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Abstract

We prove that for k ≥ 3, the bound given by Brooks’ theorem on the chromatic number
of k-th powers of graphs of maximum degree ∆ ≥ 3 can be lowered by 1, even in the case of
online list coloring.

1 Introduction

A graph G = (V,E) is k-colorable if there is a way to color each vertex with an element
of {1, · · · , k} so that no two adjacent vertices receive distinct colors. A generalization of k-
colorability is list k-colorability (or k-choosability), introduced independently by Vizing [9] and
Erdős et al. [4]. The graph G is k-choosable if for every assignment of k colors to each vertex
in V , there is a way to color each vertex with an element of its assigned k colors so that no two
adjacent vertices have the same color.

Let ∆ ≥ 3. Unless specified otherwise, the graphs considered here are simple, connected and
their maximum degree is ∆. Jointly with the assumption that ∆ ≥ 3, this means for example
that none of the graphs we consider is a cycle. We recall the following seminal Brooks-like
theorem on choosability.

Theorem 1. [4] Except for cliques, every graph is ∆-choosable.

The square G2 of a graph G = (V,E) is the graph obtained from G by adding all edges
between vertices that have a common neighbor. Note that ∆(G2) ≤ ∆2, so Theorem 1 implies
that if G2 is not a clique on ∆2 + 1 vertices, then G2 is ∆2-choosable. In the case ∆ = 3,
Theorem 1 ensures that the square of any graph is 9-colorable unless it is a clique. Cranston
and Kim [2] improved this result and conjectured that it is also true for every ∆.

Theorem 2. [2] Except for the Petersen graph, the square of any subcubic graph is 8-choosable.

Moore graphs are graphs on ∆2+1 vertices whose square is a clique [7]. The Petersen graph
is the unique Moore graph with ∆ = 3.

Conjecture 3. [2] Except for Moore graphs, the square of any graph is (∆2 − 1)-choosable.

The distance between two vertices u and v in G is the length of a shortest path between
them. A generalization of the square of a graph is the kth-power of a graph, for k ∈ N

∗. The
kth-power of G is obtained from G by adding all edges between vertices at distance at most
k. We denote D(k,∆) the greatest maximum degree of a kth-power of a graph of maximum
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degree ∆. It basically corresponds to the maximum degree of the kth-power of a deep enough
∆-regular tree, and more precisely:

D(k,∆) = ∆×
k∑

i=1

(∆− 1)i−1 = ∆×
(∆− 1)k − 1

∆− 2

Note that D(2,∆) = ∆2, hence the following generalizes Conjecture 3:

Conjecture 4. [6] For any k ∈ N
∗, except for Moore graphs when k = 2, the kth power of any

graph is (D(k,∆)− 1)-choosable.

In other words, the conjecture states that Theorem 1, which would only yield the result
for D(k,∆), can be strengthened in the case of powers of graphs. The reason why k = 2 is a
special case is that there is no such thing as Moore graphs for higher powers (see Lemma 14 in
Section 2.1). We prove Conjecture 4 for k ≥ 3.

Theorem 5. For k ≥ 3, the kth power of any graph is (D(k,∆) − 1)-choosable.

Independently, Conjecture 4 when k = 2 (i.e. Conjecture 3) has been proved recently by
Cranston and Rabern [3].

A generalization of list coloring, namely online list coloring, was recently introduced inde-
pendently by Schauz [8] and Zhu [10]. The graph G is k-paintable if, for every assignment of
k colors to each vertex, and for every order on the colors, there is an algorithm to color the
graph by concealing until step i which vertices contain the ith color in their lists, and deciding
on the spot which vertices are colored in i and which not (once colored a vertex cannot be
uncolored). Clearly, online list coloring is stronger than list coloring. There exist graphs which
are k-choosable but not k-paintable [8], though we do not know any k-choosable graph which
is not (k + 1)-paintable [1]. Brooks’ theorem is also true in the case of online list coloring [5].

We actually prove a stronger version of Theorem 5, as follows.

Theorem 6. For k ≥ 3, the kth power of any graph is (D(k,∆) − 1)-paintable.

Similarly, Cranston and Rabern proved the case k = 2 in the more general setting of list
online coloring [3].

We wonder whether the following stronger generalization of Conjecture 3 could be true:

Conjecture 7. For any k ∈ N
∗, except for a finite number of graphs, the kth power of any

graph is (D(k,∆) + 1− k)-choosable.

2 Proof of Theorem 5

Let k ≥ 3. Let G be a graph. Let M = D(k,∆). Note that M ≥ 21 as ∆ ≥ 3.
We will need the following lemma, which is essentially an easy adaptation of existing results

(see Section 2.1 for a proof).

Lemma 8. If G satisfies any of the following:

1. G contains a vertex of degree smaller than ∆.

2. G contains a cycle shorter than 2k.

3. G contains two intersecting cycles of length 2k.
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4. diam(G) ≤ k.

Then Gk is (M − 1)-paintable.

Thus we can assume from now on that G is ∆-regular, with g(G) ≥ 2k, diam(G) ≥ k + 1
and that the cycles of length 2k in G are disjoint.

Lemma 9. The graph G contains two vertices x1 and y1 at distance k + 1 from each other,
with two neighbors x2, y2 (respectively) at distance at least k + 1 from each other.

Proof. Since diam(G) ≥ k + 1, G contains two vertices x1 and y1 at distance k + 1 from each
other. Let us prove that x1 has a neighbor x2 and y1 a neighbor y2 such that x2 and y2 are at
distance at least k+1 from each other. Assume for contradiction that each of the ∆ neighbors
of x1 are at distance at most k from each of the ∆ neighbors of y1. Let z be a neighbor of x1.
Only ∆−1 neighbors of z can be part of a path of length at most k containing a neighbor of y1,
as x1 is itself at distance at least k from all the neighbors of y1. Therefore there is a neighbor
z′ of z that belongs to two paths of length at most k − 1 to two different neighbors of y1. This
yields a cycle C of length at most 2k containing y1. The cycle C is actually of length 2k and
contains z′, as z′ is the endpoint of two different paths of length at most k to y1 and there is no
cycle of length less than 2k by Lemma 8. Consequently, y1 and z′ are diametrically opposite on
C. Let w be another neighbor of x1. By the same argument, a neighbor w′ of w belongs to a
cycle C ′ of length 2k that contains y1, and w′ is diametrically opposite to y1 in C ′. Then C and
C ′ intersect on y1, which by Lemma 8 implies that C and C ′ are actually the same cycle. Thus
w′ and z′ are actually the same vertex. Now, (w′, w, x1, z) is a cycle of length 4, a contradiction
to Lemma 8 and the fact that k ≥ 3.

We will describe an algorithm to online list color G. Let L be a list assignment of M − 1
colors to each vertex. Since we are in the case of online list coloring, the colors will be revealed
one after another (at step 1, we learn which vertices contain color 1 in their list, and have to
decide on the spot which will be colored in it, and so on).

At any step of the algorithm, the number of constraints of a vertex v is the number of
colors in L(v) that appear on vertices at distance at most k from v. Similarly, the number of
constraints implied on a vertex v by a set S is the number of colors in L(v) that appear on
vertices of S. Note that the number of constraints on a vertex v is bounded by its degree in
Gk, and that this upper bound is lowered by 1 if two neighbors of v in Gk have the same color
or if a neighbor of v in Gk either is not colored or its color does not belong to L(v).

We consider four vertices x1, x2, y1 and y2 obtained from Lemma 9. Let P be a path of
length k+1 between x1 and y1. Note that by definition of x2, y2, at most one of them is on P .
Let v be a vertex at distance least two on P from both x1 and y1 (such a vertex exists since
P has length at least 4), and let w be a neighbor of v on P distinct from x2 and y2. Observe
that v is at distance at most k from all of x1, x2, y1, y2 and w is at distance at most k from
x1, y1. Our goal is to set an order on the vertices of G such that by appropriately deciding
at each step whether to color or not each vertex in that order, every vertex that is considered
for coloring has at most M − 2 constraints. The order we choose is x1, x2, y1, y2, followed by
all other vertices by decreasing distance to {v,w} (the distance to a set is the minimum of the
distance to each element of the set). Ties are broken arbitrarily. The order ends with w and
then v. Let us now describe more precisely the coloring algorithm. For each new color i:

• Treat the vertices x1, x2, y1 and y2 (in a way described a little bit further).

• Consider all the remaining vertices, one after the other according to the chosen order.
When considering a vertex u, color it with i if i ∈ L(u) and no neighbor of u in Gk is
colored with i.
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The heart of the algorithm consists in making the right decision for {x1, x2, y1, y2} at each step,
so that v and w each have at most M − 2 constraints when it comes to coloring them (note
that x1, x2, y1 and y2 are all at distance at most k from v and w). Let us first prove that all
the other vertices are colored at the end of the algorithm.

Observation 10. Let u be an uncolored vertex (distinct from x1, x2, y1, y2). Let r(u) be the
number of neighbors of u in Gk which appear after u in the order. The number of constraints
for u is at most M − r(u).

Proof. Let y be a neighbor of u in Gk which appears after u. If y is not colored, then y does not
imply a constraint on u. Assume that y is colored with color i. Since u is uncolored, it means
that when we tried to color u with i, we did not succeed. So either color i does not appear in
L(u), and then i does not imply a constraint on u. Or another neighbor y′ of u, which appears
before u in the order, was colored with i and then {y, y′} implies only one constraint on u.

Let us first prove that every vertex u /∈ {x1, x2, y1, y2, v, w} is colored at the end of the
coloring algorithm (whatever the choices we did for x1, x2, y1, y2). Let us prove that u has at
most M − 2 constraints i.e. u can be colored since |L(u)| = M − 1:

• If u is at distance at most k from both v and w, then both v and w are adjacent to u in
Gk. Since they are after u in the order, the result holds by Observation 10.

• If u is at distance at least k + 1 from v or w, let P be a shortest path from u to {v,w}.
Assume w.l.o.g. that P is a shortest path from u to v. Let z1, z2 and z3 be the three
vertices consecutive to u in P . These vertices exist since d(u, v) ≥ k ≥ 3.
If {z1, z2, z3} ∩ {x1, x2, y1, y2} has size at most one, then at least two of {z1, z2, z3} are
after u in the order, hence the result by Observation 10.
Otherwise, at least two of {z1, z2, z3} are in {x1, x2, y1, y2}. Since d(x1, y1) ≥ k + 1, if
x1 ∈ {z1, z2, z3} then none of y1, y2 is in this set. The same holds for x2. We may assume
w.l.o.g. that the intersection is exactly x1, x2. Let w1 be another neighbor of z2. Note
that w1 is neither y1 nor y2. Moreover d(w1, v) < d(u, v) since P is a minimum path. So
w2 appears after u in the order and d(w2, u) ≤ k. Two vertices at distance at most three
from u are after u in the order, so u has at most |M | − 2 constraints.

Now, let us argue that there is a coloring of {x1, x2, y1, y2} that ensures that v and w will be
colored.

In standard vertex coloring, we set x1 and y1 to color 1, and x2 and y2 to color 2: then
vertices v and w each have at most M − 2 colors appearing on their neighborhood in Gk. So
they each have at most M − 2 constraints and then both v and w are colored at some step of
the algorithm.

Since we are considering online list coloring, the procedure is slightly more complicated,
though the idea remains the same. We want to make sure that the coloring of {x1, y1} ensures
that v and w both have one less constraint, and the coloring of {x2, y2} ensures that v has one
less constraint. Thus when we consider w, it has one less constraint by {x1, y1} and one less by
v (since w is before v in the order), and then v has two less constraints by {x1, y1, x2, y2}.

We proceed as follows. We denote by NO(v) (resp. NO(w)) the number of elements of
{x1, y1} that are colored, minus the number of constraints implied on v (resp. w) by elements
of this set. For example, if x1 and y1 are colored the same, then NO(v) = 1. The value NO
roughly denotes the number of colored vertices in {x1, y1} which do not create a constraint. For
simplicity, we consider L(u) to be empty once u is colored. At the beginning of each step c, we
check the following:
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(i) If c belongs to L(x1) ∩ L(y1), then color both x1 and y1 in c.

(ii) If c belongs to L(x1) or L(y1) but not to L(v), and NO(v) = 0, then color x1 or y1 in c.

(iii) If c belongs to L(x1) or L(y1) but not to L(w), and NO(w) = 0, then color x1 or y1 in c.

(iv) If c belongs to L(x1) or L(y1), whenM−2 colors for the corresponding vertex have already
been revealed, then color it in c.

(v) If c belongs to L(x2) ∩ L(y2), then color both x2 and y2 in c.

(vi) If c belongs to L(x2) or L(y2) but not to L(v), then color x2 or y2 in c.

(vii) If c belongs to L(x2) or L(y2), when at least M − 4 colors for the corresponding vertex
have already been revealed, then color it in c.

It remains to prove that this yields a coloring of {x1, x2, y1, y2} such that v and w can be
colored.

Let us first justify that x1 and y1 are colored in the desired way (i.e. for both v and w,
the set {x1, y1} implies at most one constraint). If x1 and y1 are colored the same, the goal is
reached. If the lists L(x1) and L(y1) have no color in common, since |L(x1) ∪ L(y1)| > |L(v)|,
at least one of them can be colored by (ii) or (iii). Then at least one of x1 and y1 is colored in
c 6∈ L(v) ∩ L(w), assume w.l.o.g. that x1 is colored that way (and is the first if x1 and y1 both
are). If c 6∈ L(v) ∪ L(w), the vertex y1 is never colored at (ii) nor (iii) (NO(v) = NO(w) = 1),
but it is colored at (iv). If c ∈ L(v) ∪ L(w), assume w.l.o.g. that c ∈ L(v) \ L(w). Then, since
y1 was not colored before, (ii) did not apply, which means that every color that belonged to
L(y1) belonged to L(v). But c ∈ L(v) \ L(y1) (otherwise x1 and y1 would be colored the same
by (i)). Thus there remain more colors available for y1 than for v, and (ii) will eventually apply
(remember that (iv) does not apply before there is exactly one color left available for y1).

Now, let us justify that x2 and y2 are colored in the desired way, i.e. if the two are colored
then the set {x2, y2} implies at most one constraint on v. If (v) or (vi) applies, the goal is
reached. Let us now prove two things: that one of (v) and (vi) always applies, and that both
x2 and y2 are colored.
Assume that neither (v) nor (vi) apply on x2 or y2. Then (vii) eventually applies as only at
most two colors (the colors of x1 and y1) may not reach (v)-(vii) and we color x2 (resp. y2) as
soon as it has at most 2 colors yet to be revealed (ie, if x2 was not colored then it had at least
3 colors yet to be revealed). Thus x2 and y2 are both colored at the end.
Assume that both x2 and y2 are colored at (vii). Then (v) never applied, which implies |L(x2)∩
L(y2)| ≤ 2. Consequently, |L(x2)∪L(y2)| ≥ 2× (M −1)−2. Since M ≥ 21 and |L(v)| = M −1,
it follows that L(x2) ∪ L(y2) contains at least 18 colors that do not belong to L(v). This is a
contradiction to the fact that (vi) never applied.

2.1 Proof of Lemma 8

In the following section, we prove that the different items of Lemma 8 holds. All the proofs
are based on coloring algorithms based on distance, just like the proof of Theorem 5. However,
here we do not have to treat vertices differently: it suffices to choose an appropriate order. The
resulting proofs are thus much simpler.

Lemma 11. If G contains a vertex of degree ≤ ∆− 1, then Gk is (M − 1)-paintable.
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Proof. Assume G contains a vertex v with d(v) ≤ ∆−1. Since G is connected, the distance to v
is well-defined. Order the vertices by decreasing order to v. At each step of the algorithm, color
the vertices by decreasing distance to v. Every vertex x at distance at least two from v has at
least two neighbors which are not constraints (indeed the vertices on a shortest path from x to
v are considered after the vertex x in the order). For every vertex w which is a neighbor of v,
since k ≥ 2, the degree of w in Gk is at most M − 1. Moreover, the vertex v is considered after
the vertex w in the order, so the vertex w can be colored. Since k ≥ 2, ∆ ≥ 3 and d(v) ≤ ∆−1,
the degree of v in Gk is at most M −∆ < M − 1, so v can be colored.

Thus we assume from now on that G is ∆-regular.

Lemma 12. If g(G) < 2k, then Gk is (M − 1)-paintable.

Proof. Assume G contains a cycle C of length at most 2k − 1. Let v and w be two adjacent
vertices on C. Since C is of length at most 2k − 1, the degree of v and w in Gk is less than
M − 1. Then, at each color step, we color as many vertices as possible, by decreasing distance
to {v,w} and ending with v and w.

Thus we assume from now on that g(G) ≥ 2k.

Lemma 13. If G contains two intersecting cycles of length 2k, then Gk is (M − 1)-paintable.

Proof. Assume G contains a vertex v belonging to two cycles of length 2k. Let w be a neighbor
of v on one cycle of length 2k. Vertex v has degree at most M − 2 in Gk, and w at most M − 1.
Then, at each color step, we color as many vertices as possible, by decreasing distance to {v,w}
and ending with w and then v.

Thus we assume from now on that the cycles of length 2k in G are disjoint.

Lemma 14. If diam(G) ≤ k then Gk is (M − 1)-paintable.

Proof. Assume diam(G) ≤ k. Then G contains at most M(k,∆)+1 vertices, and Gk is a clique.
By [7], the graph G contains at most M(k,∆)− 1 vertices, hence the result.
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