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Abstract—Resource allocation is today an integral part of
cloud infrastructures management to efficiently exploit resources.
Cloud infrastructures centers generally use custom built heuris-
tics to define the resource allocations. It is an immediate require-
ment for the management tools of these centers to have a fast
yet reasonably accurate simulation and evaluation platform to
define the resource allocation for cloud applications. This work
proposes a framework allowing users to easily specify mappings
for cloud applications described in the AMALTHEA format used
in the context of the DreamCloud European project and to assess
the quality for these mappings. The two quality metrics provided
by the framework are execution time and energy consumption.

I. INTRODUCTION

Usage of cloud infrastructures is by no means uncommon
in today’s scientific research. A typical cloud system is a
sophisticated tool that relies on the possibility to combine
computing, networking and storage capabilities of multiple
compute resources to deliver a significant performance advan-
tage over traditional desktop systems. Due to the size, cost and
complexity of operation, cloud infrastructures are almost never
used exclusively by a single user. Instead, a number of users try
to compete for access, and thus mechanisms for effective re-
source sharing among multiple consumers need to be in place.
A process of allocating resources efficiently and scheduling
computational tasks onto these allocated resources in a proper
manner is based on resource allocation and scheduling pri-
orities. A typical scheduler targets multiple goals including
maximization of throughput and minimization of response
time (i.e., latency). Other optimization criteria such as CPU
fairness or energy-awareness are becoming more important
nowadays, too. Since some of these goals are conflicting with
each other, a job of the scheduler is to figure out a reasonable
allocation strategy. The approach of the DreamCloud project is
to enable a closed-loop control mechanism that will allow for
a dynamic resource allocation. In order to assess the quality
of the resource allocation policy, the use of dedicated fast
simulators is of an essential importance.

Contributions of this paper. To address the above re-
quirement this work proposes a configurable framework for
fast performance evaluation of different resource allocation
strategies targeting cloud infrastructures. The implemented
framework connects AMALTHEA [1] application models,
used to describe application as a tasks graph in the context

of the DreamCloud project (see Section III for the details of
the model) to the SimGrid [2] simulation platform. It aims to
be an open-source and flexible framework supporting a variety
of state of the art mapping algorithms.

Outline. In the rest of the paper, Section II discusses related
work. Section III introduces the AMALTHEA application
modeling language. The core engine of our simulation frame-
work allowing to simulate AMALTHEA applications on top of
SimGrid is presented in Section IV. The proposed framework
is introduced in Section V. Section VI presents the results of
using this flow to evaluate the quality of different mappings for
a scientific application case study executed on top of a typical
cloud infrastructure. Finally, conclusions and perspectives are
presented in Section VIL

II. RELATED WORK

A variety of cloud application simulation frameworks has
been proposed. CloudSim [3] is a Java-based software frame-
work, which supports modeling and simulation of large scale
cloud computing components and environments including data
centers, virtual machines, service brokers, and provisioning
policies. The features of CloudSim include the availability of a
visualization engine that aids in the creation and management
of multiple, independent, and co-hosted virtualized services
on a data center node. Additionally, CloudSim provides flex-
ibility to switch between space- and time-shared allocation
of processing cores to virtualized services. These compelling
features of CloudSim would speed up the development of
new application provisioning algorithms for cloud computing.
However, it is not possible to define the task level allocation
policies for CloudSim.

iCanCloud [4] is an open source C++ based simulation
platform which has been designed to model and simulate
cloud computing systems. A user can customize the core
hypervisor class, which in turn is the core of iCanCloud. The
Amazon model has been integrated with the simulator. From
the DreamCloud perspective, being a commercial tool, it does
not provide complete access to flexibly deal with application
requirements. There is no support for power consumption
analysis. Additionally, the focus of iCanCloud is to define and
integrate new brokering policies and minimize the user cost
for public cloud infrastructure based on classical scheduling
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Fig. 1: An illustrative representation of an application as a task
graph and task as a runnable graph, with inter-task activation
and communication.

heuristic. While the main focus of the DreamCloud project is
dynamic resource allocation.

GreenCloud [5] is a sophisticated packet-level cloud sim-
ulator with focus on energy consumption for cloud commu-
nications. It is a C++/OTcl based tool, with underlying NS-2
platform. GreenCloud provides the fine-grained modeling of
energy consumption for the IT equipment in a data center, such
as computer servers, network switches and communication
links. From the DreamCloud perspective, GreenCloud does
not provide the detailed timing analysis which is an important
requirement for evaluating dynamic resource allocations. To
introduce the detailed timing analysis, a designer needs to
define timing models in NS2 environment, which is quite
outdated and very complex tool.

SimGrid [2] is an open-source and mature C-based tool
to study the behavior of large- scale distributed systems
such as grids, clouds, HPC or P2P systems. It can be used
to evaluate heuristics, prototype applications or even assess
legacy MPI applications. Task level scheduling is supported
by SimGrid. The power consumption analysis tool has been
integrated to the latest version of SimGrid. Additionally, the
developers are very reactive. Due to these facts, and making
the basic study, SimGrid was selected for the integration to our
design framework for performance evaluation of applications
executed on top of cloud infrastructures.

III. APPLICATION MODEL

In the context of the DreamCloud project addressing re-
source allocation issues in future multicore and distributed
systems. From the applications perspective, the project focuses
both on automotive and on cloud computing domains. The
AMALTHEA [1] application model has been chosen to capture
application specifications from these two domains because
it provides clean abstractions allowing to capture both of
them. AMALTHEA is based on three main entities: labels
representing data elements, runnables denoting the smallest
units of code schedulable by an OS, and tasks defined as
graphs of runnables.

In AMALTHEA, an application model is represented as
a directed task graph, where vertices represent tasks, while
directed edges represent either inter-task activation or com-
munication. Figure 1 represents an arbitrary AMALTHEA
application model with seven tasks and three labels. To specify
the inter-task communication, it can be observed that task T1
communicates with task T3 via label L3. For this purpose, T1
will perform a write operation on L3 while T3 will perform the
read operation on L3. The size of L3 represents the exchanged
data volume. At lower granularity level, a task is composed of
runnables as illustrated in Figure 1. Task T4’ is composed of
eight runnables. The runnable graph also provides information
about precedence relationship between runnables.

A runnable is a set of “abstract” instructions. Such in-
structions in AMALTHEA application model are categorized
as computation and communication instructions. Computation
instructions feature operations such as arithmetic or logical
operations. For quick simulations, the actual computational
instructions are abstracted away by representing them with
associated platform-dependent execution time in terms of
clock cycles. Communication instructions comprise read/write
accesses to labels, which can be further classified into two
categories: local and remote accesses. Local accesses take
place, when the target label is mapped at the same node as
the requesting runnable. Remote accesses take place, when the
target label is mapped on a different node, compared to that of
the requesting runnable. In this case, the runnable goes to the
wait state to wait for the read/write response and makes the
core available for other runnables to execute their instructions.
Figure 1 details the instructions of runnable R45 from the
runnable graph of task T4. The computation instructions are
represented with their execution delay values. The communica-
tion instructions are represented as read/write accesses to their
corresponding labels. Their simulation consists of the actual
transfer of data size corresponding that of accessed labels in
read/write requests.

IV. FRoOM SIMGRID TO AMALTHEA

We now review how we implemented the simulation of
AMALTHEA on top of SimGrid. Before digging into the
details, we describe the basic architecture of SimGrid.

A. SimGrid Architecture

SimGrid has been an active project for more than 10 years.
Since then, it has been evolving and taking new systems into
consideration. At start, it was dedicated to grid simulation and
its focus was to study centralized scheduling simulations (e.g.,
off-line scheduling of a Directed Acyclic Graph (DAG) on a
heterogeneous set of distributed computing nodes). Nowadays,
SimGrid deals with a variety of distributed systems ranging
from grids to peer-to-peer systems, and arbitrarily defined
hybrid systems combining different computing systems. The
latest, stable and publicly available version of SimGrid (3.2)
implements the architecture shown in Figure 2.

SimGrid provides three APIs, all based on a common kernel,
allowing users to write custom simulations. SURF is this
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Fig. 2: SimGrid Architecture and the contribution of this work.
SimGrid provides three different APIs allowing user code to
write custom simulations. This work relies on the MSG API.

internal kernel. It provides the core functionalities to simulate
a virtual platform. It has been implemented at very low level
and is not intended to be used by the end users. On top of the
SUREF layer, SimDag, MSG, and SMPI APIs are implemented.
MSG is a simple programming environment, which was the
first distributed programming environment provided within
SimGrid. It is still the most commonly used programming en-
vironment and can be used to build rather realistic simulations.
The SimDag API provides specific programming environment
for DAG applications while the SMPI one provides support
for simulating MPI applications. To simulate the rich set of
abstractions provided by the AMALTHEA model described in
the previous section, we rely on the MSG APL

B. AMALTHEA Execution on SimGrid

To execute AMALTHEA applications on top of SimGrid,
we implemented a simulation core engine that reads the in-
memory object representation of an AMALTHEA model and
converts it to SimGrid function calls. Each runnable of the ini-
tial application is converted into a SimGrid process. Runnables
activation dependencies and communications through labels
are then implemented using SimGrid messages.

In order to fit AMALTHEA applications into SimGrid, we
simplified the AMALTHEA semantic by gathering for each
runnable all the read instructions together, all the computing
instructions together and all the write instructions together.
From that, each runnable process first waits for receiving
activation messages from all the runnables it depends on. Then,
the runnable process sends messages corresponding to the read
label instructions it contains. The computational load of the
process required by SimGrid is then computed by adding the
execution time of all the compute instructions of the runnable.
Finally, the runnable process performs write label operations
and activates all subsequent runnables.

V. WORKFLOW

In order to be able to simulate AMALTHEA applications on
top of cloud infrastructure we propose the workflow depicted
on Figure 3. This workflow comprises the 4 following steps:
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Fig. 3: Simulation workflow from applications specifications
to simulation results

o Step 1. The application specifications are modeled in
AMALTHEA as discussed in the previous section.

o Step 2. The AMALTHEA model is fed to a parser. The
job of the parser is to translate the AMALTHEA model
into a format that can then be easily simulated using
SimGrid. This parser has been written in C++ to be easily
integrated with SimGrid.

o Step 3. The mapper then executes the mapping algo-
rithms by allocating tasks and labels onto the simulation
platform. The description of the platform is provided to
the mapper. Because this work focuses on providing a
modular workflow to evaluate mapping strategies, the
proposed workflow does not provide elaborated mapping
strategies but rather a clean and simple interface to let
users implement any mapping algorithm. Nevertheless, to
illustrate the complete workflow, basic mapping strategies
are proposed by default.

o Step 4. At this stage, the AMALTHEA runnables are
executed on the simulation platform as described in
Section IV-B. Ensuring the AMALTHEA execution se-
mantic on top of the SimGrid MSG API was the biggest
implementation challenge of the workflow.

As results, the simulation platform provides information
about execution time, execution steps and the energy consump-
tion. All these results are provided in the form of text files.
The energy consumption results are provided both globally
and per host. Moreover, the workflow provides a timeline
view of runnable processes execution on the different hosts
of the platform. This timeline view, provided as a standard
timeline trace file, also includes runnables dependencies and
labels reading and writing information. This timeline view is
provided as a trace file that could be visualized using the Vite!
open source tool.

Uhttp://vite.gforge.inria.fr
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Fig. 4: The eScience case study application

VI. EXPERIMENTAL RESULTS

We now show how the proposed workflow can be used
to evaluate an application model and a cloud infrastructure
provided by the High Performance Computing Center Stuttgart
(HLRS) involved in the DreamCloud project. In all the follow-
ing experiments, to illustrate the workflow, we use a mapping
algorithm that randomly allocate the runnables and the labels
on the underlying hardware infrastructure.

A. eScience Application

The application use case is based on an eScience application
MS2 genetic algorithm [6] that performs molecular dynamic
simulation. The goal of the simulation is to predict thermo-
physical properties of condensed fluids which is required for
the design and optimization of chemical engineering processes.
The eScience workflow as an AMALTHEA model is depicted
in Figure 4. MS2 is used to optimize the algorithm that tries
to fit the parameters of an existing model to data collected
through experiments. The algorithm is executed until a good
enough fit is found, a time limit is hit or a fixed number
of iterations have been executed. This in handled by the
task called Check termination. In this application model, each
AMALTHEA task contains a single runnable as depicted on
Figure 4. As shown for the runnable R7, each of this runnable
first reads input data from an input label, then perform a
specific number of computations instructions and finally write
output data to an output label. In all the following experiments,
32 MS2 tasks are considered.

B. Cloud Infrastructure

The cloud infrastructure model we use in the following
experiments, also provided by HLRS, is shown in Figure 5.
It contains two nodes, named node 0 and node 1. Node 0
contains three hosts (node0,0 node0,1 and node0,2) while node
1 contains two hosts (nodel,0 and nodel,1). The configuration
details for each host can be observed. The Frontend host acts
as the master, and resource allocations are performed by this
host. The bandwidth requirements for each interconnection
link have also been provided.
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Fig. 5: The HLRS cloud platform

C. Results

1) Preliminary mapping evaluation: We simulate the exe-
cution of the eScience application on the cloud infrastructure
described previously. During each simulation instance, we
trigger only one run of the application, i.e. the execution of
the application completes as soon as the task named Check
termination finishes. In a more general execution setting, the
eScience application could possibly iterate several times until
data fit the model (see Section VI-A).

On the other hand, we consider two variants of the cloud
infrastructure: heterogeneous and homogeneous platform ver-
sions. The former is depicted in Figure 5, while the latter is
obtained by removing from the Heterogeneous platform the
host HOST_0_2, which is a GPU.

We conducted two sets of experiments. In the first ex-
periment, we simulated the execution of 100 random static
mappings of the eScience application on the homogeneous
platform. The characterization of each mapping in terms of
execution time, energy dissipation and simulation time is
represented in Figure 6. The red and blue dots in the Figure,
point to the worst and best mappings in terms of the execution
time.
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Fig. 6: Simulation on homogeneous platform

The second experiment is similar to the first one with the
difference that the heterogeneous platform is considered. The
corresponding results are shown in Figure 7. Here, for the
mappings with the shortest and longest execution time, the
detailed temporal evolution of the execution is depicted in
Figures 8(a) and 8(b) respectively. We can notice that in this
heterogeneous case, the mapping with the shortest execution
time may not be the most efficient one from the energy point
of view. Indeed, the mapping number 28 may be a good
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Fig. 7: Simulation on heterogeneous platform

candidate, as it provides an execution time close to the shortest
one while using around 15 percent less of energy.

The execution time in Figure 8(a) is shorter than in Fig-
ure 8(b) because in the former case the tasks MS2 are more
evenly distributed on the hosts. Indeed, in Figure 8(b), the host
HOST_0_1 executes 15 MS2 tasks and the host HOST_0_0
only 4 tasks. Thus, in Figure 8(b) the host HOST_0_1 is
overloaded compared to the other hosts. In that case, the host
HOST_0_1 has to provide computational ressources to more
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Fig. 8: Zoom into the best and worst scenarios in simulating the execution on the homogeneous platform

tasks than the other hosts. Consequently, the tasks on the host
HOST_0_1 need more time to execute. Indeed, in Figure 8(b)
the tasks executing on the host HOST_0_1 need 50% more
time to finish compared to the tasks executing on the other
hosts.

2) Large-scale mapping evaluation: We extend the pre-
vious evaluation to a larger number of mappings in order
to get a better insight of the mapping impact on execution
time. Figure 9 shows the evaluation of 6000 mappings of the
eScience application on the heterogeneous platform. As for
the experiments in the previous section, these mappings are
randomly choosen.

The shortest execution time is approximately 0.3064 sec-
onds and the longest execution time is 0.6938 seconds. The
reason for this difference is that in the first case, 34.4% of
the MS2 tasks are mapped on the host HOST_0_2 which is
almost 100 times more powerful than the other hosts. In the
second case, only 18.8% of the MS2 tasks are mapped on
the host HOST_0_2. Thus the execution for the first mapping
finishes sooner than for the second mapping. Table I shows the
execution times (E_time(s)) in seconds of different mappings.
Each line corresponds to one mapping. For each mapping, the
percentage of the MS2 tasks that were mapped on the different
hosts is specified. The mapping m_good is the best mapping
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in terms of the execution time among the 6000 mappings
depicted in Figure 9. The m_bad is the worst mapping among
those 6000 mappings. For the mapping m_best, all the tasks
of the eScience application were mapped to the most powerful
host HOST_0_2. In case of m_worst, all the tasks were
mapped on the host HOST_0_1. When mapping all the tasks
on the most powerful host, the execution time is almost 10
times shorter than if all the tasks are mapped on another
host. This result was expected. Indeed, among the 5 hosts of

our platform, 4 hosts have identical performances and 1 host
provides 100 times more flops compared to any other host.

HO0O | HOI1 | HO2]|HI10/|HI1.1| E_time(s)
m_bad 25% 12.5% | 34.4% 9.4% 18.7% 0.6938
m_good 53% 6.3% 18.8% 9.4% 12.5% 0.3064
m_worst 0 100% 0 0 0 1.0270
m_best 0 0 100% 0 0 0.1181

TABLE I: Execution times and MS2 tasks mappings for
different mappings

VII. CONCLUSION AND PERSPECTIVES

This work proposes an integrated simulation workflow al-
lowing to quickly assess the quality of mapping algorithms
targeting cloud infrastructures and according to different crite-
rion (i.e. energy efficiency or execution time). This simulation
workflow takes as input applications specifications expressed
in the AMALTHEA model chosen as the application model to
be used in the context of the DreamCloud project. The specifi-
cation of custom mappings is handled by implementing a clean
interface whose main role is to specify where AMALTHEA
entities should be located on the targeted cloud architecture.

We plan to extend the mapping design space exploration
introduced in the last section with optimization techniques
such as simulated annealing to allow end users to identify
what are (and why) the best mapping strategies for particular
applications. We will also improve the quality of the provided
results by taking into account more architectural parameters.
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