Hugues De Lassus Saint-Geniès

David Defour
email: david.defour@univ-perp.fr

Guillaume Revy
email: guillaume.revy@univ-perp.fr

Error-free Tables for Trigonometric Function Evaluation

1. How does a modern processor calculate sine and cosine? Evaluation: use of other trigonometric properties Reconstruction: scheme reducing the error on tabulated values [START_REF] Gal | An accurate elementary mathematical library for the IEEE floating point standard[END_REF] x ∈ [0, π 4]

sin(x h + x l) = sin(x h) • cos(x l) + cos(x h) • sin(x l) cos(x h + x l) = cos(x h) • cos(x l) -sin(x h) • sin(x l)
Splitting x into (x h , x) Table lookup Polynomial approximations Reconstruction cos(x) = cos h ⊗ cos(x ⊕ corr) sin h ⊗ sin(x ⊕ corr) sin(x) = sin h ⊗ cos(x ⊕ corr) ⊕ cos h ⊗ sin(x ⊕ corr) cos h sin h cos(x ⊕ corr) sin(x ⊕ corr) x h x corr 2.

Pythagorean Triples

What is a Pythagorean triple?

θ b a c      (a, b, c) ∈ N 3 a 2 + b 2 = c 2 sin(θ) = a c cos(θ) = b c
Primitive Pythagorean Triple : a Pythagorean triple (a, b, c) for which gcd(a, b, c) = 1. Primitive Pythagorean triples with c ≤ 2 12 Only a subset fits in a table.

Primitive Pythagorean Triple Generation

Barning-Hall ternary-tree structure:

           1 -2 2 2 -1 2 2 -2 3            ,            -1 2 2 2 -1 2 -2 2 3            ,            1 2 2 2 1 2 2 2 3            3

 Range reduction: use of trigonometric identitiessin(-x) = -sin(x) sin(x) = ±f k x -k • π 2 with f k ∈ {sin, cos} ⇒ Range reduction F 64 → 0,

 Several equivalent trees, easy to implementProven to generate all primitive triples by increasing hypotenuse lengths[START_REF] Barning | On pythagorean and quasi-pythagorean triangles and a generation process with the help of unimodular matrices[END_REF] 4. Primitive Pythagorean Triple SelectionOnly one triple per entry needed Division by c removed by incorporating it in polynomial approximations ⇒ Same hypotenuse c needed for all entries ⇒ Scale selected PPTs to the least common multiple of their hypotenuses for a 2-bit indexed

 Comparison between three table-based range reductions, for p = 10. The number of memory accesses (MA) and the number of floating point operations (FLOP) are reported.

	Algorithm				
	1: n ← 4				
	2: repeat				
	Results				
	p	k min	n time (s)	Triples Hypotenuses
	3 4 5 160,225 425 5525 6 1,698,385 7 6,569,225	9 13 18 21 23	1 1 0.2 7 31	86 1404 42,328 335,344 1,347,953	66 889 24,228 179,632 686,701	Impossible to generate tables indexed by more than 7 bits. 8 to 10 bit-indexed tables desired to optimize caching.
	8	> 2 27 > 27 > 6700? > 21,407,992 > 10,144,723
					6. Heuristic Search
						Heuristic: store primitive Pythagorean triples
	Prime factorization of found common	satisfying
	multiples k Prime factorization 425 5 2 • 17 5525 5 2 • 13 • 17		c = r i ∈ {0, 1} if p i = 5 i r i ∈ N * else	p r i i	with
	160,225	5 2 • 13 • 17 • 29		and p i ∈ P
	1,698,385 5 • 13 • 17 • 29 • 53 6,569,225 5 2 • 13 • 17 • 29 • 41		where P is the set of Pythagorean primes ≤ 73:
						P = 5, 13, 17, 29, 37, 41, 53, 61, 73
	Results				
	p		k min n time (s) triples hypotenuses
	6	1,698,385 21	0.1 2171	66	> 99 % less memory usage
	7 8	6,569,225 23 314,201,225 29	0.4 3452 9.5 10,467	69 100	> 99 % time saved at generation
	9 12,882,250,225 34	294 20,311	109	Same tables for p ∈ [|3, 7|]
	10 279,827,610,985 39	9393 33,056	110
					7. Theoretical Gains
		Solution Quick phase (66 bits) Accurate phase (150 bits) Table size (bytes)
			Tang	4 MA + 64 FLOP	6 MA + 241 FLOP	38640
			Gal	3 MA + 53 FLOP	9 MA + 268 FLOP	57960
		Proposed 3 MA + 53 FLOP 5 MA + 148 FLOP	32200

table Number of PPTs/entry for a 7-bit indexed table:

roughly 26 100 combinations of 1 PPT/entry.

5. Exhaustive Search for a Small Common Hypotenuse

3:

Generate all PPTs (a, b, c) such that c ≤ 2 n .

4:

Search for the LCM k among all generated hypotenuses c.

5:

n ← n + 1 6: until such a k is found 7: Build tabulated values (A, B, corr) for every entry.