG′ [Y ]]−S′,{w1,w2,u3} has also one equivalence class, so by Lemma 3, S′ is a solution of
(G′, k).

Let S′ be a feedback vertex set of size k in G′. If |S′∩{w1, w2, y, u3}| ≥ 2 we proceed as in
the proof of Lemma 4. Otherwise, S′∩{w1, w2, u1, u2, u3} = {y}. If degG(u1) = 3 then we put
S = S′\{y}∪{u2}, and otherwise S = S′\{y}∪{u1}. Note that G[{w1, w2, u1, u2, u3}]−S is a
forest, sincemin{deg(u1),deg(u2)} = 3. Moreover, RG[NG[X]]−S,{w1,w2,u3} andRG′[NG′ [Y ]]−S′,{w1,w2,u3}
are the same (total) relation, so Lemma 3 applies and (S, k) is a solution of (G, k).

Rule 10 Let A ⊆ V (G) and let w1 and w2 be two vertices in G, w1, w2 6∈ A. If (i) no cycle
in G \ {w1, w2} intersects A, and (ii) there is a subgraph Q ⊆ G[A ∪ {w1, w2}] such for every
vertex x ∈ V (Q) \ {w1}, we have degQ(x) ≤ |E(Q)| − |A| − 1, then remove w1 and decrease k
by 1.

Lemma 6. Rule 10 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of Rule 10, i.e.,
G′ = G − w1. Let S be a feedback vertex set of size k − 1 in G′. Then every cycle in G − S
contains w1, so S ∪ {w1} is a feedback vertex set of size k in G.

Let S be a feedback vertex set of size k in G. If w1 ∈ S, then clearly S \ {w1} is a solution
of the instance (G′, k− 1). Hence assume w1 6∈ S. We claim that |S ∩V (Q)| ≥ 2. Assume the
contrary, i.e., |S ∩ V (Q)| ≤ 1. Since Q− S is a forest,

|E(Q− S)| ≤ |V (Q− S)| − 1 = |V (Q)| − |S ∩ V (Q)| − 1 = |A|+ 1− |S ∩ V (Q)|. (1)

6
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On the other hand, by the degree bound, and because w1 6∈ S and |S ∩ V (Q)| ≤ 1,

|E(Q− S)| ≥ |E(Q)| − (|E(Q)| − |A| − 1)|S ∩ V (Q)|. (2)

By (1) and (2), |A| + 1 ≥ |E(Q)| − (|E(Q)| − |A| − 2)|S ∩ V (Q)|. Since |S ∩ V (Q)| ≤ 1 this
implies |A| + 1 ≥ |E(Q)| − (|E(Q)| − |A| − 2) = |A| + 2, a contradiction. It follows that
|S ∩ V (Q)| ≥ 2. Then S′ = S \ {u, v1, v2, v} ∪ {w1, w2} is of size at most k. Moreover, S′ is a
feedback vertex set in G, since S is a feedback vertex set and by (i). Again, this implies that
S′ \ {w1} is a solution of the instance (G′, k − 1), as required.

Rule 10 is not used directly in our algorithm, because it seems impossible to detect it in
O(n) time. However, to get the claimed kernel size we need just two special cases of Rule 10,
which are stated in lemmas 7 and 8 below.

Lemma 7. Assume there are five vertices v1, v2, u, w1, w2 such that N(v1) = {v2, w1, w2},
{w1, w2} ⊆ N(u), there is at most one edge incident to v2 and a vertex outside {w1, w2, v1},
and there is at most one edge incident to u and a vertex outside {w1, w2}. Then Rule 10
applies.

Proof. It is easy to see that condition (i) of Rule 10 is satisfied. We proceed to condi-
tion (ii). Since Rule 3 does not apply, v2 is adjacent to w1 or w2; by symmetry assume
the former. Let A = {u, v1, v2}. We build E(Q) as follows. We start with E(Q) =
{v2w2, v2v1, v1w1, v1w2, uw1, uw2}. Since Rule 8 does not apply, v2w2 ∈ E or one of {v2w1, uw1, uw2}
is a double edge. Hence, we add v2w2 or another copy of one of {v2w1, uw1, uw2} to E(Q),
respectively. Note that for every x ∈ V (Q) \ {w1} we have degQ(x) ≤ 3 = |E(Q)| − |A| − 1,
as required.

Lemma 8. Assume there are five vertices u1, u2, u3, w1, w2 such that N(u1) = {w1, w2, u2},
{u1, u3} ⊆ N(u2) ⊆ {w1, w2, u1, u3}, and there is at most one edge incident to u3 and a vertex
outside {w1, w2, u2}. Moreover, the edges v1v2 and v2v3 are simple. Then Rule 10 applies.

Proof. It is easy to see that condition (i) of Rule 10 is satisfied. We proceed to condition (ii).
LetA = {u1, u2, u3}. We buildE(Q) as follows. We start withE(Q) = {u1w1, u1w2, u1u2, u2u3}.
There are some cases to consider. Since Rule 3 does not apply, u2w1 ∈ E or u2w2 ∈ E.
CASE 1: u2w1, u2w2 ∈ E. Then, since Rule 7 does not apply to the w1u1w2u2 cycle, u1w1

or u1w2 is a double edge. Moreover, since Rule 3 does not apply, u3w1 ∈ E or u3w2 ∈ E. We
add to E(Q) edges u2w1, u2w2, either u3w1 or u3w2 (but not both), and the second copy of
either u1w1 or u1w2 (but not both). Then |E(Q)| = 8 and maxx∈V (Q)\{w1} degQ(x) = 4 =
|E(Q)| − |A| − 1, so (ii) holds.

7



CASE 2: Exactly one of u2w1 and u2w2 is an edge; by symmetry assume u2w1 ∈ E and
u2w2 6∈ E. Since Rule 7 does not apply, u3w1 6∈ E. And then since Rule 3 does not apply,
u3w2 ∈ E.
CASE 2.1: u3w2 is a double edge. We add to E(Q) edge u2w1, and both copies of u3w2.
Then |E(Q)| = 7 and maxx∈V (Q) degQ(x) = 3 = |E(Q)| − |A| − 1, so (ii) holds.
CASE 2.2: u3w2 is a simple edge. Since Rule 9 does not apply, degG(u1) ≥ 4 and degG(u2) ≥
4. We add to E(Q) edges u2w1 and u3w2, exactly one edge incident to u1 which is not yet in
E(Q) and exactly one edge incident to u2 which is not yet in E(Q). Then |E(Q)| = 8 and
maxx∈V (Q)\{w1} degQ(x) = 4 = |E(Q)| − |A| − 1, so (ii) holds.

The following rule was shown to be correct by Abu-Khzam and Khuzam in [1].

Rule 11 Assume there is an induced path with endpoints u and v and with six internal
vertices v1, . . . , v6 such that for some vertices w1, w2 outside the pathN({v1, . . . , v6})\{u, v} =
{w1, w2}. If |N(w1) ∩ {v1, . . . , v6}| ≥ |N(w2) ∩ {v1, . . . , v6}|, then remove w1 and decrease k
by one.

In [1] it was assumed that when Rule 11 described above is applied, G does not contain an
induced path v1, . . . , v5 such that for some vertex w, we have N(v2, v3, v4) \ {v1, v5} = {w}.
In our algorithm this is guaranteed by Rule 7 (slightly more general than their Rule 6). We
are able to extend Rule 11 as follows.

Lemma 9. Assume there is an induced path with endpoints u and v and with five internal
vertices v1, . . . , v5 such that for some vertices w1, w2 outside the path N({v1, . . . , v5})\{u, v} =
{w1, w2}. Then there is an instance (G′, k′) with |V (G′)| < |V (G)| such that (G, k) is a yes-
instance iff (G′, k′) is a yes-instance and k′ ≤ k.

The proof of Lemma 9 involves five more rules and is quite technical; we defer it to
Section 4. We stress here that Lemma 9 is not crucial for getting a substantial improvement
of the kernel size. Indeed, if one uses Rule 11 instead of Lemma 9, the resulting kernel is of
size at most 15k − 28 (see Section 3). Let us also remark that by the analysis in Section 3,
if someone manages to exclude paths described in Lemma 9 with only four internal vertices,
the kernel size decreases further to 11k − 20.

To complete the algorithm we need a final rejecting rule which is applied when the resulting
graph is too big. In Section 3 we prove that Rule 12 is correct.

Rule 12 If the graph has more than 13k − 24 vertices, return a trivial no-instance (conclude
that there is no feedback vertex set of size k in G).

3 The size bound

In this section we prove the following theorem.

Theorem 10. Let G be a planar graph such that rules 1–9 do not apply and G does not
contain the configurations described in lemmas 7 and 8. Assume also that for every induced
path P with endpoints u and v and with ` internal vertices v1, . . . , v` the internal vertices
have at least three neighbors outside the path, i.e., |N({v1, . . . , v`}) \ {u, v}| ≥ 3. If there is a
feedback vertex set of size k in G, then |V (G)| ≤ (2`+ 4)k − (4`+ 6).
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Let S be a feedback vertex set of size k in G (i.e., a “solution”), and let F be the forest
induced by V (G) \ S. Denote the set of vertices of F by VF = V (G) \ S. We call the vertices
in S solution vertices and the vertices in VF forest vertices.

A partition of VF . Now we define some subsets of VF . Let I2, I3+ ⊆ VF denote the vertices
whose degree in F is two or at least three, respectively. The leaves of F are further partitioned
into two subsets. Let L2 and L3+ be the leaves of F that have two or at least three solution
neighbors, respectively. By rules 2 and 3 all the vertices in G have degree at least 3. Hence,
if a leaf of F has fewer than two solution neighbors, Rule 4 or Rule 5 applies. It follows that
every leaf of F belongs to L2 ∪ L3+ . This proves claim (i) of Lemma 11 below.

Lemma 11. Graph G satisfies the following properties.

(i) The sets I2, I3+, L2, L3+ form a partition of VF .

(ii) For every pair u, v of solution vertices there are at most two vertices x, y ∈ L2 such that
N(x) ∩ S = N(y) ∩ S = {u, v}.

(iii) Every vertex of G is of degree at least three.

(iv) Every face of G is of length at least two.

Claim (ii) follows from the fact that Rule 6 does not apply to G. Claim (iii) follows
because rules 2 and 3 do not apply to G and Claim (iv) by Rule 1.

The inner forest. Let FI be the forest on the vertex set I3+ ∪L3+ such that uv ∈ E(FI) iff
for some integer i ≥ 0, there is a path ux1 · · ·xiv in forest F such that u, v ∈ I3+ ∪ L3+ and
for every j = 1, . . . , i, vertex xi belongs to I2.

Three sets of short chains. A path in F consisting of vertices from I2∪L2 will be called a
chain. A chain is maximal if it is not contained in a bigger chain. In what follows we introduce
three sets of (not necessarily maximal) chains, denoted by CL2, C2− and C3+ . We will do it
so that each vertex in I2 belongs to at least one chain from these sets of chains.

For every vertex x ∈ L2, we consider the maximal chain (y1, . . . , yp) of degree 2 vertices
in F such that y1 is adjacent to x and no yi has a solution neighbor outside NG(x)∩S. Then
the chain (x, y1, . . . , yp) is an element of CL2. Note that L2 ⊆ V (CL2).

Chains of C2− and C3+ are defined using the following algorithm. We consider maxi-
mal chains in F , one by one (note that all maximal chains are vertex-disjoint). Let c =
(x1, x2, . . . , xp) be a maximal chain. The vertices of c are ordered so that if {x1, xp}∩L2 6= ∅,
then xp ∈ L2. Using vertices of c we form disjoint bounded length chains and put them in the
sets C2− and C3+ as follows. Assume that for some i < p the vertices of a prefix (x1, x2, . . . , xi)
have been already partitioned into such chains (in particular i = 0 if we begin to process c).
There are three cases to consider.

Consider a shortest chain ci = (xi+1, . . . , xj) such that the vertices of ci have at least three
solution neighbors, i.e., |S ∩N({xi+1, . . . , xj})| ≥ 3. If the chain ci exists, we put it in C3+ ,
and we proceed to the next vertices of c. Otherwise we consider the chain c′i = (xi+1, . . . , xp).
Note that vertices of c′i have at most two solution neighbors.

If xp ∈ I2, then we add the chain c′i to C2− and we finish processing c. Note that then
xp is adjacent to a vertex u ∈ L3+ ∪ I3+ (otherwise c is not maximal, as we can extend it by
a vertex in L2). Moreover, because of the order of the vertices in c, we know that x1 6∈ L2.
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It follows that x1 is also adjacent to a vertex v ∈ L3+ ∪ I3+ . Hence, uv ∈ E(FI). We assign
chain c′i to edge uv.

If xp ∈ L2, then we do not form a new chain and we finish processing c. Note, however,
that the vertices {xi+1, . . . , xp} ∩ I2 belong to a chain in CL2.

Note also that some vertices of the first chain c0 can belong to two chains, one in C3+ and
one in CL2.

Let us summarize the main properties of the construction.

Lemma 12. The following properties hold:

(i) Every vertex from I2 belongs to a chain in CL2, C2− or C3+.

(ii) Every chain in CL2 ∪ C2− has at most two solution neighbors.

(iii) Every chain in C3+ has at least three solution neighbors.

(iv) Every chain in C2− is assigned to a different edge of inner forest FI .

(v) Every chain in C2− ∪ CL2 has at most `− 1 vertices.

(vi) Every chain in C3+ has at most ` vertices.

A solution graph HS. Let us introduce a new plane multigraph HS = (S,ES). Since the
vertices of HS are the solution vertices we call it a solution graph. From now on, we fix a
plane embedding of G. The vertices of HS are embedded in the plane exactly in the same
points as in G. The edge multiset ES is defined as follows. For every triple (u, x, v) such that
u, v ∈ S, x ∈ L2 and there is a path uxv in G, we put an edge uv in ES . Moreover, the edge
uv is embedded in the plane exactly as one of the corresponding paths uxv (note that there
can be up to four such paths if some edges are double). Note that by Lemma 11(ii), every
edge of HS has multiplicity at most two.

The set of faces of HS is denoted by FS . By FS,2 we denote its subset with the faces of
length two, while FS,3+ are the remaining faces. Note that there are no faces of length 1 in
HS .

Lemma 13. We have |V (CL2)| ≤ 2(|ES | − |FS,2|).

Proof. By the definition, for every vertex x ∈ L2 there is a corresponding edge uv ∈ ES , where
NG(x) ∩ S = {u, v}. Also, for every chain c in CL2 there is a corresponding vertex x ∈ L2,
and thus a corresponding edge uv ∈ ES . We assign x, c and the vertices of c to the pair {u, v}.

Consider an arbitrary pair u, v such that uv ∈ ES . Note that there are exactly |ES |−|FS,2|
such pairs. We claim that there are at most two elements in V (CL2) assigned to the pair {u, v}.
Indeed, by Lemma 11(ii), there are at most two vertices in L2 assigned to {u, v}. If there are
no such vertices, no chain in CL2 is assigned to {u, v}, so the claim holds. If there is exactly
one vertex x ∈ L2 assigned, there is exactly one chain c ∈ CL2 assigned. By Lemma 5,
chain c has at most two vertices, so the claim holds. Finally, if there are exactly two vertices
x, y ∈ L2 assigned, there are exactly two chains cx and cy assigned. By Lemma 4 we have
|V (cx)| = |V (cy)| = 1. This concludes the proof.

Maximality. In what follows we assume that graph G is maximal, meaning that one can add
neither an edge to E(G) nor a vertex to L2 obtaining a graph G′ such that S is still a feedback
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vertex set of G′ and all the claims of lemmas 11, 12 and 13 hold. Note that the number of
L2-vertices which can be added to G is bounded, since each such vertex corresponds to an
edge in HS , and HS has at most 6|S| edges as a plane multigraph with edge multiplicity at
most two. Similarly, once the set of L2-vertices is maximal, and hence the vertex set of G is
fixed, the number of edges which can be added to G is bounded by 6|V (G)|. It follows that
such a maximal supergraph of G exists. Clearly, it is sufficient to prove Theorem 10 only in
the case when G is maximal.

Lemma 14. The planar graph HS is connected.

Proof. Assume now for contradiction that there is a partition S = S1 ∪ S2 such that there is
no edge in HS between a vertex of S1 and a vertex of S2.

Every face of G is incident to at least one vertex of S, for otherwise the boundary of the
face does not contain a cycle, a contradiction. Assume that a face f of G contains a solution
vertex u1 in S1 and a solution vertex u2 in S2. Then we can add a vertex x, two edges xu1 and
two edges xu2. Note that S is still a feedback vertex set in the new graph; in particular now
x ∈ L2. In the new graph there are no more vertices in L2 adjacent to both u1 and u2 because
of our assumption that S1 and S2 are not connected by an edge in HS , so Lemma 11(ii)
holds. Moreover, |V (CL2)| was increased by one and |ES | − |FS,2| was also increased by one,
so Lemma 13 holds. The other claims of lemmas 11 and 12 trivially hold, so F is not maximal,
a contradiction.

Let F1 and F2 be the collections of faces of G containing a vertex in S1, or in S2, respec-
tively. We have shown above that F1 ∪ F2 is a partition of the set of all the faces of G. Let
V1 and V2 denote the sets of vertices incident to a face in F1, or in F2, respectively. Note that
V1 ∩ V2 6= ∅, since there must be two neighboring faces, one in F1 and the other in F2. Let
x ∈ V1 ∩ V2. Since faces of G are of length at least two, x has in G at least two neighbors in
V1 ∩ V2. It follows that G[V1 ∩ V2] has minimum degree two, so G[V1 ∩ V2] contains a cycle.
However, (V1 ∩ V2)∩S = ∅, since F1 and F2 are disjoint. Hence V1 ∩ V2 ⊆ F , a contradiction.

Bounding the number of forest vertices in a face of HS. For a face f of HS and a set
of vertices A ⊆ V (G) we define Af as the subset of A of vertices which are embedded in f or
belong to the boundary of f . Note that all vertices of every chain belong to the same face f
of HS . When C is a set of chains, by Cf we denote the subset of chains of C which lie in f ,
i.e., Cf = {c ∈ C : V (c) ⊆ V (G)f}.

Lemma 15. For every face f of HS, it holds that |Lf
3+
|+ |If

3+
|+ |Cf

3+
| ≤ d(f)− 2.

Proof. First we note that the forest F f is in fact a tree. Indeed, if F f has more than one
component, we can add an edge between two solution vertices on the boundary of f preserving
planarity, what contradicts the assumed maximality.

Consider a plane subgraph A of G induced by V (G)f , i.e., we take the plane embedding
of G and we remove the vertices outside V (G)f . Then we can define graph AS , analogously
to HS . We treat f as a face of AS . Let u1u2 · · ·ud(f)u1 be the facial walk of f .

Consider an arbitrary vertex x of If
3+
. Let T1, . . . , Tr be the r trees obtained from the tree

T in F containing x after removing r from T . Then r ≥ 3 since x has at least three neighbors
in T . By planarity, there are 2r indices b1, e1, b2, e2, . . . , br, er such that for every i = 1, . . . , r

{ubi , uei} ⊆ N(V (Tt)) ∩ {u1, . . . , ud(f)} ⊆ {ubi , ubi+1, . . . , uei}.

11



Then, for every j ∈ {b1, b2, . . . , br} there is an edge xuj , for otherwise we can add it in the
current plane embedding, contradicting the maximality of G. This means that every vertex
in If

3+
has at least three neighbors in {u1, u2, . . . , ud(f)}.

We further define B as the plane graph obtained from A by (1) replacing every triple
(u, x, v) where x ∈ L2, u, v ∈ S and uxv forms a path by a single edge, (2) removing vertices
of V (CL2), (3) contracting every chain from C3+ into a single vertex, and (4) contracting every
chain from C2− into a single edge. By (4) we mean that every maximal chain d = x1, . . . , xi
of I2 vertices which is contained in a chain from C2− , is replaced by the edge yz where y and
z are the forest neighbors (in L3+ ∪ I3+) of x1 and xi outside the chain d. Let us call the
vertices of B that are not on the boundary of f as inner vertices.

Note that the set of inner vertices is in a bijection with Lf
3+
∪ If

3+
∪ Cf

3+
. Moreover,

I forms a tree, since F f is a tree. Also, each inner vertex has at least three neighbors in
{u1, u2, . . . , ud(f)}. We show that |I| ≤ d(f)−2 by the induction on d(f). When d(f) = 2 the
claim follows since each inner vertex has at least three neighbors on the boundary of f . Now
assume d(f) > 2. Let x be leaf in the tree I. Then the edges from x to the boundary of face
f split F into at least three different faces. The subtree I − x lies in one of these faces, say
face bounded by the cycle xuiui+1 · · ·ujx. We remove x and vertices uj+1, . . . , ui−1 (there is
at least one of them) and we add edge uiuj . The outer face of the resulting graph is of length
at most d(f)− 1, so we can apply induction and the claim follows.

Lemma 16. For every face f in HS of length at least three,

|V f
F \ V (CLf2)| ≤ ` · (d(f)− 2)− (`− 1).

Proof. We have

|V f
F \ V (CLf2)| ≤ |L

f
3+
|+ |If

3+
|+ |V (Cf

3+
)|+ |V (Cf

2−)|.

By Lemma 12(v) we get

|V f
F \ V (CLf2)| ≤ |L

f
3+
|+ |If

3+
|+ `|Cf

3+
|+ (`− 1)|Cf

2− |. (3)

By Lemma 12(iv), |Cf
2− | is bounded by the number of edges of the inner forest FI . Hence,

|Cf
2− | ≤ |L

f
3+
| + |If

3+
| − 1 when |Lf

3+
| + |If

3+
| > 0 and |Cf

2− | = 0 otherwise. In the prior case,
by (3) we get that

|V f
F \ V (CLf2)| ≤ `(|L

f
3+
|+ |If

3+
|+ |Cf

3+
|)− (`− 1),

and the result then follows from Lemma 15. Hence it suffices to prove the claim when |Lf
3+
| =

|If
3+
| = |Cf

2− | = 0. Then the forest F f is a non-empty collection of paths, each with both
endpoints in L2. Let c be such a path on p vertices x1, . . . , xp. Then x1 ∈ L2 and x1 has
exactly two neighbors u, v in S. Let i be the largest such that N({x1, . . . , xi}) ∩ S = {u, v}.
By definition, (x1, . . . , xi) is a chain in CLf2 . We infer that if i = p for every such path,
then |V f

F \ V (CLf2)| = 0 and the claim follows. Hence we can assume that i < p, i.e., xi+1

has a neighbor in S \ {u, v}. Then, by definition, (x1, . . . , xi+1) is a chain in Cf
3+
. Since

(x1, . . . , xi) ∈ CLf2 , we get |{x1, . . . , xi+1} \ V (CLf2)| = 1. Hence,

|V f
F \ V (CLf2)| ≤ 1 + `(|Cf

3+
| − 1),
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Figure 4: A tight example. The big black vertices are solution vertices, the small gray ones are forest
vertices. The zigzag edges represent paths of ` − 1 forest vertices, each adjacent to the two available
solution vertices. Asymptotically for larger cycles, we have 2` + 3 forest vertices for each solution
vertex.

what, by Lemma 15 , is bounded by 1 + ` · (d(f)− 3) = ` · (d(f)− 2)− (`− 1), as required.

Lemma 17. For every face f in HS of length two, V f
F ⊆ V (CLf2).

Proof. Since the boundary of f has only two solution vertices, F f contains no vertices of Lf
3+
,

V (C3+)
f or If

3+
. Then by Lemma 12(iv), Cf

2− is also empty. The claim follows.

Now we proceed to the bound of Theorem 10. By Lemmas 16 and 17 we have

|VF | ≤ |V (CL2)|+
∑

f∈FS,3+

(`(d(f)− 2)− (`− 1))

By Lemma 13 we get

|VF | ≤ 2(|ES | − |FS,2|) +
∑

f∈FS,3+

(`(d(f)− 2)− (`− 1))

= 2(|ES | − |FS,2|) +
∑
f∈FS

(`(d(f)− 2)− (`− 1)) + (`− 1)|F2,S |

= (2`+ 2)|ES | − (3`− 1)|FS |+ (`− 3)|F2,S |
= (2`+ 2)|ES | − (2`+ 2)|FS | − (`− 3)|FS |+ (`− 3)|F2,S |
≤ (2`+ 2)(|ES | − |FS |).

By Lemma 14 graph HS is connected, so we can apply Euler’s formula |S| − |ES |+ |FS | = 2.
Thus,

|V (G)| = |VF |+ |S| ≤ (2`+ 2)(|S| − 2) + |S|,
= (2`+ 3)k − (4`+ 4).
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Figure 5: Configuration from Lemma 9.
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Figure 6: Gadgets of rules 15, 16 and 17.

This concludes the proof of Theorem 10. By Lemma 9, we can put ` = 5, which results in
|V (G)| ≤ 13k− 24. In Figure 4 we show an example of a graph, where our reduction rules do
not apply and our analysis is tight (up to a constant additive term).

4 Reducing induced 5-paths with at most two neighbors

This section is devoted to a proof of Lemma 9. Let us recall its statement here.

Lemma 9 (restated). Assume there is an induced path u0ux1x2x3vv0 such that for some
vertices w1, w2 outside the path N({u, x1, x2, x3, v}) \ {u0, v0} = {w1, w2}. Then there is
an instance (G′, k′) with |V (G′)| < |V (G)| such that (G, k) is a yes-instance iff (G′, k′) is a
yes-instance and k′ ≤ k.

Denote the path ux1x2x3v by P . Let Q = G[V (P ) ∪ {w1, w2}]. By symmetry we assume
|N(w1) ∩ V (P )| ≥ |N(w2) ∩ V (P )|. Then also |N(w1) ∩ V (P )| ≥ 3, for otherwise Rule 3
applies. In our proof of Lemma 9 we do not apply a single rule, but one of four rules. The
kernelization algorithm finds the family S of all feedback sets of Q. (Note that there is a
bounded number of such sets.) Based on the structure of S, one of the four rules is chosen
and applied. Let us also define δ(Q) = NG(X) = {u, v, w1, w2}. Let us state the rules now.

Rule 13 Assume every set SQ ∈ S satisfies at least one of the conditions below:

(1) |SQ| ≥ 3,

(2) Q− SQ contains a (u, v)-path,

(3) w1 ∈ SQ, or

(4) w2 ∈ SQ.

Then remove vertex w1 and decrease k by one.

Rule 14 If |N(w2) ∩ V (P )| ≤ 2 Then remove vertex w1 and decrease k by one.

Rule 15 If every set SQ ∈ S satisfies at least one of the conditions (1)-(4) or
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(5) the sets {v} and {u,w1, w2} are the equivalence classes of RQ−SQ,δ(Q),

then replace Q by the gadget from Figure 6 (left), i.e., remove x1, x2, x3 and edges in G[Q],
and add a vertex y and edges uy, yv, uw1, uw2 and double edges vw1, vw2, yw1, yw2.

Rule 16 If every set SQ ∈ S satisfies at least one of the conditions (1)-(5) or

(6) the sets {u} and {v, w1, w2} are the equivalence classes of RQ−SQ,δ(Q),

then replace Q by the gadget from Figure 6 (middle), i.e., remove x1, x2, x3 and edges in G[Q],
and add a vertex y and edges uy, yv, uw1, uw2, vw1, vw2 and double edges yw1, yw2.

Rule 17 If every set SQ ∈ S satisfies at least one of the conditions (1)-(5) or

(7) the sets {u,w2} and {v, w1} are the equivalence classes of RQ−SQ,δ(Q),

then replace Q by the gadget from Figure 6 (right), i.e., remove x1, x2, x3 and edges in G[Q],
and add vertices y1, y2 and edges uy1, y1y2, y2v, uw2, y1w2, y2w2, y2w1, vw1 and a double
edge y1w1.

Note that the graph modifications in rules 15–17 can be phrased as gadget replacements
(X,Y,EI) in graph G, where X = {x1, x2, x3}, Y = {y} for rules 15 and 16, while Y = {y1, y2}
for Rule 17.

Lemma 18. If there is an induced path described in Lemma 9, then one of rules 13–17 applies.
Moreover, if Rule 17 is applied, then S contains both a set satisfying (5) and a set satisfying
(7).

Proof. Assume rules 13–16 do not apply. We will show that Rule 17 applies. Then there is a
set SQ ∈ S that satisfies none of (1)–(6). Since (1), (3) and (4) do not hold for SQ, we infer
that |SQ| ≤ 2 and SQ ⊆ {u, x1, x2, x3, v}. Recall that |N(w1) ∩ V (P )| ≥ 3. Let p, q, r be
three arbitrary vertices of N(w1) ∩ V (P ), sorted by increasing distance from u in the path
ux1x2x3v. Assume |SQ| ≤ 1. Then q ∈ SQ, for otherwise SQ is not a feedback vertex set of
Q. But then there is a (u, v)-path in Q− SQ: from u follow the path ux1x2x3v to p, then via
w1 to r and again follow the path ux1x2x3v to v. Hence SQ satisfies (2), a contradiction. In
what follows we assume |SQ| = 2.
CASE 1: In Q−SQ there is an edge ab ∈ E(P ). Then in particular a, b 6∈ SQ. Since Rule 3
does not apply, both a and b have a neighbor in {w1, w2}. However, since Q − SQ does not
contain cycles, the neighbor of a is different than the neighbor of b. Hence, Q− SQ contains
path w1abw2 or path w1baw2. If u ∈ {a, b}, SQ satisfies (5), a contradiction, and if v ∈ {a, b},
SQ satisfies (6), a contradiction. Hence {u, v} ∩ {a, b} = ∅. It follows that {a, b} = {x1, x2}
or {a, b} = {x2, x3}. In the former case x3 ∈ SQ and in the latter case x1 ∈ SQ, for otherwise
Q−SQ has a cycle because x3 (resp. x1) has a neighbor in {w1, w2} by Rule 3. Since |SQ| = 2,
it follows that exactly one of u, v is not in SQ. But by Rule 3 both of them have a neighbor
in {w1, w2}, so (5) or (6) is satisfied, a contradiction.
CASE 2: Q− SQ contains no edge of E(P ). Then SQ = {x1, x3}.

If uw2 ∈ E, then vw2 6∈ E, for otherwise (2) holds. It follows that vw1 ∈ E, for otherwise
Rule 3 applies. Then uw1 6∈ E, for otherwise (2) holds.

By the same arguments, if uw2 6∈ E, then uw1 ∈ E, vw1 6∈ E and vw2 ∈ E. We see that
the two cases above are symmetric, so let us consider only the former one, i.e., uw2, vw1 ∈ E
and uw1, vw2 6∈ E. Then also w1w2 6∈ E, for otherwise (2) holds.
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CASE 2.1: x2w1 6∈ E. Since Rule 3 does not apply, x2w2 ∈ E. Since |N(w1) ∩ V (P )| ≥ 3,
x1, x3 ∈ N(w1). Hence NQ(w1) = {x1, x3, v}. Since |N(w2) ∩ V (P )| ≤ |N(w1) ∩ V (P )| and
|N(w2) ∩ V (P )| ≥ 3 as Rule 14 does not apply, we get |N(w2) ∩ V (P )| = 3. It follows that
either NQ(w2) = {u, x1, x2} or NQ(w2) = {u, x2, x3}. In both cases SQ satisfies (7).
CASE 2.1.1: NQ(w2) = {u, x1, x2}. Consider an arbitrary S′Q ∈ S that satisfies none of
(1)–(4) or (7). Similarly as we argued for SQ, S′Q ⊆ {u, x1, x2, x3, v} and |S′Q| ≤ 2. Then
x1 ∈ S′Q, for otherwise it is impossible to hit all three cycles w2ux1, w2x1x2 and w1x3v. It
follows that S′Q contains x3 or v, but in the former case (7) holds. Hence S′Q = {x1, v}, and
(5) holds for S′Q. This proves our claim.
CASE 2.1.2: NQ(w2) = {u, x2, x3}. Then we rename vertices of Q: swap names of w1 and
w2, u and v, x1 and x3, obtaining NQ(w1) = {x1, x2, v} and NQ(w2) = {u, x1, x3}. Notice
that in this new setting {x1, x3} is still a feedback vertex set of Q and satisfies (7). In the
new setting, consider an arbitrary S′Q ∈ S that satisfies none of (1)–(4) or (7). Similarly as
we argued for SQ, S′Q ⊆ {u, x1, x2, x3, v} and |S′Q| ≤ 2. Then x1 ∈ S′Q, for otherwise it is
impossible to hit all three cycles w2ux1, w1x1x2 and w1x1w1x3v. It follows that S′Q contains
x2, x3 or v, but in the first case (2) holds and in the second case (7) holds. Hence S′Q = {x1, v},
and (5) holds for S′Q. This proves our claim.
CASE 2.2: x2w1 ∈ E. Then x2w2 6∈ E, for otherwise (2) holds. Since |N(w2) ∩ V (P )| ≥ 3
by Rule 14, x1, x3 ∈ N(w2). Hence NQ(w2) = {u, x1, x3}. Since |N(w1) ∩ V (P )| ≥ 3, we
have x1w1 ∈ E or x3w1 ∈ E. If both edges x1w1 and x3w1 are present, then Rule 7 applies,
a contradiction. It follows that either NQ(w2) = {x1, x2, v} or NQ(w2) = {x2, x3, v}. The
former case was already considered in Case 2.1.2 (after renaming vertices). In the latter case,
we rename vertices by swapping names of w1 and w2, u and v, x1 and x3. Thus we obtain the
already considered Case 2.1.1.

The lemma below will be very useful in proving that the rules above are correct in particular
settings of subgraph Q.

Lemma 19. In each of the situations below all rules 13–17 are correct.

(i) (G, k) is a no-instance.

(ii) there is a solution S to the instance (G, k) such that |V (Q) ∩ S| ≥ 2 and

(ii.1) |V (Q) ∩ S| ≥ 3, or
(ii.2) in Q− S there is an (x1, x5) path, or
(ii.3) w1 ∈ S, or
(ii.4) w2 ∈ S.

Proof. We begin with (i). We need to show that for each of the rules 13–17 the resulting
instance (G′, k′) is a no-instance. Assume the contrary, i.e., let S′ be a solution of (G′, k′). We
will show that there is a solution S of (G, k), contradicting our assumption. For rules 13 and 14
we see that S = S′ ∪{w1} works. Now focus on the remaining rules. Let Y = {y} for rules 15
and 16, and Y = {y1, y2} for Rule 17. Let Q′ = G′[N [Y ]]. It is easy to verify that for each of
the three rules |V (Q′)∩S| ≥ 2. If |V (Q′)∩S| ≥ 3 then we see that S = S′\V (Q′)∪{w1, w2, x1}
works. Hence we are left with the case |V (Q′) ∩ S| = 2.

Assume there is a (u, v)-path in G′ − S′. Then we put S = S′ \ V (Q′) ∪ {w1, w2}. Note
that the equivalence classes of RQ−S,δ(Q) are {u, v}, {w1} and {w2}. Hence, by Lemma 3 (for
A = G′ and B = G) S is a feedback vertex set of G, so (G, k) is a yes-instance, a contradiction.
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Hence we can assume that there is no (u, v) path in G′ − S′. Note that this implies that
V (Q′) ∩ S′ is equal to {u, y} for Rule 15, {u, y} or {y, v} for Rule 16, and {y1, y2} or {y1, v}
for Rule 17.

Consider Rule 15. Since Rule 13 does not apply, there is at least one feedback vertex set
SQ ∈ S of size at most two which satisfies (5). Since V (Q′) ∩ S′ = {u, y}, the equivalence
classes of RQ′−S′,δ(Q) are {v} and {u,w1, w2}, hence by Lemma 3 (for A = G′ and B = G)
S = S′ \ V (Q′) ∪ SQ is a feedback vertex set G, so (G, k) is a yes-instance.

Now consider Rule 16. Note that it cannot happen that S contains only sets that satisfy
(1)-(4), or (6), because then Rule 15 applies to Q with vertices renamed (swap the names of u
and v, x1 and x3). Since rules 13 and 15 do not apply to Q, S contains both a feedback vertex
set S1

Q ∈ S which satisfies (5) and S2
Q ∈ S which satisfies (6), and |S(5)

Q |, |S
(6)
Q | ≤ 2. Since

V (Q′) ∩ S′ = {u, y} or V (Q′) ∩ S′ = {y, v} the equivalence classes of RQ′−S′,δ(Q) are {u} and
{v, w1, w2}, or {v} and {u,w1, w2}, respectively. In the former case we put S = S′\V (Q′)∪S(6)

Q

and in the latter one S = S′ \ V (Q′) ∪ S(5)
Q . By Lemma 3 (for A = G′ and B = G) S is a

feedback vertex set G, so (G, k) is a yes-instance.
Finally, consider Rule 17. By Lemma 18, S contains both a set |S(5)

Q | satisfying (5) and a

set |S(7)
Q | satisfying (7). Since V (Q′) ∩ S′ = {y1, y2} or V (Q′) ∩ S′ = {y1, v} the equivalence

classes of RQ′−S′,δ(Q) are {u,w2} and {v, w1}, or {v} and {u,w1, w2}, respectively. In the
former case we put S = S′ \ V (Q′) ∪ S(7)

Q and in the latter one S = S′ \ V (Q′) ∪ S(5)
Q . By

Lemma 3 (for A = G′ and B = G) S is a feedback vertex set G, so (G, k) is a yes-instance.
This ends the proof of (i).

We proceed to (ii). We need to show that in each of the cases (ii.1)–(ii.4), (G′, k′) is a
yes-instance. To this end we will show a feedback vertex set S′ of size at most k′ in G′.

For (ii.1) we pick S′ = (S\V (Q))∪{u,w1, w2}. Then the equivalence classes of RQ′−S′,δ(Q)

are all singletons, so by Lemma 3 (for A = G, B = G′) S′ is a feedback vertex set of G′.
For (ii.2) we pick S′ = (S \ V (Q))∪ {w1, w2}. Then the equivalence classes of RQ′−S′,δ(Q)

are {u, v}, {w1} and {w2}, so by Lemma 3 (for A = G, B = G′) S′ is a feedback vertex set of
size at most k in G′.

For (ii.3) we consider two cases. In case of rules 13 and 14 it is clear that S′ = S \ {w1}
works. Hence we can assume that Rule 14 does not apply. Let p, q, r be arbitrary three vertices
of N(w2) ∩ V (P ), in the order of increasing distance from u in the path P . We can assume
that |V (Q)∩S| ≤ 2, for otherwise we use (ii.1). Then r ∈ S, for otherwise we need to include
both p and q (at least) to hit all the cycles of Q. Hence V (Q)∩S = {w1, r}. But then there is
a path going from u to p along P , then via w2 to r and to v along P . Hence we apply (ii.2).

For (ii.4), we can assume that |V (Q) ∩ S| ≤ 2 and w1 6∈ S, for otherwise we apply (ii.1)
or (ii.3). Since |N(w1) ∩ V (P )| ≥ 3 we can pick three vertices p, q, r of N(w1) ∩ V (P ), in
the order of increasing distance from u in the path P . Then r ∈ S, for otherwise we need to
include both p and q (at least ) to hit all cycles of Q. Hence V (Q) ∩ S = {w2, r}. But then
there is a path going from u to p along P , then via w1 to r and to v along P . Hence we apply
(ii.2).

Lemma 20. Rules 13–17 are correct.

Proof. By Lemma 19(i) it suffices to prove the correctness when there is a feedback vertex set
S of size at most k.
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Since |N(w1) ∩ V (P )| ≥ 3, we see that Q contains cycles and hence |V (Q) ∩ S| > 0, for
otherwise S is not a feedback vertex set.

First we consider the case |V (Q) ∩ S| = 1. Assume |N(w2) ∩ V (P )| ≥ 3. By Rule 3, Q
has a subgraph R consisting of path P , three edges, each joining a different vertex of P with
w1, and another three edges, each joining a different vertex of P with w2. Note that R has 7
vertices, 10 edges and maximum degree 4. Then R− S has 6 vertices and at least 6 edges, so
S is not a feedback vertex set, a contradiction. Assume |N(w2) ∩ V (P )| ≤ 2. Then Rule 13
or Rule 14 applies. We will show that V (Q) ∩ S = {w1}; then clearly S′ = S \ {w1} is a
solution of (G′, k − 1). Build a subgraph R of Q as follows. Start with R = P . For each
x ∈ N(w2) ∩ V (P ), add a single edge xw2 to R. Next, for each x ∈ V (P ) \ N(w2), add a
single edge xw1 to R (which exists since Rule 3 does not apply). Note that R has 7 vertices,
9 edges and every vertex of R apart from w1 has degree at most three in R. It follows that
V (Q) ∩ S = {w1}, for otherwise R − S has 6 vertices and at least 6 edges. This finishes the
proof of the |V (Q) ∩ S| = 1 case. From now on we assume |V (Q) ∩ S| ≥ 2.

By Lemma 19 we can assume that |V (Q) ∩ S| = 2, there is no (u, v)-path in Q − S and
V (Q)∩ S ⊆ V (P ). In particular V (Q)∩ S satisfies none of (1)–(4). For Rule 13 we are done.
For the remaining rules we will show that G′ has a feedback vertex S′ set of size at most k′.

Consider Rule 14. If |N(w2) ∩ V (P )| = 0, then by Rule 3, V (P ) ⊆ N(w1) and Rule 7
applies, a contradiction. If |N(w2)∩V (P )| = 1, then S1 = (S\V (Q))∪{w1}∪(N(w2)∩V (P ))
is another feedback vertex set of size at most k in G and we can apply Lemma 19. Hence
|N(w2)∩V (P )| = 2. We claim that in Q−S vertex w2 is reachable from u or v. We consider
cases depending on the distance d in graph P between the two vertices of N(w2) ∩ V (P ).

If d = 1, then N(w2) ∩ V (P ) = {x1, x2} or N(w2) ∩ V (P ) = {x2, x3}, since in other
cases Rule 3 or Rule 7 applies. By symmetry we can assume N(w2) ∩ V (P ) = {x1, x2} and
{u, x3, v} ⊆ N(w1)∩V (P ). It follows that there are at most four possible feedback vertex sets
of Q − S, namely {x1, x3}, {x2, x3}, {x1, v}, and {x2, v}. The prior two cases are excluded
because then Q− S contains a (u, v)-path, and in the latter two cases w2 is reachable from u
in Q− S as required.

If d = 2, then N(w2)∩V (P ) equals {u, x2}, {x1, x3} or {x2, v}, where the first and the last
case are symmetric, so we skip the analysis of the first one. When N(w2) ∩ V (P ) = {x2, v},
then {u, x1, x3} ⊆ N(w1) ∩ V (P ) by Rule 3. It follows that there are at most five possible
feedback vertex sets of Q− S, namely {u, x2}, {u, x3}, {x1, x2}, {x1, x3} and {x1, v}. In the
first, second, third and fourth case w2 is reachable from v in Q − S. In the last case w2 is
reachable from u in Q− S. When N(w2)∩ V (P ) = {x1, x3}, then {u, x2, v} ⊆ N(w1)∩ V (P )
by Rule 3. It follows that there are at most six possible feedback vertex sets of Q−S, namely
{u, x2}, {u, x3}, {x1, x2}, {x1, x3}, {x1, v} and {x2, v}. In the first and second case w2 is
reachable from v in Q−S. In the third and fourth case there is a (u, v)-path. In the fifth and
sixth case w2 is reachable from u in Q− S.

If d = 3, then N(w2) ∩ V (P ) equals {u, x3} or {x1, v}. By symmetry assume the former.
Then {x1, x2, v} ⊆ N(w1) ∩ V (P ) by Rule 3. It follows that there are at most six possible
feedback vertex sets of Q−S, namely {u, x2}, {x1, x2}, {x1, x3}, {x1, v}, {x2, x3} and {x2, v}.
In the first case w2 is reachable from v in Q− S. In the second case there is a (u, v)-path. In
the remaining cases w2 is reachable from u in Q− S.

If d = 4 then Rule 3 or Rule 7 applies, a contradiction.
We have thus shown that in Q− S, the vertex w2 is reachable from u or v. By symmetry

assume the former. Let z be the vertex of N(w2) ∩ V (P ) which is closer to v on P . Note
that neither w2 nor u is reachable from v in Q − {w1, z}. Hence, the equivalence classes of
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RQ−{w1,z},{w1,w2,u,v} are {v}, {w1} and a partition of {u,w2}. Then, by Lemma 3 (applied to
A = B = G), S1 = S \ V (Q) ∪ {w1, z} is another feedback vertex set of size at most k in G
and we can apply Lemma 19. This finishes the proof of correctness of Rule 14.

Now consider Rule 15. Since S ∩ V (Q) satisfies none of (1)–(4), we infer that (5) applies
to S ∩ V (Q). Then we pick S′ = S \ V (Q) ∪ {y, v}. Note that the equivalence classes of both
RQ′−S′,δ(Q) and RQ−S,δ(Q) are {v}, {u,w1, w2}. Then, by Lemma 3 S′ is a feedback vertex set
in G′.

Now consider Rule 16. Since S ∩ V (Q) satisfies none of (1)–(4), we infer that (5) or (6)
applies to S∩V (Q). Then we pick S′ = S\V (Q)∪{y, v} or S′ = S\V (Q)∪{u, y}, respectively.
Note that the equivalence classes of both RQ′−S′,δ(Q) and RQ−S,δ(Q) are either {v}, {u,w1, w2}
or {u}, {v, w1, w2}. Then, by Lemma 3 S′ is a feedback vertex set in G′.

Finally consider Rule 17. Since S ∩ V (Q) satisfies none of (1)–(4), we infer that (5) or
(7) applies to S ∩ V (Q). Then we pick S′ = S \ V (Q) ∪ {y1, v} or S′ = S \ V (Q) ∪ {y1, y2},
respectively. Note that the equivalence classes of both RQ′−S′,δ(Q) and RQ−S,δ(Q) are either
{v}, {u,w1, w2} or {u,w2}, {v, w1}. Then, by Lemma 3, S′ is a feedback vertex set in G′.

This finishes the proof of Lemma 9.

5 Running time

It is easy to see that each of our reduction rules can be detected and performed in O(n) time
in such a way that loops and triple edges are not introduced. Since every rule except for
Rule 1 and Rule 5 decreases the number of vertices, the total time needed for detecting and
performing them is O(n2). In what follows we will show that it can be improved to O(n)
expected time.

We assume that the graph is stored using adjacency lists. Additionally, we use four data
structures:

• A dictionary D1 implemented as a hash table storing all pairs of adjacent vertices. The
hash table stores the corresponding two adjacency list elements for each such pair.

• A dictionary D2 implemented as a hash table storing all pairs of vertices (x, y) for which
the set

Sx,y = {z ∈ V : x, y ∈ N(z) and there is at most one edge zu such that u 6∈ {x, y}}

is nonempty. The hash table stores the set Sx,y for each such pair.

• A queue Q3+ storing all pairs (x, y) such that |Sx,y| ≥ 3.

• A queue Qs storing vertices with at most four neighbors (not necessarily all).

Once we have the dictionary D1 answering adjacency queries in constant expected time,
it is easy to detect and apply Rule 1 and Rule 5 immediately after a graph modification. The
total expected time needed for that is bounded by total time of graph modifications. Hence,
in what follows we exclude from our considerations Rule 1 and Rule 5 and we can assume that
application of every rule decreases the number of vertices.

The major challenge in implementing the kernelization algorithm efficiently is detecting
that a rule applies. In other words we have to find the particular subgraphs described in
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the rules, which we call configurations, efficiently. If a configuration C appears in G then
there is an injective homomorphism hC : V (C) → V (G). Vertices of every configuration are
partitioned into two categories: black and white vertices, defined in the figures. Let BC and
WC denote the corresponding sets of vertices of C.

Lemma 21. Assume Q3+ is empty. Then for every vertex v of G with at most four neighbors
one can check in O(1) time whether there is a configuration C in G such that h−1C (v) is a black
vertex.

Proof. Since the number of configurations used in the algorithm is bounded, we can consider
a fixed configuration C. We claim that there are only O(1) candidate homomorphisms to
check. Note that in each configuration, every white vertex has a black neighbor. It follows
that it suffices to show that there are O(1) mappings of all the black vertices of C to V (G)
that can extend to a homomorphism hC , since the configurations are bounded and black
vertices have bounded degree. This claim is immediate for configurations where black vertices
induce a connected subgraph. The remaining configurations are those from Rule 6, Rule 8, and
Lemma 7. Since Q3+ is empty, Rule 6 does not apply. In the configurations from the remaining
two rules black vertices induce exactly two connected components. Moreover, for both these
configurations, once we fix a mapping h of black vertices in the connected component Q of
C[BC ] such that h−1(v) ∈ V (Q), then there are vertices a ∈ V (Q) and b ∈ BC \ V (Q) such
that for some pair of white vertices x, y we have x, y ∈ NC(a) and x, y ∈ NC(b). Note also
that in both cases there is at most one edge hC(b)u such that u 6∈ {hC(x), hC(y)}. But it
means that the homomorphic image of b must belong to ShC(x),hC(y) and since Q3+ = ∅, there
are only O(1) candidates for it. Then there are only O(1) candidates for other black vertices
in the connected component of C[BC ] containing b. The claim follows.

Now we can describe our algorithm.
Algorithm 1: Kernelize(G, k)

1 Initialize D1, D2, Q3+ according to their definitions;
2 Initialize Qs with all vertices of G with at most four neighbors;
3 while Q3+ ∪Qs 6= ∅ do
4 if Q3+ 6= ∅ then
5 Remove an element from Q3+ and apply Rule 6;
6 else
7 Remove a vertex from Qs and apply Lemma 21;
8 If a configuration is found, apply the corresponding rule;

The correctness of Algorithm 1 follows from the following invariants.
Invariant 1 The information stored in D1, D2, Q3+ is up to date.
Invariant 2 If a configuration C appears in G, then there is a vertex z ∈ Qs such that for
some black vertex v ∈ V (C) we have hC(v) = z.

Clearly, both invariants hold before before the while loop (Invariant 2 holds since all the
black vertices have at most four neighbors). Moreover, after every modification of G resulting
in an application of a rule we update the data structures so that both invariants hold, as
follows.

• Whenever an adjacency list changes, we update D1.
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• If the set of incident edges of a vertex v with at most four neighbors changes, then we
add v to Qs, and for every pair (x, y) of its neighbors we add the pair to D2 if needed;
if |Sx,y| grows to three, we add the pair to Q3+.

• If an edge xy is added to G, we add all elements of Sx,y to Qs. Note that then Q3+ = ∅,
since in Rule 6 no edges are added. Hence |Sx,y| ≤ 3.

It is easy to check that the updates described above guarantee that both invariants are sat-
isfied (note that the last item above is needed only to guarantee Invariant 1 for configurations
of Rule 7, since this is the only configuration where two white vertices must be adjacent). We
are left with the time complexity analysis. Observe that the expected time of the algorithm
is bounded by a function which is linear in the total number of insertions to Q3+ and Qs. (A
lookup, insert or delete opertion in a hash table works in O(1) expected time and this is the
only source of randomness in the running time.) The number of insertions to Q3+ and Qs is
linear in the size of the input graph added to the number of applications of the rules. Since
each application decreases the number of vertices, there are at most n of them. Hence the
total expected time is bounded by O(n). Note that we can turn it to O(n log n) deterministic
time by replacing hash tables by balanced binary search trees.

6 Concluding remarks and further research

We have shown a kernel of 13k vertices for Planar Feedback Vertex Set. Our main
contribution was applying the region decomposition technique in a new way. It would be
interesting to see more applications of the region decomposition technique in problems in
which it was not used before.

An obvious open problem is improving the kernel size even further. In particular, it would
be nice to break the psychological barrier or single digit kernel, i.e., to get a 9k-kernel. We
suppose that if this is possible, it would require finding a number of new, very specialized
reduction rules.
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