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Abstract.

The active bijection maps any directed graph, resp. signed hyperplane arrangement or
oriented matroid, on a linearly ordered edge set, resp. ground set, onto one of its
spanning trees, resp. bases. It relates all spanning trees to all orientations of a graph,
all bases to all reorientations of an hyperplane arrangement or, more generally, an
oriented matroid. It preserves activities: for bases in the sense of Tutte, for
orientations in the sense of Las Vergnas, yielding a bijective interpretation of the
equality of two expressions of the Tutte polynomial. It can be mathematically defined
in a short way, and can be built, characterized, particularized, or refined in several
ways.

For instance, we get a bijection between bounded regions (bipolar orientations in the
case of a graph) and bases with internal activity one and external activity zero, which
can be seen as an elaboration on linear programming. We get a decomposition of into
bounded regions of minors of the primal and the dual, which also has a counterpart for
decomposing matroid bases, and yields an expression of the Tutte polynomial using
only beta invariants of minors. We also get activity preserving bijections between all
reorientations and all subsets (related to a four-variable expansion of the Tutte
polynomial), between regions and no-broken-circuit subsets (acyclic case), between
increasing trees and permutations (complete graph case)...

It is the subject of a series of paper.
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0

The active bijection:
short mathematical definition
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The active bijection (in one slide) Aim of the talk: explain this slide!

For every oriented matroid M on a linearly ordered set E ,
α(M) is the basis of M defined by the three following properties:

I If M is acyclic and min(E ) is contained in every positive
cocircuit of M, then α(M) is the unique (fully optimal) basis
B of M such that:

I for all b ∈ M \min(E ), the signs of b and min(C∗(B; b))
are opposite in C∗(B; b);

I for all e 6∈ B, the signs of e and min(C (B; e))
are opposite in C (B; e).

I α(M∗) = E \ α(M)

I α(M) = α(M/F ) ] α(M(F ))
where F is the [complementary of the] union of all positive [co]circuits of
M whose smallest element is the greatest possible smallest
element of a positive [co]circuit of M; [...]=equivalent dual formulation

The mapping α yields an activity preserving bijection:
- between all activity classes of reorientations and all bases of M,
- and between all reorientations and all subsets of M.
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The active bijection in graphs
For every directed graph

−→
G on a linearly ordered set of edges E ,

α(
−→
G ) is the spanning tree of G defined by:
I If
−→
G is acyclic and min(E ) is contained in every directed

cocycle of
−→
G , then α(

−→
G ) is the unique (fully optimal)

spanning tree B of G such that:
I for all b ∈ E \min(E ), the signs of b and min(C∗(B; b))

are opposite in C∗(B; b);
I for all e 6∈ B, the signs of e and min(C (B; e))

are opposite in C (B; e).

I α(M∗) = E \ α(M) If
−→
G is strongly connected and min(E ) is

contained in every directed cycle, then... [dual formulation]

I α(
−→
G ) = α(

−→
G /F ) ] α(

−→
G (F )) where F can be the

[complementary of the] union of all directed [co]cycles of
−→
G whose

smallest element is the greatest possible smallest element of a

directed [co]cycle of
−→
G ; [...]= equivalent required dual formulation

The mapping α yields an activity preserving bijection:
- between all activity classes of orientations and all spanning trees of G ,

- and between all orientations and all subsets of G .
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1

Graphs, hyperplane arrangements,
and oriented matroids
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Hyperplane arrangement −→ oriented matroid
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Matroid: incidence properties and flat intersection lattice

Oriented matroid: convexity properties and face relative positions
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Directed graph −→ associated arrangement
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edge ij −→ hyperplane with equation vj − vi = 0
spanning tree −→ basis

orientation of edge ij −→ half-space vj − vi >0
directed cut −→ vertex of the region (positive cocircuit)

cut −→ vertex (cocircuit)
acyclic orientation −→ region

strongly connected orientation −→ region of the dual arrangement
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Duality

Every oriented matroid M has a dual M∗.

circuits of M = cocircuits of M∗

cocircuits of M = circuits of M∗

acyclic orientations of M = totally cyclic orientations of M∗

(or regions) (or dual regions)
(or strongly connected orientations)

bases of M = complementary of bases of M∗

In the realizable case: duality ∼ orthogonality

In the graphical case: duality = cycles/cocycles duality
(extends planar graph duality)
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Arrangements of pseudolines ∼ Rank 3 oriented matroids

c©[Oriented Matroids 1998] reference book
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Oriented matroids

Combinatorial axiomatics
Circuits (or cocircuits) are signed subsets satisfying simple
combinatorial axioms...

(There are about 20 known equivalent combinatorial axiomatics!)

Topological representation theorem [Folkman & Lawrence 1978]

Oriented matroids on E
∼

Signed pseudosphere arrangements (Se)e∈E up to homeomorphism
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2

The Tutte polynomial
in oriented matroids
and directed graphs
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Bipolar orientations and bounded regions

graph−→ hyperplane arrangement
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bipolar orientations w.r.t. p = 1: −→ bounded regions w.r.t. p = 1:
acyclic orientations regions that do not touch p = 1
with unique source and unique sink
extremities of p = 1
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The β invariant

M underlying matroid

I β(M) = # bounded regions w.r.t. e (on one side of e)

I β(M) = # bipolar orientations w.r.t. e
(for a given orientation of e)

I β(M) does not depend on e: it is an invariant

I β(M) = t1,0(M) coefficient of x (or y) of the
Tutte polynomial tM(x , y) of M

I β(M) = # acyclic (re)orientations such that e belongs to
every positive cocircuit (directed cocycle)
Other coefficients of tM can also be interpreted a similar way...
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Activities of orientations

Let M be an oriented matroid on a linearly ordered set E

(or a directed graph
−→
G = (V ,E )).

I An element of E is active if it is the smallest of a positive
circuit of M (or: ... the smallest edge of a directed cycle)

I An element of E is dual-active if it is the smallest of a positive
cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984]

t(M; x , y) =
∑
i ,j

oi ,j
2i+j

x i y j

where oi ,j is the number of reorientations of M with i dual-active
elements and j active elements.

Related classical results
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Activities of orientations
Let M be an oriented matroid on a linearly ordered set E

(or a directed graph
−→
G = (V ,E )).

I An element of E is active if it is the smallest of a positive
circuit of M (or: ... the smallest edge of a directed cycle)

I An element of E is dual-active if it is the smallest of a positive
cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984]

t(M; x , y) =
∑
i ,j

oi ,j
2i+j

x i y j

where oi ,j is the number of reorientations of M with i dual-active
elements and j active elements.

Related classical results
o1,0 = # bounded regions = #bipolar orientations w.r.t. e ∈ E
(with given orientation for e)

[Crapo 1969, Zaslavsky 1975, Las Vergnas 1977]
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Activities of orientations
Let M be an oriented matroid on a linearly ordered set E

(or a directed graph
−→
G = (V ,E )).
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∑
i ,j

oi ,j
2i+j

x i y j

where oi ,j is the number of reorientations of M with i dual-active
elements and j active elements.

Related classical results
t(M; 2, 0) = # regions = # acyclic orientations

[Winder 1966, Stanley 1973, Las Vergnas 1977]
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Activities of orientations
Let M be an oriented matroid on a linearly ordered set E

(or a directed graph
−→
G = (V ,E )).

I An element of E is active if it is the smallest of a positive
circuit of M (or: ... the smallest edge of a directed cycle)

I An element of E is dual-active if it is the smallest of a positive
cocircuit of M (or: ... the smallest edge of a directed cocycle)

Theorem [Las Vergnas 1984]

t(M; x , y) =
∑
i ,j

oi ,j
2i+j

x i y j

where oi ,j is the number of reorientations of M with i dual-active
elements and j active elements.

Related classical results
t(M; 0, 2) = # dual regions = # totally cyclic orientations

(strongly connected orientations)
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Dual activity of a region (or an acyclic orientation)
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Consider the smallest element of each cocircuit
They correspond to the sequence of nested faces induced by the
minimal basis: 1 ∩ 2 ⊂ 1
The grey region (digraph) has dual-active elements: 124
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Dual activity of a region (or an acyclic orientation)
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Activities of bases (spanning trees)
Let M be a matroid on a linearly ordered set E

(or a graph G = (V ,E )).

B a basis (spanning tree) of M

I e ∈ E \ B is externally active w.r.t. B if it is the smallest
element of Ce = C (B; e), the unique circuit (cycle) contained
in B ∪ {e}

I b ∈ B is internally active w.r.t. B if it is the smallest element
of C ∗b = C ∗(B; b), the unique cocircuit (cocycle) contained in
(E \ B) ∪ {b}

Theorem [Tutte 1954 & Crapo 1969]

t(M; x , y) =
∑
i ,j

bi ,j x i y j

où bi ,j is the number of bases of M with i internally active
elements and j externally active elements.
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The active bijection in oriented matroids

Tutte polynomial t(M; x , y) of an ordered oriented matroid M

Theorem. [Tutte 1954 & Crapo 1969]

t(M; x , y) =
∑
i ,j

bi ,jx
iy j

où bi ,j = number of bases with activities (i , j)

Theorem. [Las Vergnas 1984]

t(M; x , y) =
∑
i ,j

oi ,j

(x
2

)i(y
2

)j
where oi ,j = number of reorientations with activities (i , j)

oi ,j = 2i+jbi ,j

The active bijection is a canonical underlying bijection...
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3

The fully optimal basis
(The fully optimal spanning tree)

of a bounded region
(of a bipolar orientation)
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M an oriented matroid on a linearly ordered set

E = e1 < ... < en

We look for a bijection between

bounded regions −AM w.r.t. e1

o∗(−AM) = 1 and o(−AM) = 0

and

(1,0)-active bases B of M
ι(B) = 1 and ε(B) = 0
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Fully Optimal Basis (in an oriented matroid)

M an oriented matroid on a linearly ordered set

E = e1 < ... < en

B ⊆ E a basis of M

Ce = fundamental circuit of e 6∈ B w.r.t. B
= unique circuit in B ∪ e

C ∗b = fundamental cocircuit of b ∈ B w.r.t. B
= unique cocircuit in (E \ B) ∪ b

The basis B is fully optimal if

I b and min C ∗b have opposite signs in C ∗b for all b ∈ B \ e1

I e and min Ce have opposite signs in Ce for all e ∈ E \ B

Remark
if M has a fully optimal basis B then M is bounded w.r.t. e1

and B is (1, 0)-active 21/ 61



Active bijection: main theorem in the bounded case

I An ordered bounded oriented matroid w.r.t. min(E ) M has a
unique fully optimal basis denoted

α(M)

I The mapping α is a bijection between (pairs of opposite)

bounded regions of M and (1, 0)-active bases of M.

Computational remarks

I The fully optimal basis α(M) is difficult to compute (the problem
contains the real/combinatorial linear programming problem).

I But the unique reorientation α−1(B) associated with the basis B is

easy to compute (just sign the elements from the first to the last so

that the criterion is satisfied).

22/ 61



Active bijection: main theorem in the bounded case

I An ordered bounded oriented matroid w.r.t. min(E ) M has a
unique fully optimal basis denoted

α(M)

I The mapping α is a bijection between (pairs of opposite)

bounded regions of M and (1, 0)-active bases of M.

Computational remarks

I The fully optimal basis α(M) is difficult to compute (the problem
contains the real/combinatorial linear programming problem).

I But the unique reorientation α−1(B) associated with the basis B is

easy to compute (just sign the elements from the first to the last so

that the criterion is satisfied).

22/ 61



Active bijection: main theorem in the bounded case

I An ordered bounded oriented matroid w.r.t. min(E ) M has a
unique fully optimal basis denoted

α(M)

I The mapping α is a bijection between (pairs of opposite)

bounded regions of M and (1, 0)-active bases of M.

Computational remarks

I The fully optimal basis α(M) is difficult to compute (the problem
contains the real/combinatorial linear programming problem).

I But the unique reorientation α−1(B) associated with the basis B is

easy to compute (just sign the elements from the first to the last so

that the criterion is satisfied).

22/ 61



23/ 61



Ex: 136 is the fully optimal basis of the green region.
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Usual Linear Programming Optimal Bases (simplex criterion)
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Only takes the first column and first row into account.
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The Fully Optimal Basis
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Takes all columns and rows into account.

Two elaborations on linear programming:
- multiobjective programming: unique optimal vertex
- flag programming: unique sequence of nested faces (induction)
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A “Bijective Characterization” of LP Optimality
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In the real case: the active bijection is the unique bijection associating
(1, 0)-active flags and bounded regions with the adjacency property.

In the graphical case: multiobjective LP ∼ a cocycle weight function
In the general case: we need the dual adjacency property,

and it implies the bijection.
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Duality for bounded regions (bipolar orientations)

Bounded region M w.r.t. e ←−−−−−−−→
canonical bijection

Dual-bounded region M∗

o∗(M) = 1, o(M) = 0 o∗(M∗) = 0, o(M∗) = 1

idem ←−−−−−−−→
canonical bijection

Dual-bounded region −eM
o∗(−eM) = 0, o(−eM) = 1

e=1

2 3

6 5

4

s t ←−−−−−−−→
canonical bijection

e=1

2 3

6 5

4

s t

Bipolar orientation
−→
G Cyclic-bipolar orientation −e

−→
G

Strong duality property (refines LP duality):

α(−eM) = α(M) \ {e} ∪ {e ′}

for M bounded w.r.t. e, where E = e < e ′ < . . ..
(means that the active bijection is compatible with the above bijections) 28/ 61



4

Decompositions of activities
and Tutte polynomial

in terms of beta invariants of minors
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Active bijection: inductive decomposition construction

For every oriented matroid M on a linearly ordered set E ,
α(M) defined by the three following properties:

I α(M) is the fully optimal basis of M if it is a bounded region

I α(M∗) = E \ α(M)

I α(M) = α(M/F ) ] α(M(F ))
where F is the union of all positive circuits of M whose
smallest element is the greatest possible active element of M

Lemma. If F 6= ∅, then M(F ) is dual-bounded, and M/F has one
less active element than M.
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Active bijection: inductive decomposition construction

For every oriented matroid M on a linearly ordered set E ,
α(M) defined by the three following properties:

I α(M) is the fully optimal basis of M if it is a bounded region

I α(M∗) = E \ α(M)

I α(M) = α(M/F ) ] α(M(F ))
where F is the complementary of the union of all positive
cocircuits of M whose smallest element is the greatest
possible dual-active element of M;

(equivalent dual formulation)

Lemma. If F 6= ∅, then M/F is bounded, and M(F ) has one less
dual-active element than M.
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Active bijection: direct decomposition construction
Let M be an ordered oriented matroid on E
with ι = o∗(M) dual-active elements a1 < ... < aι
and ε = o(M) active elements a′1 < ... < a′ε.

The active decomposing sequence of M is

∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E

I It corresponds to the active partition of M:

E = F ′ε−1 \ F ′ε ] . . .] F ′0 \ F ′1 ] F1 \ F0] . . .] Fι \ Fι−1

I For 0 ≤ k ≤ ε− 1, we have F ′k =
⋃

D positive circuit
Min D>a′k

D.

I Dually, for 0 ≤ k ≤ ι− 1, we have Fk = E \
⋃

D positive cocircuit
Min D>ak

D.

I Fc is the union of all positive circuits of M (directed cycles), and
E \ Fc is the union of all positive cocircuits (directed cocycles).

Fc is a cyclic flat.
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and ε = o(M) active elements a′1 < ... < a′ε.

The active decomposing sequence of M is

∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E

I It corresponds to the active partition of M:

E = F ′ε−1 \ F ′ε ] . . .] F ′0 \ F ′1 ] F1 \ F0] . . .] Fι \ Fι−1

I For 0 ≤ k ≤ ε− 1, we have F ′k =
⋃

D positive circuit
Min D>a′k

D.

I Dually, for 0 ≤ k ≤ ι− 1, we have Fk = E \
⋃

D positive cocircuit
Min D>ak

D.

I Fc is the union of all positive circuits of M (directed cycles), and
E \ Fc is the union of all positive cocircuits (directed cocycles).

Fc is a cyclic flat.
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Active bijection: direct decomposition construction
Let M be an ordered oriented matroid on E
with ι = o∗(M) dual-active elements a1 < ... < aι
and ε = o(M) active elements a′1 < ... < a′ε.

The active decomposing sequence of M is

∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E

I It corresponds to the active partition of M:

E = F ′ε−1 \ F ′ε ] . . .] F ′0 \ F ′1 ] F1 \ F0] . . .] Fι \ Fι−1

I for 1 ≤ k ≤ ι, the minor M(Fk)/Fk−1 is dual-bounded (cyclic-bipolar)

I for 1 ≤ k ≤ ε, the minor M(F ′k−1)/F ′k is bounded (bipolar)

Direct definition of α:

α(M) =
⊎

1≤k≤ι
α(M(Fk)/Fk−1) ]

⊎
1≤k≤ε

α(M(F ′k−1)/F ′k)
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Example

46 5 13 21

3 2

6 5

4

t 1

3 2

6 5

4

1

3 2

6 5

4

1

3 2

6 5

4

2

2

3

3

4

4

5

5 6

6

1

1

2...

4...

1...

1...
2...

2...

1...

1...

4...

2...

14

14

Dual-active elements: 1 4
Active partition: 123 ] 456

Active decomposing sequence: ∅ ⊂ 123 ⊂ 123456
Bounded (bipolar) minors : M(123) and M/123

α(
−→
G ) = 134

Activity class:
−→
G , −123

−→
G , −456

−→
G , −123456

−→
G .
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Reorientation activity classes of ordered oriented matroids
Activity class of M: the set of 2o(M)+o∗(M) reorientations of M
obtained by reorienting independently the o(M) + o∗(M) parts of
the active partition of M (all its elements have same active partition)

They are interesting on their own:

I Activity classes form a partition of the set 2E of reorientations of M

I Refine the acyclic / totally cyclic usual decomposition

I Describe the intersections of regions w.r.t. a given (minimal) flag

I Wide generalization of components of acyclic orientations of graphs
defined on particular linear orderings of the vertices, as related to

I Non-commutative monoids [Cartier & Foata 1969]

I Heaps of pieces [Viennot 1986]

I Acyclic orientations and the chromatic polynomial [Lass 2001]

I There is one and only one unique sink acyclic orientation in each
activity class of acyclic orientation of a graph, as related to

t(G ; 1, 0) = #acyclic orientations of G with unique sink

[Zaslavsky 1975, Greene & Zaslavsky 1983, Gebhard & Sagan 2000]
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Example of active partitions of rank 4 regions

1 2

3

d

b

c

a

f

g

e

h

4

1 + 2 + 3 + 4abcdefg

4

1 + 2 + 34abcdefgh

h

                341 + 2abcdefgh + 

e

                34       2abcdh1efg +        + 

g

                34       2abcdh1efg +        +

f

                341 + 2abcdefgh +

a

                341 + 2abcdefgh +

c

                34       2aefgh1bcd +        +

b

                34       2aefgh1bcd +        +

d

1 + 2 + 3 + 4abcdefg
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Active bijection main theorem

I α(M) is a basis of M

I active (resp. dual-active) elements of M
are externally (resp. internally) active elements of α(M)

I more precisely, α also preserves active partitions
(they exist for bases too and ensure that α(M) is a basis)

I the basis α(M) is also associated with the 2o(M)+o∗(M)

reorientations in the activity class of M

I α is a bijection between all activity classes of reorientations of
M and all bases of M.
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Active bijection between region activity classes and internal bases

D

C

B

A

9

8

7

6

5

f =42
3f =21

p=1

13C

137

138

13A
14A

14C

147

148

139 149
158

168

16B136
135

13B

157

15D 15A

16A

169

167

16D

159

134
14D

124
125

12C

126

129

127

12A

12B

128

124

14D134

124

124

128

125

12A

126

12B

12C

127

129
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Decomposing sequences
Let E be a finite linearly ordered set.

We call abstract decomposing sequence of E a sequence of subsets
of E such that:

I ∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E

I the sequence min(Fk \ Fk−1), 1 ≤ k ≤ ι is increasing with k

I the sequence min(F ′k−1 \ F ′k), 1 ≤ k ≤ ε, is increasing with k

Let M be a matroid on E .

A decomposing sequence of M is an abstract decomposing
sequence of E such that:

I for every 1 ≤ k ≤ ι, the minor M(Fk)/Fk−1 is either a single
isthmus, or is connected (2-connected for a graph)

I for every 1 ≤ k ≤ ε, the minor M(F ′k−1)/F ′k is either a single
loop, or is connected (2-connected for a graph)

Nota bene. For |E | > 1, M connected (2-connected) if and only if β(M) 6= 0
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Theorem:
decomposing oriented matroids into bounded regions

Let M be an oriented matroid on a linearly ordered set E .

2E = {reorientations A ⊆ E of M}

=
⊎{

A ⊆ E | −AM(Fk)/Fk−1, 1 ≤ k ≤ ι, bounded w.r.t. min(Fk\Fk−1),

and −AM(F ′k−1)/F ′k , 1 ≤ k ≤ ε, dual-bounded w.r.t. min(F ′k−1\F ′k)

}
where the disjoint union is over all decomposing sequences of M
∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E

(the decomposing sequence of M associated in the second term to a
reorientation A is the active decomposing sequence of −AM.)
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Theorem:
decomposing matroid bases into (1, 0)-activity bases

Let M be a matroid on a linearly ordered set E .

{bases of M} =
⊎

∅=F ′ε⊂...⊂F ′0=Fc

Fc=F0⊂...⊂Fι=E
decomposing sequence of M

{B ′1]...]B ′ε]B1]...]Bι |

for all 1 ≤ k ≤ ε, B ′k base of M(F ′k−1)/F ′k with ι(B ′k) = 0 and ε(B ′k) = 1,

for all 1 ≤ k ≤ ι, Bk base of M(Fk)/Fk−1 with ι(Bk) = 1 and ε(Bk) = 0}

Then B = B ′1 ] ... ] B ′ε ] B1 ] ... ] Bι it the active partition of B and

Int(B) = ∪1≤k≤ιmin(Fk \ Fk−1) = ∪1≤k≤ιInt(Bk),

Ext(B) = ∪1≤k≤εmin(F ′k−1 \ F ′k) = ∪1≤k≤εExt(B ′k).
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Theorem:
Tutte polynomial in terms of β invariants of minors

Let M be a matroid on a linearly ordered set E .

t(M; x , y) =
∑ (∏

1≤k≤ι β
(
M(Fk)/Fk−1

))(∏
1≤k≤ε β

′(M(F ′k−1)/F ′k
))

x ι y ε

where β′(M) = β(M) if |E | > 1, β′(isthmus) = 0, and β′(loop) = 1

and where the sum can be equally:

I either over all decomposing sequences of M

I or over all abstract decomposing sequences of E

∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F0 ⊂ ... ⊂ Fι = E
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Classical results refined by this formula
Theorem. [Tutte 1954]

t(M; x , y) =
∑
i ,j

bi ,jx
iy j

where bi ,j = # (i , j)-active bases

Theorem. [Las Vergnas 1984]

t(M; x , y) =
∑
i ,j

oi ,j(
x

2
)
i
(
y

2
)
j

where oi ,j = # (i , j)-active reorientations

Theorem. [Etienne & Las Vergnas 1998, Kook Reiner & Stanton 1999]

t(M; x , y) =
∑

t(M/F ; x , 0) t(M(F ); 0, y)

where the sum can be equally either over all subsets F of E , or
over all cyclic flats F of M.
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5

Further results
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Refined bijection between (re)orientations and subsets
Let M be an (oriented) matroid on a linearly ordered set E .

Partition of 2E in terms of reorientation activity classes

2E =
⊎

activity classes of M
(one −AM chosen in each class)

{
2o(−AM)+o∗(−AM) reorientations obtained by

active partition reorienting

}

Partition of 2E in terms of matroid basis activity intervals

[Crapo 1969, Dawson 1981, ...]

2E =
⊎

B basis of M

[
B \ Int(B), B ∪ Ext(B)

]

Active bijection
One activity class ←→ one basis ←→ one interval
(2i+j elements) (2i+j elements)
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Refined bijection between (re)orientations and subsets

Active bijection
One activity class ←→ one basis ←→ one interval
(2i+j elements) (2i+j elements)

The activity class of −AM and the matroid basis interval of
B = α(−AM) are isomorphic boolean lattices.
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Refined bijection between (re)orientations and subsets

Refined active bijection

For A ⊆ E and B = α(−AM), set

α∅M(A) = B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B))

Theorem

I α∅M is a bijection between 2E (reorientations) and 2E (subsets)

I restricted to acyclic reorientations, α∅M is a bijection between
regions (acyclic orientations) and no-broken-circuit subsets
(i.e. subsets of bases with external activity zero)

I it preserves activities, active partitions, and also some
four-variable refined activities

(that take into acount the positions in the boolean lattices)
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Refined bijection between (re)orientations and subsets

Refined active bijection

For A ⊆ E and B = α(−AM), set

α∅M(A) = B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B))

Theorem

I α∅M is a bijection between 2E (reorientations) and 2E (subsets)

I restricted to acyclic reorientations, α∅M is a bijection between
regions (acyclic orientations) and no-broken-circuit subsets
(i.e. subsets of bases with external activity zero)

I it preserves activities, active partitions, and also some
four-variable refined activities

(that take into acount the positions in the boolean lattices)

Remark. α∅M depends on M and applies to A (on the contrary with α).

The ∅ symbol is a parameter that can be changed to get other similar

refined active bijections, with other boolean lattice bijections. 46/ 61



Active bijection between regions and no-broken-circuit subsets

(acyclic restriction of the refined active bijection w.r.t. the grey region)

D

C

B

A

9

8
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6
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f =42
3f =21
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13C
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138

13A
14A
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147

148

139 149
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168

16B136
135

13B

157

15D 15A

16A

169

167

16D

159

134
14D

1   4  (2)

1   5  (2)

1   C  (2) 

1   6  (2) 

1   9  (2) 

1   7  (2) 

1   A  (2)

1   B  (2) 

1   8  (2)

1    (24)

1   D  (4) 13       (4)

12      (4)

124

128

125

12A

126

12B

12C

127

129
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Refined basis activities
Let M be a matroid on a linearly ordered set E . Let B ⊆ E be a
basis of M. Let A be in the boolean interval
[B \ IntM(B),B ∪ ExtM(B)]. Set:

IntM(A) = IntM(B) ∩ A;

PM(A) = IntM(B) \ A;

ExtM(A) = ExtM(B) \ A;

QM(A) = ExtM(B) ∩ A.

Theorem. [Gordon & Traldi 1990, Las Vergnas 2013]

Let M be a matroid on a linearly ordered set E .

T (M; x + u, y + v) =
∑
A⊆E

x |IntM(A)|u|PM(A)|y |ExtM(A)|v |QM(A)|
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Refined orientation activities
Let M be an oriented matroid on a linearly ordered set E . Let
A ⊆ E . Set:

ΘM(A) = O(−AM) \ A, θM(A) = |ΘM(A)|,
Θ̄M(A) = ΘM(E \ A) = O(−AM) ∩ A, θ̄M(A) = |Θ̄M(A)|.

Θ∗M(A) = ΘM∗(A) = O∗(−AM) \ A, θ∗M(A) = |Θ∗M(A)|,
Θ̄M(A) = Θ̄M∗(A) = O∗(−AM) ∩ A, θ̄∗M(A) = |Θ̄∗M(A)|.

Theorem.

T (M; x + u, y + v) =
∑
A⊆E

xθ
∗
M(A)uθ̄

∗
M(A)yθM(A)v θ̄M(A).

Proof: by the partition of 2E into activity classes.
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Refined bijection between (re)orientations and subsets

For B = α(−AM),

α∅M(A) = B \ (A ∩ Int(B)) ∪ (A ∩ Ext(B))

Theorem (continued)
I α∅M is a bijection between 2E (reorientations) and 2E (subsets)
I It preserves the four refined activities, i.e. for all A ⊆ E :

IntM(α∅M(A)) = Θ∗M(A)

PM(α∅M(A)) = Θ̄∗M(A)

ExtM(α∅M(A)) = ΘM(A)

QM(α∅M(A)) = Θ̄M(A)

(bijection for the equality of the two expressions of t(M; x + u, y + v))
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And now for something completely different

51/ 61



Deletion/contraction construction of various bijections

M oriented matroid on a linearly ordered set E with max(E ) = ω.

Choice at each step:{
α(M), α(−ωM)

}
=
{
α(M \ ω), α(M/ω) ∪ ω

}
Theorem.
With suitable choices, we get whole classes of bijections between
bases: all / subsets / internal / no broken circuit subsets / ...
and
reorientations: classes / all / specific / acyclic / ...

Various properties can be demanded: activities / adjacency / ...

Specifying choices yield: THE active bijection.

52/ 61



Deletion/contraction construction of the active bijection
M oriented matroid on a linearly ordered set E with max(E ) = ω.

Choice at each step:{
α(M), α(−ωM)

}
=
{
α(M \ ω), α(M/ω) ∪ ω

}
One way of defining the active bijection:

I If M is a region (acyclic orientation):
I If M is not cut by ω then α(M) = α(M \ ω)

(and α(−ωM) = α(M/ω) ∪ ω)
I If M is cut by ω then −ωM is also a region and

I If M and −ωM do not have same active partition then the
choice is determined

I Otherwise then compare the flags associated to each region in
the bounded minor containing ω in order to preserve the fully
optimal basis adjacency property

(refines the usual LP induction by variable/constraint deletion)

I If M is a dual-region, then use dual rules.
I If M is not a region nor a dual-region, then use the same rules in

region/dual-region minors (can be done also directly)
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Supersolvable arrangement (generalizes chordal graph)

Inductive construction: at each new dimension, the new
hyperplanes cut each other in lower dimension hyperplanes

(roughly said)

1

2 3 4

5

 6

7

 8

9

1

2 3  4

1
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Supersolvable arrangement (generalizes chordal graph)

Inductive construction: at each new dimension, the new
hyperplanes cut each other in lower dimension hyperplanes

(roughly said)

1 2 3 4

5

6

7

8

9

Allows a construction in nested “fibers” dimension by dimension,
that fits well with the deletion/contraction construction...
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Signed permutations

Regions of the hyperoctahedral arrangement ∼ Signed permutations
(it is supersolvable) ∼ Cube symmetries

∼ Coxeter group Bn

1
_

1 1
_

2 2
_

2 12

2
_

3

1
_

3

3
_

3

13

23

1 2
_

2

3

_

3

3
_

21

2
_

31

_

213

_

21
_

3

_

2
_

31
_

3
_

21

31
_

2

13
_

2

1
_

23

1
_

2
_

3

1
_

3
_

2

_

31
_

2

312

132

123

12
_

3

1
_

32

_

312

321

231

213

21
_

3

2
_

31
_

321

No-broken-circuit base subsets ∼ edge-signed increasing forests
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Active bijection between signed permutations and edge-signed increasing forests
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Permutations (acyclic complete graph case)

Regions of the braid arrangement ∼ Permutations
(it is supersolvable) ∼ Simplex symmetries

∼ Coxeter group An

∼ Acyclic orientations of Kn+1

12 13 23

14

24

34

3124

3142

3412

4312

1324

1342

1432

4132

1234

1243

1423

4123

No-broken-circuit base subsets ∼ increasing trees 57/ 61



Active bijection between permutations and increasing trees

1

2

3

4

123

1432
2341

1

2

3 4

132

1342
2431

1

2 3

4

213

1423
2413
3142
3241

1

2 3

4
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1243
2143
3412
3421

1

2

3

4

312

1324
2314
4132
4231

1

2 3 4

321

1234
2134
3124
3214
4123
4213
4312
4321

It is equal to a classical bijection!
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oriented matroids
activity classes of reorientations bases
act. cl. of acyclic reorientations bases B with ε(B) = 0

act. cl. of totally cyclic reor. bases B with ι(B) = 0
bounded acyclic reorientations bases B with ι(B) = 1 and ε(B) = 0

reorientations subsets
acyclic reorientations no-broken-circuit subsets

totally cyclic reorientations supsets of bases B with ι(B) = 0
hyperplane arrangements

reorientations ∼ signatures bases ∼ simplices
acyclic reorientations ∼ regions

graphs
reorientations ∼ orientations bases ∼ spanning trees

unique sink acyclic orientations spanning trees B with ε(B) = 0
bipolar orientations sp. trees B with ι(B) = 1 and ε(B) = 0

source-sink reversed bipolar orientations sp. trees B with ι(B) = 0 and ε(B) = 1
uniform oriented matroids

bounded regions linear programming optimal vertices
braid arrangement or complete graph or Coxeter arrangement An

permutations increasing trees
hyperoctahedral arrangement or Coxeter arrangement Bn

signed permutations signed increasing trees
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