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A survey on The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids

The active bijection maps any directed graph, resp. signed hyperplane arrangement or oriented matroid, on a linearly ordered edge set, resp. ground set, onto one of its spanning trees, resp. bases. It relates all spanning trees to all orientations of a graph, all bases to all reorientations of an hyperplane arrangement or, more generally, an oriented matroid. It preserves activities: for bases in the sense of Tutte, for orientations in the sense of Las Vergnas, yielding a bijective interpretation of the equality of two expressions of the Tutte polynomial. It can be mathematically defined in a short way, and can be built, characterized, particularized, or refined in several ways.

[...]= equivalent required dual formulation

The mapping α yields an activity preserving bijection:

-between all activity classes of orientations and all spanning trees of G , -and between all orientations and all subsets of G .

The active bijection in graphs Matroid: incidence properties and flat intersection lattice Oriented matroid: convexity properties and face relative positions
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Directed graph -→ associated arrangement Other coefficients of t M can also be interpreted a similar way...

Activities of orientations

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )).
An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle)

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )).
An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle)

An element of E is dual-active if it is the smallest of a positive cocircuit of M (or: ... the smallest edge of a directed cocycle)
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Activities of orientations

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )).
An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle)

An element of E is dual-active if it is the smallest of a positive cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984] t(M; x, y ) = i,j o i,j 2 i+j x i y j
where o i,j is the number of reorientations of M with i dual-active elements and j active elements.
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Activities of orientations

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )
). An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle) An element of E is dual-active if it is the smallest of a positive cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984] t(M; x, y ) = i,j o i,j 2 i+j x i y j where o i,j is the number of reorientations of M with i dual-active elements and j active elements.

Related classical results

o 1,0 = # bounded regions = #bipolar orientations w.r.t. e ∈ E (with given orientation for e) [Crapo 1969, Zaslavsky 1975, Las Vergnas 1977] 15/ 61

Activities of orientations

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )).
An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle) An element of E is dual-active if it is the smallest of a positive cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984] t(M; x, y ) = i,j o i,j 2 i+j x i y j
where o i,j is the number of reorientations of M with i dual-active elements and j active elements.

Related classical results

t(M; 2, 0) = # regions = # acyclic orientations [Winder 1966, Stanley 1973, Las Vergnas 1977] Activities of orientations

Let M be an oriented matroid on a linearly ordered set E (or a directed graph

- → G = (V , E )).
An element of E is active if it is the smallest of a positive circuit of M (or: ... the smallest edge of a directed cycle) An element of E is dual-active if it is the smallest of a positive cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984] t(M; x, y ) = i,j o i,j 2 i+j x i y j
where o i,j is the number of reorientations of M with i dual-active elements and j active elements.

Related classical results

t(M; 0, 2) = # dual regions = # totally cyclic orientations (strongly connected orientations) 

t(K 4 ; x, y ) = 8.( x 2 ) 3 + +12.( x 2 ) 2 + 4.( x 2 ) + . . . t(K 4 ; 2, 0) = 24 16/ 61

Activities of bases (spanning trees)

Let M be a matroid on a linearly ordered set E (or a graph G = (V , E )).

B a basis (spanning tree) of M e ∈ E \ B is externally active w.r.t. B if it is the smallest element of C e = C (B; e), the unique circuit (cycle) contained in B ∪ {e} b ∈ B is internally active w.r.t. B if it is the smallest element of C * b = C * (B; b), the unique cocircuit (cocycle) contained in (E \ B) ∪ {b} Theorem [Tutte 1954 & Crapo 1969] t(M; x, y ) = i,j b i,j x i y j où b i,j
is the number of bases of M with i internally active elements and j externally active elements.

The active bijection in oriented matroids Tutte polynomial t(M; x, y ) of an ordered oriented matroid M Theorem. [Tutte 1954& Crapo 1969] t(M; x, y ) = i,j b i,j x i y j où b i,j = number of bases with activities (i, j)

Theorem. [Las Vergnas 1984] 

t(M; x, y ) = i,j o i,j
x 2 i y 2 j where o i,j = number of reorientations with activities (i, j)

o i,j = 2 i+j b i,j
The active bijection is a canonical underlying bijection...

The fully optimal basis

(The fully optimal spanning tree)

of a bounded region The mapping α is a bijection between (pairs of opposite) bounded regions of M and (1, 0)-active bases of M. 

C * 1 2 C * 3 4 5 C * 6 1 + C 2 + - - 3 + C 4 + - - - C 5 + -+ 6 +
(fundamental tableau of the basis)
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Usual Linear Programming Optimal Bases (simplex criterion) Only takes the first column and first row into account.
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The Fully Optimal Basis In the real case: the active bijection is the unique bijection associating (1, 0)-active flags and bounded regions with the adjacency property. In the graphical case: multiobjective LP ∼ a cocycle weight function In the general case: we need the dual adjacency property, and it implies the bijection.

Duality for bounded regions (bipolar orientations) (means that the active bijection is compatible with the above bijections) 28/ 61

Bounded region M w.r.t. e ←-------→ canonical bijection Dual-bounded region M * o * (M) = 1, o(M) = 0 o * (M * ) = 0, o(M * ) = 1 idem ←-------→ canonical bijection Dual-bounded region -e M o * (-e M) = 0, o(-e M) =

Decompositions of activities and Tutte polynomial in terms of beta invariants of minors

Active bijection: inductive decomposition construction

For every oriented matroid M on a linearly ordered set E , α(M) defined by the three following properties:

α(M) is the fully optimal basis of M if it is a bounded region α(M * ) = E \ α(M) α(M) = α(M/F ) α(M(F ))
where F is the union of all positive circuits of M whose smallest element is the greatest possible active element of M Lemma. If F = ∅, then M(F ) is dual-bounded, and M/F has one less active element than M.
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Active bijection: inductive decomposition construction For every oriented matroid M on a linearly ordered set E , α(M) defined by the three following properties:

α(M) is the fully optimal basis of M if it is a bounded region α(M * ) = E \ α(M) α(M) = α(M/F ) α(M(F ))
where F is the complementary of the union of all positive cocircuits of M whose smallest element is the greatest possible dual-active element of M;

(equivalent dual formulation)

Lemma. If F = ∅, then M/F is bounded, and M(F ) has one less dual-active element than M.

Active bijection: direct decomposition construction

Let M be an ordered oriented matroid on E with ι = o * (M) dual-active elements a 1 < ... < a ι and ε = o(M) active elements a 1 < ... < a ε . The active decomposing sequence of M is

∅ = F ε ⊂ ... ⊂ F 0 = F c = F 0 ⊂ ... ⊂ F ι = E It corresponds to the active partition of M: E = F ε-1 \ F ε . . . F 0 \ F 1 F 1 \ F 0 . . . F ι \ F ι-1 31/ 61
Active bijection: direct decomposition construction

Let M be an ordered oriented matroid on E with ι = o * (M) dual-active elements a 1 < ... < a ι and ε = o(M) active elements a 1 < ... < a ε .

The active decomposing sequence of M is

∅ = F ε ⊂ ... ⊂ F 0 = F c = F 0 ⊂ ... ⊂ F ι = E
It corresponds to the active partition of M:

E = F ε-1 \ F ε . . . F 0 \ F 1 F 1 \ F 0 . . . F ι \ F ι-1 For 0 ≤ k ≤ ε -1, we have F k = D positive circuit Min D>a k D.
Dually, for 0 ≤ k ≤ ι -1, we have

F k = E \ D positive cocircuit Min D>a k D.
F c is the union of all positive circuits of M (directed cycles), and E \ F c is the union of all positive cocircuits (directed cocycles). F c is a cyclic flat.
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Active bijection: direct decomposition construction

Let M be an ordered oriented matroid on E with ι = o * (M) dual-active elements a 1 < ... < a ι and ε = o(M) active elements a 1 < ... < a ε .

The active decomposing sequence of M is

∅ = F ε ⊂ ... ⊂ F 0 = F c = F 0 ⊂ ... ⊂ F ι = E
It corresponds to the active partition of M:

E = F ε-1 \ F ε . . . F 0 \ F 1 F 1 \ F 0 . . . F ι \ F ι-1 for 1 ≤ k ≤ ι, the minor M(F k )/F k-1 is dual-bounded (cyclic-bipolar) for 1 ≤ k ≤ ε, the minor M(F k-1 )/F k is bounded (bipolar)
Direct definition of α: 

α(M) = 1≤k≤ι α(M(F k )/F k-1 ) 1≤k≤ε α(M(F k-1 )/F k ) 32/ 61
α( - → G ) = 134 Activity class: - → G , -123 - → G , -456 - → G , -123456 - → G .
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Reorientation activity classes of ordered oriented matroids Let M be a matroid on a linearly ordered set E .

{bases of M} = ∅=F ε ⊂...⊂F 0 =Fc Fc =F 0 ⊂...⊂Fι=E decomposing sequence of M {B 1 ... B ε B 1 ... B ι | for all 1 ≤ k ≤ ε, B k base of M(F k-1 )/F k with ι(B k ) = 0 and ε(B k ) = 1, for all 1 ≤ k ≤ ι, B k base of M(F k )/F k-1 with ι(B k ) = 1 and ε(B k ) = 0} Then B = B 1 ... B ε B 1 ... B ι it the active partition of B and Int(B) = ∪ 1≤k≤ι min(F k \ F k-1 ) = ∪ 1≤k≤ι Int(B k ), Ext(B) = ∪ 1≤k≤ε min(F k-1 \ F k ) = ∪ 1≤k≤ε Ext(B k ).

Theorem: Tutte polynomial in terms of β invariants of minors

Let M be a matroid on a linearly ordered set E .

t(M; x, y ) = 1≤k≤ι β M(F k )/F k-1 1≤k≤ε β M(F k-1 )/F k x ι y ε where β (M) = β(M) if |E | > 1, β (isthmus) = 0, and β (loop) = 1
and where the sum can be equally:

either over all decomposing sequences of M or over all abstract decomposing sequences of E

∅ = F ε ⊂ ... ⊂ F 0 = F c = F 0 ⊂ ... ⊂ F ι = E 41/ 61
Classical results refined by this formula

Theorem. [Tutte 1954] t(M; x, y ) = i,j b i,j x i y j
where b i,j = # (i, j)-active bases

Theorem. [Las Vergnas 1984] t(M; x, y

) = i,j o i,j ( x 2 ) i ( y 2 ) j 
where o i,j = # (i, j)-active reorientations

Theorem. [Etienne & Las Vergnas 1998, Kook Reiner & Stanton 1999] t(M; x, y ) = t(M/F ; x, 0) t(M(F ); 0, y )

where the sum can be equally either over all subsets F of E , or over all cyclic flats F of M.
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Further results
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Refined bijection between (re)orientations and subsets

Let M be an (oriented) matroid on a linearly ordered set E .

Partition of 2 E in terms of reorientation activity classes 

2 E = activity classes of M (one -A M chosen in each class) 2 o(-A M)+o * (-A M) reorientations

Active bijection

One activity class ←→ one basis ←→ one interval (2 i+j elements)

(2 i+j elements)
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Refined bijection between (re)orientations and subsets

Active bijection

One activity class ←→ one basis ←→ one interval (2 i+j elements)

(2 i+j elements)

The activity class of -A M and the matroid basis interval of B = α(-A M) are isomorphic boolean lattices.

Refined bijection between (re)orientations and subsets

Refined active bijection

For A ⊆ E and B = α(-A M), set

α ∅ M (A) = B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B))
Theorem α ∅ M is a bijection between 2 E (reorientations) and 2 E (subsets) restricted to acyclic reorientations, α ∅ M is a bijection between regions (acyclic orientations) and no-broken-circuit subsets (i.e. subsets of bases with external activity zero) it preserves activities, active partitions, and also some four-variable refined activities (that take into acount the positions in the boolean lattices)

Refined bijection between (re)orientations and subsets

Refined active bijection

For A ⊆ E and B = α(-A M), set α ∅ M (A) = B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B))
Theorem α ∅ M is a bijection between 2 E (reorientations) and 2 E (subsets) restricted to acyclic reorientations, α ∅ M is a bijection between regions (acyclic orientations) and no-broken-circuit subsets (i.e. subsets of bases with external activity zero) it preserves activities, active partitions, and also some four-variable refined activities (that take into acount the positions in the boolean lattices) Remark. α ∅ M depends on M and applies to A (on the contrary with α). The ∅ symbol is a parameter that can be changed to get other similar refined active bijections, with other boolean lattice bijections. (2)

1 5

(2)

1 C

(2) 1 6

(2) 1 9

(2) 1 7

(2) 1 A

(2) 1 B

(2) 1 8

(2)

1 (24) 1 D (4)

13 (4) 12 (4) 124 128 Allows a construction in nested "fibers" dimension by dimension, that fits well with the deletion/contraction construction...

Signed permutations

Regions of the hyperoctahedral arrangement ∼ Signed permutations No-broken-circuit base subsets ∼ edge-signed increasing forests Active bijection between signed permutations and edge-signed increasing forests , Vol. 30 (8), pp. 1868, Vol. 30 (8), pp. -1886, Vol. 30 (8), pp. (2009) ) 

(it is supersolvable) ∼ Cube symmetries ∼ Coxeter group B n 1 _ 1 1 _ 2 2 _ 2 12 2 _ 3 1 _ 3 3 _ 3 13 23 1 2 _ 2 3 _ 3 3 _ 21 2 _ 31 _ 213 _ 21 _ 3 _ 2 _ 31 _ 3 _ 21 31 _ 2 13 _ 2 1 _ 23 1 _ 2 _ 3 1 _ 3 _ 2 _ 31 _ 2 
1 2 3 123 _ 1 _ 2 _ 3 1 2 3 132 _ 1 _ 3 _ 2 1 2 3 213 2 _ 1 _ 3 _ 213 _ 2 _ 1 _ 3 1 2 3 231 23 _ 1 _ 2 _ 31 _ 2 _ 3 _ 1 1 2 3 312 3 _ 1 _ 2 _ 312 _ 3 _ 1 _ 2 1 2 3 321 32 _ 1 3 _ 21 3 _ 2 _ 1 _ 321 _ 32 _ 1 _ 3 _ 21 _ 3 _ 2 _ 1 1 2 3 12 _ 3 _ 1 _ 23 1 _ 23 _ _ 1 2 3 1 _ 2 _ 3 _ 123 1 2 3 13 _ 2 _ 1 _ 32 1 2 3 1 _ 32 _ 13 _ 2 1 2 3 1 _ 3 _ 2 _ 132 1 2 3 21 _ 3 2 _ 13 _ 21 _ 3 _ 2 _ 13 1 2 3 2 _ 31 2 _ 3 _ 1 _ 23 _ 1 _ 231 1 2 3 31 _ 2 3 _ 12 _ 31 _ 2 _ 3 _ 12 56/ 61

For

  the unique (fully optimal) spanning tree B of G such that: for all b ∈ E \ min(E ), the signs of b and min(C * (B; b)) are opposite in C * (B; b); for all e ∈ B, the signs of e and min(C (B; e)) are opposite in C (B; e). α(M * ) = E \ α(M) If -→ G is strongly connected and min(E ) is contained in every directed cycle, then... )) where F can be the [complementary of the] union of all directed [co]cycles of -→ G whose smallest element is the greatest possible smallest element of a directed [co]cycle of -

  ij -→ hyperplane with equation v j -v i = 0 spanning tree -→ basis orientation of edge ij -→ half-space v j -v i >0 directed cut -→ vertex of the region (positive cocircuit) cut -→ vertex (cocircuit) acyclic orientation -→ region strongly connected orientation -→ region of the dual arrangement Duality Every oriented matroid M has a dual M * . circuits of M = cocircuits of M * cocircuits of M = circuits of M * acyclic orientations of M = totally cyclic orientations of M * (or regions) (or dual regions) (or strongly connected orientations) bases of M = complementary of bases of M * In the realizable case: duality ∼ orthogonality In the graphical case: duality = cycles/cocycles duality (extends planar graph duality) cocircuits) are signed subsets satisfying simple combinatorial axioms... (There are about 20 known equivalent combinatorial axiomatics!) Topological representation theorem [Folkman & Lawrence 1978] Oriented matroids on E ∼ Signed pseudosphere arrangements (S e ) e∈E up to homeomorphism .r.t. p = 1:-→ bounded regions w.r.t. p = 1: acyclic orientations regions that do not touch p = 1 with unique source and unique sink extremities of p = 1 13/ 61The β invariant M underlying matroid β(M) = # bounded regions w.r.t. e (on one side of e) β(M) = # bipolar orientations w.r.t. e (for a given orientation of e) β(M) does not depend on e: it is an invariant β(M) = t 1,0 (M) coefficient of x (or y ) of the Tutte polynomial t M (x, y ) of M β(M) = # acyclic (re)orientations such that e belongs to every positive cocircuit (directed cocycle)

  Consider the smallest element of each cocircuit They correspond to the sequence of nested faces induced by the minimal basis: 1 ∩ 2 ⊂ 1 The grey region (digraph) has dual-active elements: 124Dual activity of a region (or an acyclic orientation)

(

  of a bipolar orientation) E = e 1 < ... < e n We look for a bijection between bounded regions -A M w.r.t. e 1 o * (-A M) = 1 and o(-A M) = 0 and (1,0)-active bases B of M ι(B) = 1 and ε(B) = 0 Fully Optimal Basis (in an oriented matroid) M an oriented matroid on a linearly ordered set E = e 1 < ... < e n B ⊆ E a basis of M C e = fundamental circuit of e ∈ B w.r.t. B = unique circuit in B ∪ e C * b = fundamental cocircuit of b ∈ B w.r.t. B = unique cocircuit in (E \ B) ∪ b The basis B is fully optimal if b and min C * b have opposite signs in C * b for all b ∈ B \ e 1 e and min C e have opposite signs in C e for all e ∈ E \ B Remark if M has a fully optimal basis B then M is bounded w.r.t. e 1 and B is (1, 0)-active unique fully optimal basis denoted α(M)

  Takes all columns and rows into account. Two elaborations on linear programming: -multiobjective programming: unique optimal vertex -flag programming: unique sequence of nested faces (induction)

  Strong duality property (refines LP duality): α(e M) = α(M) \ {e} ∪ {e } for M bounded w.r.t. e, where E = e < e < . . ..

  Activity class of M: the set of 2 o(M)+o * (M) reorientations of M obtained by reorienting independently the o(M) + o * (M) parts of the active partition of M (all its elements have same active partition) They are interesting on their own: Activity classes form a partition of the set 2 E of reorientations of M Refine the acyclic / totally cyclic usual decomposition Describe the intersections of regions w.r.t. a given (minimal) flag Wide generalization of components of acyclic orientations of graphs defined on particular linear orderings of the vertices, as related to Non-commutative monoids [Cartier & Foata 1969] Heaps of pieces [Viennot 1986] Acyclic orientations and the chromatic polynomial [Lass 2001] There is one and only one unique sink acyclic orientation in each activity class of acyclic orientation of a graph, as related to t(G ; 1, 0) = #acyclic orientations of G with unique sink [Zaslavsky 1975, Greene & Zaslavsky 1983, Gebhard & Sagan 2000] is a basis of M active (resp. dual-active) elements of M are externally (resp. internally) active elements of α(M) more precisely, α also preserves active partitions (they exist for bases too and ensure that α(M) is a basis) the basis α(M) is also associated with the 2 o(M)+o * (M) reorientations in the activity class of M α is a bijection between all activity classes of reorientations of M and all bases of M.Active bijection between region activity classes and internal bases

  obtained by active partition reorienting Partition of 2 E in terms of matroid basis activity intervals [Crapo 1969, Dawson 1981, ...] 2 E = B basis of M B \ Int(B), B ∪ Ext(B)

  Active bijection between regions and no-broken-circuit subsets (acyclic restriction of the refined active bijection w.r.t. the grey region)

  Permutations (acyclic complete graph case) Regions of the braid arrangement ∼ Permutations (it is supersolvable) ∼ Simplex symmetries ∼ Coxeter group A n ∼ Acyclic orientations of K n+1 It is equal to a classical bijection! 58/ 61 oriented matroids activity classes of reorientations bases act. cl. of acyclic reorientations bases B with ε(B) = 0 act. cl. of totally cyclic reor. bases B with ι(B) = 0 bounded acyclic reorientations bases B with ι(B) = 1 and ε(B) = 0 reorientations subsets acyclic reorientations no-broken-circuit subsets totally cyclic reorientations supsets of bases B with ι(B) = 0 hyperplane arrangements reorientations ∼ signatures bases ∼ simplices acyclic reorientations ∼ regions graphs reorientations ∼ orientations bases ∼ spanning trees unique sink acyclic orientations spanning trees B with ε(B) = 0 bipolar orientations sp. trees B with ι(B) = 1 and ε(B) = 0 source-sink reversed bipolar orientations sp. trees B with ι(B) = 0 and ε(B) = 1 uniform oriented matroids bounded regions linear programming optimal vertices braid arrangement or complete graph or Coxeter arrangement A n permutations increasing trees hyperoctahedral arrangement or Coxeter arrangement B n signed permutations signed increasing trees 59/ 61
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For instance, we get a bijection between bounded regions (bipolar orientations in the case of a graph) and bases with internal activity one and external activity zero, which can be seen as an elaboration on linear programming. We get a decomposition of into bounded regions of minors of the primal and the dual, which also has a counterpart for decomposing matroid bases, and yields an expression of the Tutte polynomial using only beta invariants of minors. We also get activity preserving bijections between all

References 60/ 61 References • Las Vergnas. A correspondence between spanning trees and orientations in graphs Graph Theory and Combinatorics, Academic Press, London, UK, 233-238, (1984) 61/ 61 References • Las Vergnas. A correspondence between spanning trees and orientations in graphs Graph Theory and Combinatorics, Academic Press, London, UK, 233-238, (1984) • G. Correspondance naturelle entre bases et réorientations des matroïdes orientés. Ph.D. Université Bordeaux 1, 2002. 61/ 61 References • Las Vergnas. A correspondence between spanning trees and orientations in graphs Graph Theory and Combinatorics, Academic Press, London, UK, 233-238, (1984) • G. Correspondance naturelle entre bases et réorientations des matroïdes orientés. Ph.D. Université Bordeaux 1, 2002.

• G.-L.V. Fully optimal bases and the active bijection in graphs, hyperplane arrangements, and oriented matroids. EuroComb'07 (Sevilla), ENDM 365-371 (2007) • G.-L.V. A Linear Programming Construction of Fully Optimal Bases in Graphs and Hyperplane Arrangements. EuroComb'09 (Bordeaux), ENDM 307-311 (2009) 

Active bijection: main theorem in the bounded case An ordered bounded oriented matroid w.r.t. min(E ) M has a unique fully optimal basis denoted α(M)

Active bijection: main theorem in the bounded case An ordered bounded oriented matroid w.r.t. min(E ) M has a unique fully optimal basis denoted α(M)

The mapping α is a bijection between (pairs of opposite) bounded regions of M and (1, 0)-active bases of M.

Computational remarks

The fully optimal basis α(M) is difficult to compute (the problem contains the real/combinatorial linear programming problem).

But the unique reorientation α -1 (B) associated with the basis B is easy to compute (just sign the elements from the first to the last so that the criterion is satisfied).

Decomposing sequences

Let E be a finite linearly ordered set. We call abstract decomposing sequence of E a sequence of subsets of E such that:

Let M be a matroid on E . A decomposing sequence of M is an abstract decomposing sequence of E such that:

Theorem: decomposing oriented matroids into bounded regions

Let M be an oriented matroid on a linearly ordered set E .

and

where the disjoint union is over all decomposing sequences of M

(the decomposing sequence of M associated in the second term to a reorientation A is the active decomposing sequence of -A M.)

Refined basis activities

Let M be a matroid on a linearly ordered set E . Let B ⊆ E be a basis of M. Let A be in the boolean interval

Theorem. [Gordon & Traldi 1990, Las Vergnas 2013] Let M be a matroid on a linearly ordered set E .

Deletion/contraction construction of various bijections

M oriented matroid on a linearly ordered set E with max(E ) = ω.

Choice at each step:

Theorem.

With suitable choices, we get whole classes of bijections between bases: all / subsets / internal / no broken circuit subsets / ... and reorientations: classes / all / specific / acyclic / ...

Various properties can be demanded: activities / adjacency / ... Specifying choices yield: THE active bijection.

Deletion/contraction construction of the active bijection M oriented matroid on a linearly ordered set E with max(E ) = ω.

Choice at each step:

One way of defining the active bijection:

If M is a region (acyclic orientation):

also a region and

If M and -ωM do not have same active partition then the choice is determined Otherwise then compare the flags associated to each region in the bounded minor containing ω in order to preserve the fully optimal basis adjacency property (almost) ready for submission and available on demand or at Arxiv (2015).
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References 307-311 (2009) • G.-L.V. The active bijection in graphs, hyperplane arrangements, and oriented matroids -1 -The fully optimal basis of a bounded region. European Journal of Combinatorics, Vol. 30 (8), pp. 1868-1886(2009) • G.-L.V. The active bijection in graphs: overview, new results, complements and Tutte polynomial expressions.

(almost) ready for submission and available on demand or at Arxiv (2015). • • • G.-L.V. The active bijection in graphs, hyperplane arrangements, and oriented matroids. 2. Decomposition of activities. / 3. Linear programming construction of fully optimal bases. / 4. Deletion/contraction constructions and universality. Back in active preparation...

THANKS!

61/ 61