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Abstract—New personal data fields are currently emerging
due to the proliferation of on-body/at-home sensors connected
to personal devices. However, strong privacy concerns prevent
individuals to benefit from large-scale analytics that could be
performed on this fine-grain highly sensitive wealth of data. We
propose a demonstration of Chiaroscuro, a complete solution
for clustering massively-distributed sensitive personal data while
guaranteeing their privacy. The demonstration scenario highlights
the affordability of the privacy vs. quality and privacy vs. perfor-
mance tradeoffs by dissecting the inner working of Chiaroscuro -
launched over energy consumption times-series -, by exposing the
results obtained by the individuals participating in the clustering
process, and by illustrating possible uses. Keywords—differential

privacy, gossip, k-means, time-series;

I. INTRODUCTION

The ongoing wave of personal sensors is leading to a mas-
sive generation of personal time-series related to individuals’
health (e.g., through smart wristbands or smart bed scales) or
to inner-home activities (e.g., through electrical smart plugs
or smart meters). These time-series are typically sent to their
owner’s personal devices, such as his smartphone, his tablet,
or his laptop.

The availability of this wealth of data massively distributed
over personal devices is an unprecedented opportunity for
individuals to learn valuable knowledge. Cluster analysis,
also called clustering, aims at forming groups of data (or
clusters) such that similar data appear in the same group
and dissimilar data appear in different groups. Clustering is
widely used in various application domains, e.g., medicine,
genetics, marketing, energy, or social sciences. We believe that
clustering personal time-series can directly benefit individuals.
Assume for example that time-series contain variations of
weight. An individual suffering from obesity could benefit
from the clustering results by identifying interesting groups of
weight time-series - e.g., groups within which weight time-
series are similar to his own time-series on a subsequence
but exhibit finally a steady decrease – in order to further
discover and investigate the associated diets. Similar uses can
benefit individuals in many situations (e.g., clustering electrical
consumption time-series for identifying the low-consumption
groups and discover the equipments that could be replaced to
improve the electrical consumption).

A naive approach for clustering these masses of personal
time-series could simply consist in copying them from the
set of personal devices to a central server which could then

Fig. 1. Collaborative Clustering of Massive Personal Time-Series with Privacy
Guarantees

apply the usual cluster analysis techniques. However, fine
grain personal time-series are sensitive data. A personal time-
series indeed conveys a large quantity of information about the
individual(s) it concerns, and may lead to arbitrary disclosures
[1]. Although entrusting a single entity with large amounts
of data may be practical, recurring large scale data breaches
show that this is actually hazardous in the real world (see,
e.g., http://datalossdb.org). Moreover, the frequent occurrence
of data breaches fuels the growing concern of individuals about
the systematic centralization of their personal data. As a result,
the centralized approach not only introduces an additional risk
to data privacy but also an additional obstacle to large-scale
personal data analysis.

In this demonstration, we present Chiaroscuro [2], a com-
plete solution for clustering personal time-series that are mas-
sively distributed on a large population of honest-but-curious
personal devices without jeopardizing their privacy. The chal-
lenge addressed by Chiaroscuro arises from the conjunction
of the massive distribution of the execution over possibly
faulty computing nodes on one side, with the strong privacy
guarantees that personal time-series need on the other side. To
the best of our knowledge, related works fail in addressing one
side of the challenge or the other. This is essentially due either
to the use of non fault-tolerant cryptographic techniques or to
the presence of out-of-control data disclosures (see [2] for a
deeper discussion of related works).

In order to address together the two sides of the challenge,
Chiaroscuro relaxes the traditional security desideratum by
allowing differentially private intermediate results to be dis-



closed during the execution, any other information remain-
ing encrypted. Demonstrating Chiaroscuro essentially aims
at showing that using encryption together with differentially
private perturbation can be a key enabler in the design of
massively distributed privacy-preserving analytical algorithms.
The demonstration highlights the main arguments that support
this claim: (1) a high level of privacy can be reached (i.e.,
probabilistic variant of differential privacy), (2) a high level
of quality can be reached (similar to the quality of centralized
clustering results), and (3) costs remain affordable given the
resources of today’s personal devices.

II. CHIAROSCURO

A. Preliminaries In a Nutshell

Clustering. k-means [3] aims at proposing k clusters that
optimize an objective quality function1 (e.g., the intra-cluster
inertia which measures the homogeneity of the set of time-
series within clusters). In general, a cluster can be described by
extension by enumerating its content, or by intension with e.g.,
the average of its time-series, called centroid or profile below.
k-means is an iterative algorithm that progressively “fits” to
data a set of k proposed centroids. It starts the first iteration by
chosing the k initial centroids, e.g., at random, and terminates
when a termination criterion is satisfied (e.g., the centroids
converge, or a given number of iterations is reached). Each
iteration follows three steps:

1) Assignment step: For each time-series, get its closest
centroid and assign it to the corresponding cluster;

2) Computation step: For each cluster, compute its av-
erage time-series, which is its candidate centroid for
the next iteration if any (also called its mean below);

3) Convergence step: If the distance between the set of
centroids and the set of means is greater than a given
threshold, then another iteration starts, taking as input
centroids the set of means (go to Step 1), otherwise
return the set of means;

Distribution. Gossip aggregation algorithms are
lightweight fully decentralized approximate algorithms
executed within large sets of participants. They simply consist
of periodical point-to-point exchanges between participants,
called gossip exchanges in the rest of the document. Each
participant holds its own approximation of the global
aggregate and updates it, at each exchange, with the one
of the communicating participant. The approximation error
depends on the number of gossip exchanges per participant
and is guaranteed to converge to zero exponentially fast [4].

Privacy. Chiaroscuro’s privacy guarantees rely on two
building blocks: an additively-homomorphic encryption
scheme on one side and the differentially-private Laplace
perturbation scheme on the other side. First, Chiaroscuro is
independent of any specific encryption scheme provided that
(1) it satisfies the strong semantic-security level, (2) it is
additively-homomorphic, and (3) the decryption is performed
collaboratively by any subset of participants provided it is suf-
ficiently large. The Damgard-Jurik encryption scheme [5] that
we use in our implementation is an instance of such schemes.

1Characterizing precisely the algorithms that Chiaroscuro can support is
future work.

Second, differential privacy is the current de facto standard
for disclosing to untrusted parties aggregated data, such as a
sum of a set of time-series for example, while guaranteeing a
strong privacy level to individuals having participated in the
aggregate. The Laplace perturbation mechanism satisfies the
ε-differential privacy model [6] by adding random noise to the
aggregate to be disclosed. The noise is sampled in a Laplace
distribution parameterized according to ε and to the aggregate
disclosed. A Laplace random variable can be computed by
summing up n terms independently generated based on the
gamma distribution, n being fixed beforehand. These terms
are called noise-shares. When several aggregates related to
the same individuals are perturbed and disclosed, differential
privacy is still satisfied (self-composition property) and the
global privacy level, seen as a privacy budget, must be divided
among the perturbations because it is is the addition of all
the privacy levels set for perturbing the various aggregates.
Note that because of the inherent approximations of gossip
algorithms, Chiaroscuro satisfies a probabilistic variant of ε-
differential privacy.

B. Overview of Chiaroscuro

Diptych Data Structure. Parallelizability is a crucial prop-
erty in this massively distributed context, making a clustering
algorithm such as k-means especially relevant. k-means is
essentially based on a twofold data structure made of the
centroids on one side and of the means on the other side. The
centroids are used during Steps 1 and 3 (i.e., assignment and
convergence steps) for performing distance comparisons, and
the means result from the algebraic computations performed
in Step 2 (i.e., computation step). Chiaroscuro brings together
additively-homomorphic encryption and differentially-private
perturbation in order to shield the two sides of this data
structure while enabling the gossip-based distribution of the
execution sequence. In Chiaroscuro, Step 2 is performed over
additively-homomorphic encrypted means, which support the
algebraic operations required by this step, while Step 1 and
Step 3, harder to perform over encrypted data, are performed
over cleartext centroids perturbed to satisfy differential privacy.
The resulting data structure consists thus of the perturbed
centroids on one side and of the encrypted means on the other
side; it is called Diptych and is key to the execution sequence.

Execution Sequence. Chiaroscuro’s execution sequence
revisits the assignment, computation, and convergence steps by
distributing and articulating them together based on the diptych
data structure. It is iterative, identical for all participants,
and proceeds without any global synchronization (the late
participants simply synchronize on the latest iteration during
their gossip exchanges). It consists in the following:

1) Assignment step (local): pull in a set of perturbed
centroids, assign the local time-series to the closest
perturbed centroid and initialize (1) the corresponding
encrypted mean with the encryption of the local time-
series and (2) all the other means with the encryptions
of zero-valued time-series;

2) Computation step (distributed): Compute the set of
perturbed means:

a) Gossip computation of the encrypted means;
b) Gossip computation of the encrypted noises;



c) Local addition of the encrypted noises to the
encrypted means;

d) Collaborative decryption of the perturbed en-
crypted means;

3) Convergence step (local): if the distance between
the perturbed centroids and the perturbed means is
greater than a given threshold, then another iteration
starts, taking as input the set of perturbed means2

(go to Step 1), otherwise return the set of perturbed
means;

Steps 1 and 3 are performed locally on cleartext data, they
do not present strong challenges. It is the computation step
that concentrates the hardest points of the execution sequence.
Chiaroscuro solves it by proposing a gossip sum algorithm
working on additively-homomorphic encrypted data and by
using it as a building block for computing the encrypted
means and the Laplace noises. The collaborative decryption
is performed by getting from a sufficient number of distinct
participants their partial decryptions.

Quality-Enhancing Heuristics. Chiaroscuro also embeds
quality-enhancing heuristics for reducing the impact of the
perturbation on the quality of the clustering. They act on (1)
the quality of the sequence of centroids through smart privacy
budget distribution strategies and on (2) the quality of each
centroid by smoothing the perturbed means.

III. DEMONSTRATION

This demonstration allows to observe thoroughly the inner
working of Chiaroscuro, and to illustrate the use of the
resulting centroids (or profiles) by an individual. We present
below the software platform that supports this objective, the
mutable and fixed initial parameters, and the demonstration
scenario.

Fig. 2. Demonstration Platform: The demonstration runs on a single laptop
(no connection to the network needed). It executes both Chiaroscuro (within
Peersim) and the GUI system. The execution log is stored in a local MongoDB
database and displayed by the GUI through a web browser.

A. Platform
Figure 2 depicts the demonstration platform. Chiaroscuro’s

engine is implemented within the well-known distributed com-
puting simulator Peersim [7]. Chiaroscuro is written in Java
and implements Peersim’s nextCycle method by the core
of its execution sequence. This method is the same for all
participants and is the entry point for Peersim each time it
calls a participant. Our graphical user interface is based on
Node.js. The client-side part allows the client to choose the
values for a clearly-defined set of initial parameters (see below
the parameters allowed to change, called mutable parameters),
to visualize a variety of information about the execution of

2Chiaroscuro supports the addition of other termination criteria for coping
with the impact of the differentially-private perturbation on the convergence
of centroids (e.g., monitoring centroids quality).

Chiaroscuro parameterized with the chosen values (see below
the visualization details), and to interact with the clustering
result. This information is captured in the execution logs,
stored in a MongoDB instance, and is then interpreted by the
GUI system. Both Chiaroscuro’s engine and the GUI system
run locally on the same machine.

B. Parameters
In this demonstration, we allow some initial parameters

to be set up by the audience, the others being fixed to
default values. The mutable parameters are carefully selected
so that a change in their values brings insights into the quality
reached by Chiaroscuro (e.g., the differential privacy level, the
quality-enhancing heuristics enabled, the use-case - electrical
consumption time-series or tumor-size growth) and into its
costs (e.g., the number of participants required for decryption).
The fixed parameters are related to the k-means algorithm
(e.g., number of initial centroids, convergence threshold), to
the encryption scheme (e.g., size of the encryption key), and
to the gossip algorithm (e.g., number of participants, number
of exchanges per participant). In order to keep reasonnable the
execution time of Chiaroscuro, we simulate a tiny population
(e.g., on the order of 103 participants rather than 106 as
targeted by Chiaroscuro) and we disable the homomorphic op-
erations (a single machine can hardly cope with the encryption
load of a thousand participants). We stress that this has no
consequence on the objectives of the demonstration: (1) the
distributed algorithms are not changed whether homomorphic
operations are enabled or not, (2) the performance overhead
that would be due to homomorphic operations and to a
larger population size are clearly displayed in the GUI based
on actual average measures performed beforehand (e.g., of
encryption/decryption/addition times), (3) the approximation
error of gossip algorithms is kept similar to a context with a
larger population by decreasing the number of messages per
participant, and (4) the impact of the perturbation is also kept
similar by scaling the differential privacy level to obtain the
same “noise magnitude / population size” ratio.

Chiaroscuro is demonstrated over a real dataset and a
synthetic one, each related to a targeted application domain.
The CER dataset [8] contains the electricity consumption time-
series of thousands of real Irish homes and businesses. The
NUMED dataset contains time-series representing the tumor
growth of cancer suffering patients synthetically generated
based on mathematical models [9]. The demonstration uses
a subset of each dataset for keeping reasonable the execution
times.

C. Scenario
The demonstration scenario showcases Chiaroscuro by

allowing the audience to follow thoroughly the evolution over
a complete run of the perturbed centroids obtained by partic-
ipants, of their quality (compared to a centralized k-means),
and of the network and encryption costs. We also put a special
emphasis on the use of the result by Bob, a pre-defined fictional
participant that wants to benefit from the resulting centroids
by participating with his time-series but without giving away
his privacy. Figure 3 illustrates the typical progress of the
demonstration. A strong focus has been put on the pedagogical
aspects of the GUI since it includes the supports for giving
the explainations necessary for understanding intuitively the



Fig. 3. A Glimpse over the Graphical User Interface (annotated in red): Sequence of screenshots showing from the top-left to the bottom-right: (1) the welcome
screen, (2) the intuitions of the approach, (3) the experimental platform, a few fixed parameters (in the table), and a few mutable parameters (the buttons), (4)
for the first use-case (tumor-growth time-series over twenty weeks), the graphs showing for a random subset of four participants the evolution of their closest
centroid along the iterations (a slide bar allows navigating along the iterations), (5) an illustration of the impact of the noise on four random centroids along
the iterations (a slide bar allows navigating along the iterations), and (6) an illustration of the use of the clustering results by an individual (finding the closest
profiles given a sub-sequence of his own time-series).

technical aspects of Chiaroscuro. The GUI is divided into a
sequence of screens. After the introductory screens explaining
Chiaroscuro and the demonstration platform, and allowing to
set the mutable parameters, the GUI displays a set of graphs.
The first type of graphs is passive, dedicated to vizualize, e.g.,
the evolutions of the centroids, the noise values, and the quality
and cost measures, based on slide bars over the iterations. The
second type of graph is interactive, it illustrates the use of the
resulting centroids by Bob, for example by displaying Bob’s
time-series and allowing the audience to interact with it by
selecting a sub-sequence and finding the centroids the closest
to the sub-sequence chosen.
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