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Abstract Terminology extraction is an essential task in domain knowledge
acquisition, as well as for Information Retrieval (IR). It is also a mandatory
first step aimed at building/enriching terminologies and ontologies. As often
proposed in the literature, existing terminology extraction methods feature lin-
guistic and statistical aspects and solve some problems related (but not com-
pletely) to term extraction, e.g. noise, silence, low frequency, large-corpora,
complexity of the multi-word term extraction process. In contrast, we propose
a cutting edge methodology to extract and to rank biomedical terms , covering
the all mentioned problems. This methodology o↵ers several measures based
on linguistic, statistical, graphic and web aspects. These measures extract and
rank candidate terms with excellent precision: we demonstrate that they out-
perform previously reported precision results for automatic term extraction,
and work with di↵erent languages (English, French, and Spanish). We also
demonstrate how the use of graphs and the web to assess the significance of
a term candidate, enables us to outperform precision results. We evaluated
our methodology on the biomedical GENIA and LabTestsOnline corpora and
compared it with previously reported measures.
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1 Introduction

The huge amount of biomedical data available today often consists of plain text
fields, e.g. clinical trial descriptions, adverse event reports, electronic health
records, emails or notes expressed by patients within forums [39]. These texts
are often written using a specific language (expressions and terms) of the asso-
ciated community. Therefore, there is a need for formalization and cataloging
of these technical terms or concepts via the construction of terminologies and
ontologies [52]. These technical terms are also important for Information Re-
trieval (IR), for instance when indexing documents or formulating queries.
However, as the task of manually extracting terms of a domain is very long
and cumbersome, researchers have striving to design automatic methods to as-
sist knowledge experts in the process of cataloging the terms and concepts of a
domain under the form of vocabularies, thesauri, terminologies or ontologies.

Automatic Term Extraction (ATE), or Automatic Term Recognition (ATR),
is a domain which aims to automatically extract technical terminology from
a given text corpus. We define technical terminology as the set of terms used
in a domain. Term extraction is an essential task in domain knowledge ac-
quisition because the technical terminology can be used for lexicon updating,
domain ontology construction, summarization, named entity recognition or,
as previously mentioned, IR.

In the biomedical domain, there is a substantial di↵erence between existing
resources (hereafter called terminologies or ontologies) in English, French, and
Spanish. In English, there are about 9 919 000 terms associated with about
8 864 000 concepts such as those in UMLS1 or BioPortal [44]. Whereas in
French there are only about 330 000 terms associated with about 160 000 con-
cepts [41], and in Spanish 1 172 000 terms associated with about 1 140 000
concepts. Note the strong di↵erence in the number of ontologies and termi-
nologies available in French or Spanish. This makes ATE even more important
for these languages.

In biomedical ontologies, di↵erent terms may be linked to the same concept
and are semantically similar with di↵erent writing, for instance “neoplasm”
and “cancer” in MeSH or SNOMED-CT. Ontologies also contain terms with
morphosyntaxic variants, for instance plurals like ‘‘external fistula” and “ex-
ternal fistulas”, and this group of variants is linked to a preferred term. As one
of our goals is to extract new terms to enrich ontologies, our approach does
not normalize variant terms, mainly because normalization would lead to pe-
nalization in extracting new variant terms. Technical terms are useful to gain
further insight into the conceptual structure of a domain. These may be: (i)

1
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/

release/statistics.html

http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
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single-word terms (simple), or (ii) multi-word terms (complex). The proposed
study focuses on both cases.

Term extraction methods usually involve two main steps. The first step
extracts candidate terms by unithood calculation to qualify a string as a
valid term, while the second step verifies them through termhood measures
to validate their domain specificity. Formally, unithood refers to the degree
of strength or stability of syntagmatic combinations and collocations, and
termhood is defined as the degree to which a linguistic unit is related to
domain-specific concepts [26]. ATE has been applied to several domains, e.g.
biomedical [34,18,63,42], ecological [12], mathematical, [56], social networks
[31], banking [17], natural sciences [17], information technology [42,60], legal
[60], as well as post-graduate school websites [48].

The main issues in ATE are: (i) extraction of non-valid terms (noise) or
omission of terms with low frequency (silence), (ii) extraction of multi-word
terms having various complex various structures, (iii) manual validation ef-
forts of the candidate terms [12], and (iv) management of large-scale corpora.
Inspired by our previously published results and in response to the above is-
sues, we propose a cutting edge methodology to extract biomedical terms. We
propose new measures and some modifications of existing baseline measures.
Those measures are divided into: 1) ranking measures, and 2) re-ranking mea-
sures. Our ranking measures are statistical- and linguistic-based and address
issues i), ii) and iv). Our two re-ranking measures the first one called TeR-
Graph is a graph-based measure which deals with issues i), ii) and iii). The
second one, called WAHI, is a web-based measure which also deals with issues
i), ii) and iii). The novelty of the WAHI measure is that it is web-based which
has, to the best of our knowledge, never been applied within ATE approaches.

The main contributions of our article are: (1) enhanced consideration of
the term unithood, by computing a degree of quality for the term unithood,
and, (2) consideration of the term dependence in the ATE process. The quality
of the proposed methodology is highlighted by comparing the results obtained
with the most commonly used baseline measures. Our evaluation experiments
were conducted despite di�culties in comparing ATE measures, mainly be-
cause of the size of the corpora used and the lack of available libraries as-
sociated with previous studies. Our three measures improve the process of
automatic extraction of domain-specific terms from text collections that do
not o↵er reliable statistical evidence (i.e. low frequency).

The paper is organized as follows. We first discuss related work in Section 2.
Then the methodology to extract biomedical terms is detailed in Section 3.
The results are presented in Section 4, followed by discussions in Section 5.
Finally, the conclusions in Section 6.

2 Related Work

Recent studies have focused on multi-word (n-grams) and single-word (uni-
grams) term extraction. Term extraction techniques can be divided into four
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broad categories: (i) Linguistic, (ii) Statistical, (iii) Machine Learning, and (iv)
Hybrid. All of these techniques are encompassed in Text Mining approaches.
Graph-based approaches have not yet been applied to ATE, although they
have been successively adopted in other Information Retrieval fields and could
be suitable for our purpose. Existing web techniques have not been applied to
ATE but, as we will see, these techniques can be adapted for such purposes.

2.1 Text Mining approaches

2.1.1 Linguistic approaches

These techniques attempt to recover terms via linguistic pattern formation.
This involves building rules to describe naming structures for di↵erent classes
based on orthographic, lexical, or morphosyntactic characteristics, e.g. [20].
The main approach is to develop rules (typically manually) describing com-
mon naming structures for certain term classes using orthographic or lexical
clues, or more complex morpho-syntactic features. Moreover, in many cases,
dictionaries of typical term constituents (e.g. terminological heads, a�xes, and
specific acronyms) are used to facilitate term recognition [30]. A recent study
on biomedical term extraction [21] is based on linguistic patterns plus addi-
tional context-based rules to extract candidate terms, which are not scored
and the authors leave the term relevance decision to experts.

2.1.2 Statistical methods

Statistical techniques chiefly rely on external evidence presented through sur-
rounding (contextual) information. Such approaches are mainly focused on
the recognition of general terms [59]. The most basic measures are based on
frequency. For instance, term frequency (tf) counts the frequency of a term in
the corpus, document frequency (df) counts the number of documents where
a term occurs, and average term frequency (atf), which is tf

df .

A similar research topic, called Automatic Keyword Extraction (AKE),
proposes to extract the most relevant words or phrases in a document us-
ing automatic indexation. Keywords, which we define as a sequence of one or
more words, provide a compact representation of a document’s content. Such
measures can be adapted to extract terms from a corpus as well as ATE mea-
sures. We take two popular AKE measures as baselines measures, i.e. Term
Frequency Inverse Document Frequency (TF-IDF) [53], and Okapi BM25 [49]
(hereafter Okapi), these weight the word frequency according to their distribu-
tion along the corpus. Residual inverse document frequency (RIDF) compares
the document frequency to another chance model where terms with a particu-
lar term frequency are distributed randomly throughout the collection, while
Chi-square [37] assesses how selectively words and phrases co-occur within the
same sentences as a particular subset of frequent terms in the document text.
This is applied to determine the bias of word co-occurrences in the document
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text, which is then used to rank words and phrases as keywords of the docu-
ment; RAKE [50] hypothesises that keywords usually consist of multiple words
and do not contain punctuation or stop words. It uses word co-occurrence in-
formation to determine the keywords.

2.1.3 Machine Learning

Machine Learning (ML) systems are often designed for specific entity classes
and thus integrate term extraction and term classification. Machine Learning
systems use training data to learn features useful for term extraction and
classification. But the avaibility of reliable training resources is one of the
main problems. Some proposed ATE approaches use machine learning [12,62,
42]. However, ML may also generate noise and silence. The main challenge is
how to select a set of discriminating features that can be used for accurate
recognition (and classification) of term instances. Another challenge concerns
the detection of term boundaries, which are the most di�cult to learn.

2.1.4 Hybrid methods

Most approaches combine several methods (typically linguistic and statistically
based) for the term extraction task. GlossEx [29] considers the probability of
a word in the domain corpus divided by the probability of the appearance of
the same word in a general corpus. Moreover, the importance of the word is
increased according to its frequency in the domain corpus. Weirdness [1] con-
siders that the distribution of words in a specific domain corpus di↵ers from
that in a general corpus. C/NC-value [18] combines statistical and linguistic
information for the extraction of multi-word and nested terms. This is the most
well-known measure in the literature. While most studies address specific types
of entities, C/NC-value is a domain-independent method. It has also been used
for recognizing terms in the biomedical literature [24,22]. In [63], the authors
showed that C-value obtains the best results compared to the other measures
cited above. C-value has been also modified to extract single-word terms [40],
and in this work the authors extract only terms composed of nouns. Moreover,
C-value has also been applied to di↵erent languages other than English, e.g.
Japanese, Serbian, Slovenian, Polish, Chinese [25], Spanish [4], Arabic, and
French. We have thus chosen C-value as one of our baseline measure. Those
baseline measures will be modified and evaluated with the new proposed mea-
sures.

Terminology Extraction from Parallel and Comparable Corpora

Another kind of approach suggests that terminology may be extracted from
parallel and/or comparable corpora. Parallel corpora contain texts and their
translation into one or more languages, but such corpora are scarce [9]. Thus
parallel corpora are scarce for specialized domains. Comparable corpora are
those which select similar texts in more than one language or variety [15].
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Comparable corpora are built more easily than parallel corpora. They are of-
ten used for machine translation and their approaches are based on linguistics,
statistics, machine learning, and hybrid methods. The main objective of these
approaches is to extract translation pairs from parallel/comparable corpora.
Di↵erent studies propose translation of biomedical terms for English-French
by alignment techniques [16]. English-Greek and English-Romanian bilingual
medical dictionaries are also constructed with a hybrid approach that com-
bines semantic information and term alignments [28]. Other approaches are
applied for single- and multi-word terms with English-French comparable cor-
pora [14]. The authors use statistical methods to align elements by exploiting
contextual information. Another study proposes to use graph-based label prop-
agation [57]. This approach is based on a graph for each language (English and
Japanese) and the application of a similarity calculus between two words in
each graph. Moreover, some machine learning algorithms can be used, e.g.
the logistic regression classifier [27]. There are also approaches that combine
both corpora [38] (i.e. parallel and comparable) in an approach to reinforce
extraction. Note that our corpora are not parallel and are far of being com-
parable because of the di↵erence in their size. Therefore these approaches are
not evaluated in our study.

2.1.5 Tools and applications for biomedical term extraction

There are several applications implementing some measures previously men-
tioned, especially C-value for biomedical term extraction. The study of related
tools revealed that most existing systems that especially implement statisti-
cal methods are made to extract keywords and, to a lesser extent, to extract
terminology from a text corpus. Indeed, most systems take a single text doc-
ument as input, not a set of documents (as corpus), for which the IDF can be
computed. Most systems are available only in English and the most relevant
for the biomedical domain are:

– TerMine2, developed by the authors of the C-value method, only for En-
glish term extraction;

– Java Automatic Term Extraction3 [63], a toolkit which implements several
extraction methods including C-value, GlossEx, TermEx and o↵er other
measures such as frequency, average term frequency, IDF, TF-IDF, RIDF ;

– FlexiTerm4 [55], a tool explicitly evaluated on biomedical copora and which
o↵er more flexibility than C-value when comparing term candidates (treat-
ing them as bag of words and ignoring the word order);

– BioYaTeA 5 [21], is a version of the YaTeA term extractor [2], both are
available as a Perl module. It is a biomedical term extractor. The method
used is based only on linguistic aspects.

2
http://www.nactem.ac.uk/software/termine/

3
https://code.google.com/p/jatetoolkit/

4
http://users.cs.cf.ac.uk/I.Spasic/flexiterm/

5
http://search.cpan.org/

~

bibliome/Lingua-BioYaTeA/

http://www.nactem.ac.uk/software/termine/
https://code.google.com/p/jatetoolkit/
http://users.cs.cf.ac.uk/I.Spasic/flexiterm/
http://search.cpan.org/~bibliome/Lingua-BioYaTeA/


Biomedical Term Extraction: Overview and a New Methodology 7

– BioTex 6 [32], only for biomedical terminology extraction. It is available for
online testing and assessment but can also be used in any program as a Java
library (POS tagger not included). In contrast to other existing systems,
this system allows us to analyze French and Spanish corpora, manually
validate extracted terms and export the list of extracted terms.

2.2 Graph-based approaches

Graph modeling is an alternative for representing information, which clearly
highlights relationships of nodes among vertices. It also groups related infor-
mation in a specific way, and a centrality algorithm can be applied to enhance
their e�ciency. Centrality in a graph is the identification of the most im-
portant vertices within a graph. A host of measures have been proposed to
analyze complex networks, especially in the social network domain [7,8,3].
Freeman [19], formalized three di↵erent measures of node centrality: degree,
closeness and betweenness. Degree is the number of neighbors that a node is
connected to. Closeness is the inverse sum of shortest distances to all other
neighbor nodes. Betweenness is the number of shortest paths from all vertices
to all others that pass through that node. One study proposes to take the
number of edges and their weights into account [45], since the three last mea-
sures do not do this. Another well known measure is PageRank [46], which
ranks websites. Boldi [6], evaluated the behavior of ten measures, and associ-
ated the centrality to the node with largest degree. Our approach proposes the
opposite, i.e. we focus on nodes with a lower degree. An increasingly popular
recent application of graph approaches to IR concerns social or collaborative
networks and recommender systems [43,3].

Graph representations of text and scoring function definition are two widely
explored research topics, but few studies have focused on graph-based IR in
terms of both document representation and weighting models [51]. First, text is
modeled as a graph where nodes represent words and edges represent relations
between words, defined on the basis of any meaningful statistical or linguistic
relation [5]. In [5], the authors developed a graph-based word weighting model
that represents each document as a graph. The importance of a word within a
document is estimated by the number of related words and their importance,
in the same way that PageRank [46] estimates the importance of a page via the
pages that are linked to it. Another study introduces a di↵erent representation
of document that captures relationships between words by using an unweighted
directed graph of words with a novel scoring function [51].

In the above approaches, graphs are used to measure the influence of words
in documents like automatic keyword extraction methods (AKE), while rank-
ing documents against queries. These approaches di↵er from ours as they use
graphs focused on the extraction of relevant words in a document and com-
puting relations between words. In our proposal, a graph is built such that

6
http://tubo.lirmm.fr/biotex/

http://tubo.lirmm.fr/biotex/
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the vertices are multi-word terms and the edges are relations between multi-
word terms. Moreover, we focus especially on a scoring function of relevant
multi-word terms in a domain rather than in a document.

2.3 Web Mining approaches

Di↵erent web mining studies focus on semantic similarity, semantic related-
ness. This means quantifying the degree to which some words are related,
considering not only similarity but also any possible semantic relationship
among them. The word association measures can be divided into three cate-
gories [10]: (i) Co-occurrence measures that rely on co-occurrence frequencies
of both words in a corpus, (ii) Distributional similarity-based measures that
characterize a word by the distribution of other words around it, and (iii)
Knowledge-based measures that use knowledge-sources like thesauri, semantic
networks, or taxonomies [23]. In this paper, we focus on co-occurrence mea-
sures because our goal is to extract multi-word terms and we suggest comput-
ing a degree of association between words composing a term. Word association
measures are used in several domains like ecology, psychology, medicine, and
language processing, and were recently studied in [47,61], such as Dice, Jac-
card, Overlap, Cosine. Another measure to compute the association between
words using web search engines results is the Normalized Google Distance [11],
which relies on the number of times words co-occur in the document indexed
by an information retrieval system. In this study, experimental results with our
web-based measure will be compared with the basic measures (Dice, Jaccard,
Overlap, Cosine).

3 Methodology

This section describes the baseline measures, their modifications as well as
new measures that we propose for the biomedical term extraction task. The
principle of our approach is to assign a weight to a term, which represents the
appropriateness of being a relevant biomedical term. This allows to give as
output a list ranked by their appropriateness. Our methodology for automatic
term extraction has three main steps plus an additional step (a), described in
Figure 1, and in the sections hereafter:

(a) Pattern Construction,
(1) Candidate Term Extraction,
(2) Ranking of Candidate Terms,
(3) Re-ranking.

Pattern Construction (step a)

As previously cited, we supposed that biomedical terms have a similar syn-
tactic structure (linguistic aspect). Therefore, we built a list of the most com-
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Fig. 1 Workflow Methodology for Biomedical Term Extraction.

mon linguistic patterns according to the syntactic structure of terms present
in the UMLS7 (for English and Spanish), and the French version of MeSH8,
SNOMED International and the rest of the French content in the UMLS.

Part-of-Speech (POS) tagging is the process of assigning each word in a text
to its grammatical category (e.g. noun, adjective). This process is performed
based on the definition of the word or on the context in which it appears. This
is highly time-consuming, so we conducted automatic part-of-speech tagging.

We evaluated three tools (TreeTagger9, Stanford Tagger10 and Brill’s rules11).
This evaluation was carried out throughout the entire workflow with the three
tools and we assessed the precision of the extracted terms. We noted that in
general TreeTagger gave the best results for Spanish and French. Meanwhile,
for English, the Stanford tagger and TreeTagger gave similar results. We fi-
nally chose TreeTagger, which gave better results and may be used for English,
French and Spanish. Moreover, our choice was validated with regard to a recent

7
http://www.nlm.nih.gov/research/umls

8
http://mesh.inserm.fr/mesh/

9
http://www.cis.uni-muenchen.de/

~

schmid/tools/TreeTagger/

10
http://nlp.stanford.edu/software/tagger.shtml

11
http://en.wikipedia.org/wiki/Brill_tagger

http://www.nlm.nih.gov/research/umls
http://mesh.inserm.fr/mesh/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://nlp.stanford.edu/software/tagger.shtml
http://en.wikipedia.org/wiki/Brill_tagger
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comparison study [58], wherein the authors showed that TreeTagger generally
gives the best results, particularly for nouns and verbs.

Therefore, we carried out automatic part-of-speech tagging of the biomedi-
cal terms using TreeTagger, and then computed the frequency of the syntactic
structures. Patterns among the 200 highest frequencies were selected to build
the list of patterns for each language. From this list, we also computed the
weight (probability) associated with each pattern, i.e. the frequency of the
pattern over the sum of frequencies (see Algorithm 1), but this weight will
only be used for one measure. The number of terms used to build these lists of
patterns was 3 000 000 for English, 300 000 for French, and 500 000 for Span-
ish, taken from the previously mentioned terminologies. Table 1 illustrates the
computation of the linguistic patterns and their weights for English.

Di↵erent terminology extraction studies are based on the use of regular
expressions to extract candidate terms, for instance [18]. Generally these reg-
ular expressions are manually built for a specific language and/or domain [13].
In our setting, we prefer to (i) construct and (ii) apply patterns in order to
extract terms in texts. These patterns have the advantage of being generic
because they are based on defined PoS tags. Moreover, they are very specific
because they are (automatically) built with specialized biomedicine resources.
Concerning this last point, we can consider we are close to the use of regular ex-
pressions. There are two main reasons that we use specific linguistic patterns.
First, we would like to restrict the patterns to the biomedical domain. For
instance, biomedical terms often contain numbers in their syntactic structure,
and this is very specific to the biomedical domain, e.g. “epididymal protein 9”,
“pargyline 10 mg”. General patterns do not enable extraction of such terms.
Our methodology is based on 200 significant patterns for English, French, or
Spanish, yet di↵erent for each language. For instance, there are 55 patterns
for English that contain numbers in the linguistic structure. Thus, this kind
of pattern seems quite relevant for this domain. The second reason for using
lexical patterns is that we assign a probability of occurrence to each pattern,
which would not be possible with classical patterns and regular expressions.

3.1 Candidate Term Extraction (step 1)

The first main step is to extract the candidate terms. So we apply part-of-
speech to the whole corpus using TreeTagger. Then we filter out the content
of our input corpus using previously computed patterns. We select only terms
whose syntactic structure is in the patterns list. The pattern filtering is specif-
ically done on a per-language basis (i.e. when the text is in French, only the
French list of patterns is used).

3.2 Ranking of Candidate Terms (step 2)

We need to select the most appropriate terms for the biomedical domain. Can-
didate term ranking is therefore essential. For this purpose, several measures
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Algorithm 1: ComputePatterns (Dictionary, np)
Data: Dictionary = dictionary of a domain, np = number of patterns to use
Result: HTpatterns(pattern, probability) = Hashtable of the first np linguistic

patterns with its probability
begin

HTpatterns  � ;;
HTaux(tag, freq) � ; // Hashtable of the tag of each term with its frequency ;
sizeHT  � number of terms in Dictionary;
freqtotal  � 0 ;
probability  � 0.0 ;
Tag of the Dictionary;
for tag of each term 2 Dictionary do

if tag 2 HTaux then
update HTaux(tag, freq + 1);

else
add HTaux(tag, 1);

end

end
Rank HTaux(tag, freq) by the freq;
freqtotal  �

Pnp
i=1 freq(HTaux(i));

for i = 1; i  np; i++ do

probability  � freq(HT
aux

(i))
freq

total

;

add HTpatterns(tag(HTaux(i)), probability);
end

end

Pattern Frequency Probability
NN IN JJ NN IN JJ NN 3006 3006/4113 = 0.73

NN CD NN NN NN 1107 1107/4113 = 0.27
4113 1.00

Table 1 Example of pattern construction (where NN is a noun, IN a preposition or sub-
ordinating conjunction, JJ an adjective, and CD a cardinal number)

are proposed and Figure 1(2) shows the set of available measures. We propose
some modifications of the most known measures in the literature (i.e., C-value,
TF-IDF, Okapi), and propose new ones (i.e., F-TFIDF-C, F-OCapi, LIDF-
value, L-value). Those measures are linguistic- and statistic- based, they are
also not very time-consuming. In this step, only one measure will be selected
to perform the ranking. The measures of this section take a list of candi-
date terms previously filtered by linguistic patterns as input, which makes
it possible to assess less invalid terms while dealing with the noise problem.
In addition to the use of linguistic patterns to alleviate the problem of the
extraction of multi-word terms having various complex structures. Moreover,
the frequency decreases the number of invalid terms to evaluate (noise). The
measures mentioned above are e↵ective on large amounts of data [36,35,54],
which overcomes the problem of large-scale corpora. Hereafter we describe all
measures.
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3.2.1 C-value

The C-value method combines linguistic and statistical information [18]. Lin-
guistic information is the use of a general regular expression as linguistic pat-
terns, and the statistical information is the value assigned with the C-value
measure based on the frequency of terms to compute the termhood (i.e. the as-
sociation strength of a term to domain concepts). The C-value method aims to
improve the extraction of long terms, and it was specially built for extracting
multi-word terms.

C-value(A) =

8
>>>>><

>>>>>:

w(A)⇥ f(A) if A /2 nested

w(A)⇥
 
f(A)� 1

|S
A

| ⇥
X

b2S
A

f(b)

!

otherwise

(1)

Where A is the candidate term, w(A) = log2(|A|), |A| the number of words
in A, f(A) the frequency of A in the unique document, SA the set of terms
that contain A and |SA| the number of terms in SA. In a nutshell, C-value uses
either the frequency of the term if the term is not included in other terms (first
line), or decreases this frequency if the term appears in other terms, based on
the frequency of those other terms (second line).

We modified the measure in order to extract all terms (single-word + multi-
words terms), as also suggested in [4], but in a di↵erent manner.

The original C-value defines w(A) = log2(|A|), and we modified w(A) =
log2(|A|+ 1) in order to avoid null values for single-word terms, as illustrated
in Table 2. Note that we do not use a stop word list or a frequency threshold
as was originally proposed.

Original C-value Modified C-value
w(A) = log2(|A|) w(A) = log2(|A|+ 1)

antiphospholipid
antibodies

log2(2) = 1 log2(2 + 1) = 1, 6

white blood log2(2) = 1 log2(2 + 1) = 1, 6
platelet log2(1) = 0 log2(1 + 1) = 1

Table 2 Calculation of w(A)

3.2.2 TF-IDF and Okapi

These measures are used to associate a weight to each term in a document [53].
This weight represents the term relevance for the document. The output is a
ranked list of terms for each document, which is often used in information
retrieval so as to order documents by their importance for a given query [49].
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Okapi can be seen as an improvement of the TF-IDF measure, while taking
the document length into account.

TF -IDF (A, d,D) = tf(A, d)⇥ idf(A, d) (2)

tf(A, d) =
f(A, d)

max{f(A, d) : w 2 d}

idf(A, d) = log
|D|

|{d 2 D : A 2 d}|

Okapi(A, d,D) = tfBM25(A, d)⇥ idfBM25(A, d) (3)

tfBM25(A, d) =
tf(A, d)⇥ (k1 + 1)

tf(A, d) + k1 ⇥ (1� b+ b⇥ dl(d)
dl

avg

))

idfBM25(A, d) = log
|D|� dc(A) + 0.5

dc(A) + 0.5

Where A is a term, considering d a document, D the collection of docu-
ments, f(A, d) the frequency of A in d, tf(A, d) the term frequency of A in
d, idf(A,D) the inverse document frequency of A in D, dc(t) the number of
documents containing term A, this means: |{d 2 D : t 2 d}|, dl(d) the length
of the document d in number of words, dlavg the average document length of
the collection.

As the output is a ranked list of terms per document, we could find the
same term in di↵erent documents, with di↵erent weights in each document.
So we need to merge the term into a single list. For this, we propose to merge
them according to three functions, which respectively calculate the sum(S),
max(M) and average(A) of the weights of a term. At the end of this task, we
have three lists from Okapi and three lists from TF-IDF. The notation for
these lists are OkapiX(A) and TF -IDFX(A), where A is the term, and X the
factor 2 {M,S,A}. For example, OkapiM (A) is the value obtained by taking
the maximum Okapi value for a term A in the whole corpus. Figure 2 shows
the merging process.

With aim of improving the term extraction precision, we designed two new
combined measures, while taking the values obtained in the above steps into
account. Both are based on harmonic means of two values.

3.2.3 Combinations: F-OCapi and F-TFIDF-C

Considered as the harmonic mean of the two used values, this method has the
advantage of using all values of the distribution.

F -OCapiX(A) = 2⇥ OkapiX(A)⇥ C-value(A)

OkapiX(A) + C-value(A)
(4)

F -TFIDF -CX(A) = 2⇥ TFIDFX(A)⇥ C-value(A)

TFIDFX(A) + C-value(A)
(5)
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Fig. 2 Merging lists.

3.2.4 LIDF-value and L-value

In this section we present two new measures. The first one, called LIDF-
value (Linguisitic patterns, IDF, and C-value information). LIDF-value is
partially presented in [34]. This is a new ranking measure based on linguistic
and statistical information.

Our method LIDF-value is aimed at computing the termhood for each
term, using the linguistic information calculated as described below, the idf,
and the C-value of each term. The linguistic information gives greater im-
portance to the term unithood in order to detect low frequency terms. So we
associate the pattern weight (see Table 1) with the candidate term probability.
That means the probability of a candidate term of being a relevant biomedical
term. The probability is associated only if the syntactic structure of the term
appears in the linguistic pattern list.

The inverse document frequency (idf) is a measure indicating the extent to
which a term is common or rare across all documents. It is obtained by dividing
the total number of documents by the number of documents containing the
term, and then by taking the logarithm of that quotient. The probability and idf
improve low frequency term extraction. The objective of these two components
is to tackle the silence problem, allowing extraction of discriminant terms, for
instance, in a biomedical corpus, “virus production” with low frequency being
better ranked than “human monocytic cell”, which has a higher frequency.
This means that for a low frequency candidate term, its score can be favored
if its linguistic pattern is associated with a high probability and/or its idf value
is also high. The C-value measure is based on the term frequency. The C-value
(see formula 1) measure favors a candidate term that does not often appear
in a longer term. For instance, in a specialized corpus (Ophthalmology), the
authors of [18] found the irrelevant term “soft contact” while the frequent and
longer term “soft contact lens” is relevant.

As an example, we implement the Algorithm 2, which describes the ap-
plied process. These di↵erent statistical information items (i.e. probability of
linguisitic patterns, C-value, idf) are combined to define the global ranking
measure LIDF-value (see formula 6); where P(ALP ) is the probability of a
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term A which has the same linguistic structure pattern LP , i.e. the weight of
the linguistic pattern LP computed in Subsection Pattern Construction.

LIDF -value(A) = P(ALP )⇥ idf(A)⇥ C-value(A) (6)

Algorithm 2: ComputeLIDF-value (Corpus, Patterns, minfreq,
numterms)

Data: Corpus = set of documents of a specific-domain;
Patterns = HTpatterns(pattern, probability) //Hashtable of linguistic patterns with
its probability;
minfreq = frequency threshold for candidate terms;
numterms = number of terms to take as output
Result: Lterms = List of ranked terms
begin

Tag the Corpus;
Take the lemma of each tagged word;
Extract candidate terms A by filtering with Patterns;
Remove candidate terms A below minfreq ;
for each candidate term A 2 Corpus do

LIDF -value(A) = P(ALP )⇥ idf(A)⇥ C-value(A);
add A to Lterms;

end
Rank Lterms by the value obtained with LIDF -value;
Select the first numterms terms of Lterms ;

end

Note that LIDF-value works only for a set of documents, mainly because
the idf measure can only be computed on a set of documents (see formula 2).
Therefore, for datasets composed of one document, we propose a new measure,
L-value, as explained in the following paragraphs.

L-value is a variant of LIDF-value, focused on one document with the
goal of benefiting from the probability of linguisitic patterns computed for
LIDF-value. This measure does not contain the idf (see formula 7). L-value is
interesting to highlight the more representative terms of a single corpus with-
out considering the discriminative aspects, e.g. idf. This measure gives another
point of view and is complementary to those based on the idf weighting.

A single document can be considered as a free text without delimita-
tion. For instance, a scientist article, a book, a document created with ti-
tles/abstracts from a library database. L-value becomes interesting when it
does not exist a considerable amount of data for a new subject, i.e. an emer-
gent term in the community. For instance, the “Ataxia Neuropathy Spectrum”
term appears only in 4 titles/abstracts of scientist articles from PubMed12 be-
tween 2009 and 2015. PubMed is a free search engine accessing primarily the
MEDLINE database of references and abstracts on life sciences and biomedical
topics.

12
http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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L-value(A) = P(ALP )⇥ C-value(A) (7)

3.3 Re-ranking (step 3)

After the term extraction, we propose new measures to re-rank the candidate
terms in order to increase the top k term precision. The re-ranking measures
aim to improve the term extraction results of ranking measures. This involves
positioning the most relevant biomedical terms at the top of the list. That
provides more confidence that the terms appearing at the top of this list are
true biomedical terms.

These re-ranking functions represent an extension of the measures pre-
sented in [33]. Therefore, as improvements, we propose to take graph-theoretic
information into account to highlight relevant terms, as well as web informa-
tion, as explained in the following subsections. These measures can be executed
separately, but the graph construction is time consuming, and the number of
search engine queries is limited. Therefore, we just apply these measures for
a group of selected terms given by a ranking measure. Because the ranking
measures have proved to be more e�cient applied before than TeRGraph and
web-based measures.

As these measures are applied to the list of terms obtained with a ranking
measure, which tackles noise, silence and multi-word term extraction problems,
so they also take into account those problems. As mentioned, the objective of
re-raking measures is to re-rank terms, so the manual validation e↵orts of the
candidate terms decrease because the relevant biomedical term is allocated at
the top of the list.

3.3.1 A new graph-based ranking measure: “TeRGraph” (Terminology
Ranking based on Graph information)

This approach aims to improve the ranking (and therefore the precision results)
of extracted terms. As mentioned above, in contrast to the above-cited study,
the graph is built with a list of terms obtained according to a measure described
in Section 3.2, where vertices denote terms linked by their co-occurrence in
sentences in the corpus. Moreover, we make the hypothesis that the term
representativeness in a graph, for a specific-domain, depends on its number of
neighbors, and the number of neighbors of its neighbors. We assume that a
term with more neighbors is less representative of the specific domain. This
means that this term is used in the general domain. Figure 3 illustrates our
hypothesis.

The graph-based approach is divided into two steps:
(i) Graph construction: a graph (see Figure 5) is built where vertices

denote terms, and edges denote co-occurrence relations between terms, co-
occurrences between terms are measured as the weight of the relation in the
initial corpus. This approach is statistical because it links all co-occurring
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Fig. 3 Importance of a term in a domain

terms without considering their meaning or function in the text. This graph
is undirected as the edges imply that terms simply co-occur, without any
further distinction regarding their role. We take the Dice coe�cient, a
basic measure to compute the co-occurrence between two terms x and y,
as defined by the following formula:

D(x, y) =
2⇥ P (x, y)

P (x) + P (y)
(8)

(ii) Representativeness computations on the term graph: a principled
graph-based measure to compute term weights (representativeness) is de-
fined. The aim of this new graph-based ranking measure, TeRGraph, see
Equation 9, is to derive these weights for each vertex, (i.e. multi-word term
weight), in order to re-rank the list of extracted terms.

TeRGraph(A) = log2

0

BBB@
k +

1

1 + |N(A)|+
X

T
i

2N(A)

|N(Ti)|

1

CCCA
(9)

Where A represents a vertex (term), N(A) the neighborhood of A, |N(A)|
the number of neighbors of A, Ti the neighbor i of A, and k a constant. The
intuition for Equation 9 is as follows: the more a term A has neighbors (di-
rectly with N(A) or by transitivity with N(Ti)), the more the weight decreases.
Indeed, a term A having a lot of neighbors is considered too general for the do-
main (i.e. this term is not salient), so it has to be penalized via the associated
score.

The k constant a↵ects the TeRGraph value, i.e. the set of values that
TeRGraph takes when k changes. For instance, when k = 0.5, the set of values
for TeRGraph is between �1 and 0, (i.e., TeRGraph 2 [�1, 0]), and when
k = 1, TeRGraph 2 [0, 0.6]. As the values taken by TeRGraph are di↵erent,
then the slope of the curve is also di↵erent. Figure 4 shows the behavior
of TeRGraph when k changes. According the experiments, we have chosen
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Fig. 4 TeRGrpah’s value for k = {0.5; 1; 1.5; 2}

k = 1.5. The main reason is that the slope of the curve is low, and the set of
values for TeRGraph ranges from 0.6 to 1.

See Algorithm 3 for more details, it describes the entire process: (1) co-
occurrence graph construction, (2) computation of the representativeness of
each vertex.

Figure 5 shows an example to calculate the value of TeRGraph for a term in
di↵erent graphs. These graphs are built with di↵erent co-occurrence thresholds
(i.e. Dice’s value between two terms). In this example, A1 and A2 represent
the term chloramphenicol acetyltransferase reporter in Graphs 1 and 2, respec-
tively.

3.3.2 WebR

The aim of our web-based measure, to predict with a better confidence if a
candidate term is a valid biomedical term or not. It is appropriated for multi-
word terms, as it computes the dependence between the words of a term. In
our case, we compute a “strict” dependence, which means the proximity of
words of terms (i.e. neighboring words) is calculated with a strict restriction.
In comparison to other web-based measures [11], WebR reduces the number of
pages to consider by taking only web pages containing all words of the terms
into account. In addition, our measure can be easily adopted for all types of
multi-word terms.
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Algorithm 3: ComputeTeRGraph (Lterms, numterms, �, k)

Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
� = threshold to create an edge between two terms;
k = constant;
Result: RRLterms = Re-Ranked List of terms
begin

Select all possible pairs of terms of Lterms to compute D(x, y) // in total

C2
num

terms

= num
terms

!
2! (num

terms

�2)! possibilities ;

Select pairs which D(x, y) � � for creating an edge ;
Select all terms of Lterms to compute TeRGraph ;
for each term A 2 Lterms do

N(A) � neighborhood of A;
|N(A)| � number of neighbors of A;

TeRGraph(A) = log2

0

BBB@
k + 1

1+|N(A)|+
X

T
i

2N(A)

|N(Ti)|

1

CCCA
;

add A to RRLterms;
end
Rank RRLterms by the value obtained with TeRGraph;

end

Fig. 5 TeRGraph’s value for chloramphenicol acetyltransferase reporter

WebR(A) =
nb(“A”)

nb(A)
(10)

Where A = multi-word term, ai 2 A and ai = {noun, adjective, foreign
word}.

Where A is the candidate term, nb(“A”) the number of hits returned by a
web search engine with exact match only with multi-word term A (query with
quotation marks “A”), nb(A) the number of documents returned by the search
engine, including not exact matches (query A without quotation marks), i.e.
whole documents containing words of the multi-word term A. For example,
the multi-word term treponema pallidum, will generate two queries, the first
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nb(“treponema pallidum”) which returns with Yahoo 1 100 000 documents,
and the second query nb(treponema pallidum) which returns 1 300 000 docu-
ments, then WebR(treponema pallidum)= 1100000

1300000 = 0.85.
In our workflow, we tested Yahoo and Bing. WebR re-rank the list of

candidate terms returned by the combined measures.

3.3.3 A new web ranking measure: WAHI (Web Association based on Hits
Information)

Previous studies of web mining approaches query the web via search engines
to measure word associations. This enables measurement of the association of
words composing a term (e.g. soft, contact, and lens that compose the relevant
term soft contact lens). To measure this association, our web-mining approach
takes the number of pages provided by search engines into account (i.e.number
of hits).

Our web-based measure re-ranks the list obtained previously with TeR-
Graph. We will show that this improves the precision of the k first terms
extracted (see Section 4) and that it is specially appropriate for multi-word
term extraction.

Formula 8 leads directly to formula 1113. The nb function used in formula
11 represents the number of pages returned by search engines (i.e. Yahoo and
Bing). With this measure, we compute a strict dependence (i.e. neighboring
words by using the operator ’ ” ’ of search engines). For instance, x might
represent the word soft and y the word contact in order to calculate the asso-
ciation measure of the soft contact term.

Dice(x, y) =
2⇥ nb(“x y”)

nb(x) + nb(y)
(11)

Then we extend this formula to n elements as follows:

Dice(a1, ..., an) =
n⇥ nb(“a1 ... an”)

nb(a1) + ...+ nb(an)
=

n⇥ nb(“A”)
nX

i=1

nb(ai)

(12)

This measure enables us to calculate a score for all multi-word terms, such
as soft contact lens.

To obtain WAHI, we propose to associate Dice criteria with WebR (see
formula 10). This only takes the number of web pages containing all the words
of the terms into account by using operators “ ” and AND.

For example, soft contact lens, the numerator corresponds to the number
of web pages with the query “soft contact lens”, and for the denominator, we
consider the query soft AND contact AND lens.

13 by writing P (x) = nb(x)
nb total

, P (y) = nb(y)
nb total

, P (x, y) = nb(x,y)
nb total
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Finally, the global ranking approach combining Dice and WebR is given
by WAHI measure (Web Association based on Hits Information):

WAHI(A) =
n⇥ nb(“A”)

nX

i=1

nb(ai)

⇥ nb(“A”)

nb(A)
(13)

Algorithm 4 details the global web mining process to rank terms. We show
in the next section that open-domain (general) resources, such as the web, can
be tapped to support domain-specific term extraction. They can thus be used
to compensate for the unavailability of domain-specific resources.

Algorithm 4: ComputeWAHI (Lterms, numterms, LC)

Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
LC = {noun, adjective, foreign word} // linguistic categories
Result: RRLterms = Re-Ranked List of terms
begin

Select the first numterms terms of Lterms to compute WAHI;
for each term A 2 Lterms do

for all words ai of A 2 LC do
n � number of words in A;

WAHI(A) � n⇥ num-hits(“A”)
nX

i=1

num-hits(ai)

⇥ num-hits(“A”)
num-hits(A) ;

end
add A to RRLterms;

end
Rank RRLterms by the value obtained with WAHI;

end

4 Experiments and results

4.1 Data, Protocol, and Validation

4.1.1 Data

We used two corpora for our experiments. The first one is a set of biological
laboratory tests, extracted from LabTestsOnline14. This website provides in-
formation in several languages to patients or family caregivers about clinical
lab tests. Each test that forms a document in our corpus includes the for-
mal lab test name, some synonyms and possible alternate names as well as
a description of the test. The LabTestsOnline website was extracted totally

14
http://labtestsonline.org/

http://labtestsonline.org/
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for English, French, and Spanish with a crawler created specifically for this
purpose. These documents are available online15. Table 3 shows the details of
LabTestsOnline corpus for di↵erent languages.

Number of Clinical Tests Number of Words
English 235 377 000 words
French 137 174 000 words
Spanish 238 396 000 words

Table 3 Details of LabTestsOnline corpus.

The second corpus is GENIA16, which is made up of 2 000 titles and ab-
stracts of journal articles that were culled from the Medline database, with
more than 400 000 words in English. The GENIA corpus contains linguis-
tic expressions referring to entities of interest in molecular biology, such as
proteins, genes and cells. GENIA is an annotated dataset, in which technical
term annotation covers the identification of physical biological entities as well
as other important terms. This is our gold standard corpus. Whereas the Med-
line indexes a broad range of academic articles covering the general or specific
domains of life sciences, GENIA is intended to cover a smaller subject domain:
biological reactions concerning transcription factors in human blood cells.

4.1.2 Protocol

As the measures described in step 2 of our workflow (i.e. Ranking the Candi-
date Terms) are not very time-consuming, and as they are easily applicable
for large corpora, they were evaluated over the LabTestsOnline corpus for
English, French, and Spanish, and over the gold standard corpus, GENIA.
In contrast, as the measures described in step 3 (i.e. Re-ranking) are highly
time-consuming, and they are used at the end of the process, to enhance the
performance of the results, we evaluate them only over the GENIA corpus.

4.1.3 Validation

In order to automatically validate and cover medical terms, we use UMLS for
English and Spanish, and the French version of MeSH, SNOMED International
and the rest of the French content in the UMLS. For instance, if an extracted
candidate term is found in the UMLS dictionary, this term will be automati-
cally validated. The results are evaluated in terms of precision obtained over
the top k extracted terms (P@k).

Biomedical terminologies or ontologies (e.g. UMLS, SNOMED, MeSH),
contain terms composed of signs. Therefore, we cleaned these terminologies
by eliminating all terms containing (; , ? ! : { } [ ]), and we only took terms

15
www.lirmm.fr/

~

lossio/labtestsonline.zip

16
http://www.nactem.ac.uk/genia/genia-corpus/term-corpus

www.lirmm.fr/~lossio/labtestsonline.zip
http://www.nactem.ac.uk/genia/genia-corpus/term-corpus
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without signs. Table 4 shows the distribution in n-gram (i.e. n-gram is a term
of n words, with n � 1) of biomedical resources for three languages, as well
as the number of terms that we took after the cleaning task. For instance, the
first cell means that 13.73% of terms are composed of one word (1-gram) in
UMLS for English.

1-gram 2-gram 3-gram 4+ gram Number of Terms
English 13.73 % 27.65 % 14.44 % 44.18 % 3 006 946
French 13.17 % 25.82 % 17.08 % 43.93 % 304 644
Spanish 8.39 % 19.31 % 16.33 % 55.97 % 534 110

Table 4 Details of Available Resources for Validation.

4.2 Multilingual Comparison (LabTestsOnline)

In this section, we show results obtained only with all the ranking measures, i.e.
step 2 (ranking) in Figure 1. In addition, we tested the measures for single- plus
multi-word terms, or just for multi-word terms in English, French and Spanish.
Table 5, 6, 7 show the results in English, French and Spanish, respectively.
At the top of each table, the single-word + multi-word term extraction results
are presented, while the multi-word term extraction results are presented at
the bottom of the table.

These tables show that LIDF-value and L-value obtain the best results
for both extraction cases and for the three languages. The combined measures
based on the harmonic mean, and on the SUM and MAX (i.e. F-TFIDF-CM ,
F-TFIDF-CS), also give interesting results.

The single-word + multi-word term extraction results are better than just
the multi-word term extraction results. The main reason for this is that the
extraction of single-word terms is more e�cient due to their syntactic structure
(linguistic structure), i.e. usually a noun. In addition, this syntactic structure
has fewer variations. The results are lower as compared to multi-word term
extraction, which is more complicated and involves more variations.

We observe that LIDF-value and L-value obtain very close results. In most
cases LIDF-value performs better than L-value. These two measures show
that the probability associated with the linguistic patterns helps to improve
the term extraction results. Note that the idf influences LIDF-value, for this
reason LIDF-value has better results than L-value.
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4.3 Evaluation of the global process (GENIA)

Since GENIA is the gold standard corpus, we conduct a detailed assessment
of the experiments in this subsection. We evaluated the entire workflow of our
methodology, i.e. steps 2 (ranking) and 3 (re-ranking) in Figure 1. As noted
earlier, the multi-word term extraction results are influenced by the syntactic
structure and their variations. So our experimentation in this subsection is
focused only on multi-word term extraction.

In the following paragraphs, we also narrow down the presented results by
keeping only the first 8 000 extracted terms for the graph-based measure and
the first 1000 extracted terms for the web-based measure.

4.3.1 Ranking Results (step 2 in Figure 1)

Table 8 presents and compares the multi-word term extraction results with
the best ranking measures, as shown earlier, i.e. C-value, F-TFIDF-CM , and
LIDF-value. The best results were obtained with LIDF-value with an11% im-
provement in precision for the first hundred extracted multi-word terms. These
precision results are also shown in Figure 6. The precision of LIDF-value will
be further improved with TeRGraph.

C-value F -TFIDF -CM LIDF-value
P@100 0.690 0.715 0.820
P@200 0.690 0.715 0.770
P@300 0.697 0.710 0.750
P@400 0.665 0.690 0.738
P@500 0.642 0.678 0.718
P@600 0.638 0.668 0.723
P@700 0.627 0.669 0.717
P@800 0.611 0.650 0.710
P@900 0.612 0.629 0.714
P@1000 0.605 0.618 0.697
P@2000 0.570 0.557 0.662
P@5000 0.498 0.482 0.575
P@10000 0.428 0.412 0.526
P@20000 0.353 0.314 0.377

Table 8 Precision comparison of LIDF-value with baseline measures

Results of n-gram Terms

We also evaluated C-value, F-TFIDF-CM , and LIDF-value in a sequence of
n-gram terms (i.e. n-gram term is a multi-word term of n words), for this we
require an index term to be a n-gram terms of length n � 2. We tested the
performance of LIDF-value on the n-gram term extraction taking the first 1
000 n-gram terms (n � 2).
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Fig. 6 Precision comparison with LIDF-value and baseline measures

Table 9 shows the precision comparison for the 2-gram, 3-gram and 4+
gram term extracted with C-value, F-TFIDF-CM , and LIDF-value. We can see
that LIDF-value obtains the best results for all intervals for any n � 2. These
precision results are also shown in Figure 7 for the 2-gram terms, Figure 8 for
the 3-gram terms, and finally Figure 9 for the 4+ gram terms.

Table 10 shows the top-20 ranked 2-gram terms extracted with the baseline
measures and LIDF-value. C-value obtained 3 irrelevant terms, F-TFIDF-C
obtained 5 irrelevant terms while LIDF-value obtained only 2 irrelevant terms
for the top-20 ranked 2-gram terms.

Similarly, Table 11 shows top-10 ranked 3-gram terms extracted with the
baseline measures and LIDF-value. Finally, Table 12 shows the top-10 ranked
4+ gram terms extracted with the baseline measures and LIDF-value.

Note that in this context, “irrelevant” means that the terms are not in the
above mentioned resources. These candidate terms might be interesting for
ontology extension or population, however they must pass through polysemy
detection in order to identify the possible meanings.

4.3.2 Re-ranking Results (step 3 in Figure 1)

Graph-based Results: our graph-based approach is applied to the first 8 000
terms extracted by the best ranking measure. The objective is to re-rank the
8 000 terms while trying to improve the precision by intervals. One parameter
is involved in the computation of graph-based term weights, i.e. the threshold
of Dice value which represents the relation when building the term graph.
This involves linking terms whose Dice value of the relation is higher than
threshold. We vary threshold (�) within � = [0.25, 0.35, 0.50, 0.60, 0.70] and
report the precision performance for each of these values. Table 13 gives the
precision performance obtained by TeRGraph and shows that it is well adapted
for ATE.
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2-gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.770 0.760 0.830
P@200 0.755 0.755 0.805
P@300 0.710 0.743 0.790
P@400 0.695 0.725 0.768
P@500 0.692 0.736 0.752
P@600 0.683 0.733 0.763
P@700 0.670 0.714 0.757
P@800 0.669 0.703 0.749
P@900 0.654 0.692 0.749
P@1000 0.648 0.684 0.743

3-gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.670 0.530 0.820
P@200 0.590 0.450 0.795
P@300 0.577 0.430 0.777
P@400 0.560 0.425 0.755
P@500 0.548 0.398 0.744
P@600 0.520 0.378 0.720
P@700 0.499 0.370 0.706
P@800 0.488 0.379 0.691
P@900 0.482 0.399 0.667
P@1000 0.475 0.401 0.660

4+ gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.510 0.370 0.640
P@200 0.455 0.330 0.520
P@300 0.387 0.273 0.477
P@400 0.393 0.270 0.463
P@500 0.378 0.266 0.418
P@600 0.348 0.253 0.419
P@700 0.346 0.249 0.390
P@800 0.323 0.248 0.395
P@900 0.323 0.240 0.364
P@1000 0.312 0.232 0.354

Table 9 Precision comparison of 2-gram terms, 3-gram terms, and 4+ gram terms

Fig. 7 Precision comparison of 2-gram terms
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Fig. 8 Precision comparison of 3-gram terms

Fig. 9 Precision comparison of 4+ gram terms

C-value F -TFIDF -C LIDF-value
1 t cell t cell t cell
2 nf-kappa b nf-kappa b transcription factor
3 transcription factor kappa b nf-kappa b
4 gene expression b cell cell line
5 kappa b class ii b cell
6 cell line glucocorticoid receptor gene expression
7 b cell b activation * kappa b
8 peripheral blood b alpha * t lymphocyte
9 t lymphocyte reporter gene dna binding
10 nuclear factor endothelial cell i kappa *
11 protein kinase cell cycle binding site
12 class ii b lymphocyte protein kinase
13 b activation * nf kappa * glucocorticoid receptor
14 human t nf-kappab activation tumor necrosis
15 tyrosine phosphorylation u937 cell binding activity
16 dna binding mhc class * tyrosine phosphorylation
17 human immunodeficiency * c ebp* shift assay *
18 binding site il-2 promoter immunodeficiency virus
19 necrosis factor * monocytic cell signal transduction
20 mobility shift t-cell leukemia mobility shift

Table 10 Comparison of top-20 ranked 2-gram terms (irrelevant terms are italicized and
marked with *).
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C-value F -TFIDF -C LIDF-value
1 human immunodeficiency virus kappa b alpha * i kappa b
2 kappa b alpha * nf kappa b human immunodeficiency virus
3 tumor necrosis factor jurkat t cell electrophoretic mobility shift
4 electrophoretic mobility shift human t cell human t cell
5 nf-kappa b activation mhc class ii mobility shift assay
6 virus type 1 * cd4+ t cell kappa b alpha *
7 protein kinase c c-fos and c-jun * tumor necrosis factor
8 long terminal repeat peripheral blood monocyte nf-kappa b activation
9 nf kappa b t cell proliferation protein kinase c
10 jurkat t cell transcription factor nf-kappa * jurkat t cell

Table 11 Comparison of the top-10 ranked 3-gram terms (irrelevant terms are italicized
and marked with *).

C-value F -TFIDF -C LIDF-value
1 human immunodeficiency virus type 1 transcription factor nf-kappa b i kappa b alpha
2 human immunodeficiency virus type * expression of nf-kappa b * electrophoretic mobility shift assay
3 immunodeficiency virus type 1 * tumor necrosis factor alpha human immunodeficiency virus type *
4 activation of nf-kappa b normal human t cell human t-cell leukemia virus
5 nuclear factor kappa b primary human t cell nuclear factor kappa b
6 tumor necrosis factor alpha germline c epsilon transcription tumor necrosis factor alpha
7 human t-cell leukemia viru * gm-csf receptor alpha promoter t-cell leukemia virus type *
8 human t-cell leukemia virus type * il-2 receptor alpha chain activation of nf-kappa b
9 t-cell leukemia virus type * transcription from the gm-csf * peripheral blood t cell
10 electrophoretic mobility shift assay translocation of nf-kappa b * major histocompatibility complex class

Table 12 Comparison of the top-10 ranked 4+ gram terms (irrelevant terms are italicized
and marked with *).

TeRGraph
� � 0.25 � � 0.35 � � 0.50 � � 0.60 � � 0.70

P@100 0.840 0.860 0.910 0.930 0.900
P@200 0.800 0.790 0.850 0.855 0.855
P@300 0.803 0.773 0.833 0.830 0.820
P@400 0.780 0.732 0.820 0.820 0.815
P@500 0.774 0.712 0.798 0.810 0.806
P@600 0.773 0.675 0.797 0.807 0.792
P@700 0.760 0.647 0.769 0.796 0.787
P@800 0.756 0.619 0.748 0.784 0.779
P@900 0.748 0.584 0.724 0.773 0.777
P@1000 0.751 0.578 0.720 0.766 0.769
P@2000 0.689 0.476 0.601 0.657 0.694
P@3000 0.642 0.522 0.535 0.605 0.644
P@4000 0.612 0.540 0.543 0.559 0.593
P@5000 0.574 0.546 0.544 0.554 0.562
P@6000 0.558 0.539 0.540 0.549 0.561
P@7000 0.556 0.540 0.540 0.545 0.552
P@8000 0.546 0.546 0.546 0.546 0.546

Table 13 Precision performance of TeRGraph when varying � (threshold parameter for
Dice)

Web-based Results: Our web-based approach is applied at the end of
the process, with only the first 1 000 terms extracted during the previous
linguistic, statistic and graph measures. For space reasons, we show only the
results obtained with WAHI, which are higher than WebR.
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We took the list obtained with TeRGraph and � � 0.60. The main reason
for this limitation is the limited number of automatic queries possible in search
engines. At this step, the aim is to re-rank the 1 000 terms to try to improve
the precision by intervals. Each measure listed in Table 14 and Table 15 shows
the precision obtained after re-ranking. We testedWAHI with Yahoo and Bing
search engines.

Table 14 and Table 15 prove that WAHI (either using Yahoo or Bing) is
well adapted for ATE and this measure obtains better precision results than
the baselines measures for word association. So our measures obtain real terms
of our dictionary with a better ranking.

WAHI Dice Jaccard Cosine Overlap
P@100 0.960 0.720 0.720 0.760 0.730
P@200 0.950 0.785 0.770 0.740 0.765
P@300 0.900 0.783 0.780 0.767 0.753
P@400 0.900 0.770 0.765 0.770 0.740
P@500 0.920 0.764 0.754 0.762 0.738
P@600 0.850 0.748 0.740 0.765 0.748
P@700 0.817 0.747 0.744 0.747 0.757
P@800 0.875 0.752 0.746 0.740 0.760
P@900 0.870 0.749 0.747 0.749 0.747
P@1000 0.766 0.766 0.766 0.766 0.766

Table 14 Precision comparison of WAHI with YAHOO and word association measures

WAHI Dice Jaccard Cosine Overlap
P@100 0.900 0.740 0.730 0.680 0.650
P@200 0.900 0.775 0.775 0.735 0.705
P@300 0.900 0.770 0.763 0.740 0.713
P@400 0.900 0.765 0.765 0.752 0.712
P@500 0.900 0.760 0.762 0.758 0.726
P@600 0.917 0.753 0.752 0.753 0.743
P@700 0.914 0.751 0.751 0.733 0.749
P@800 0.875 0.745 0.747 0.741 0.754
P@900 0.878 0.747 0.748 0.742 0.748
P@1000 0.766 0.766 0.766 0.766 0.766

Table 15 Precision comparison of WAHI with BING and word association measures

4.3.3 Summary

LIDF-value obtains the best precision results for multi-word term extraction,
for each index term extraction (n-gram) and for intervals.

Table 16 presents a precision comparison of LIDF-value and TeRGraph
measures. In terms of overall precision, our experiments produce consistent
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results from the GENIA corpus. In most cases, TeRGraph obtains better pre-
cision with a � of 0.60 and 0.70 (i.e. better precision in most P@k intervals),
which is very good because it helps alleviate the problem of manual validation
of candidate terms. These precisions are also illustrated in Figure 10.

The performance of our graph-based measure somewhat depends on the
value of the co-occurrence relation between terms. Specifically, the value of the
co-occurrence relation a↵ects how the graph is built (whose edges are taken),
and hence it is critical for computation of the graph-based term weight. An-
other performance factor of our graph-based measure is the quality of the re-
sults obtained with LIDF-value due to the fact that the list of terms extracted
with LIDF-value is required as input to re-rank TeRGraph in order to con-
struct the graph, where nodes denote terms, and edges denote co-occurrence
relations.

LIDF-value TeRGraph TeRGraph
(� � 0.60) (� � 0.70)

P@100 0.820 0.930 0.900
P@200 0.770 0.855 0.855
P@300 0.750 0.830 0.820
P@400 0.738 0.820 0.815
P@500 0.718 0.810 0.806
P@600 0.723 0.807 0.792
P@700 0.717 0.796 0.787
P@800 0.710 0.784 0.779
P@900 0.714 0.773 0.777
P@1000 0.697 0.766 0.769
P@2000 0.662 0.657 0.694
P@3000 0.627 0.605 0.644
P@4000 0.608 0.5585 0.593
P@5000 0.575 0.5538 0.562
P@6000 0.550 0.549 0.561
P@7000 0.547 0.545 0.552
P@8000 0.546 0.546 0.546

Table 16 Precision comparison of LIDF-value and TeRGraph

Fig. 10 Precision comparison of LIDF-value and TeRGraph
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Table 17 presents the precision comparison of our three measures.
WAHI based on Yahoo obtains better precision for the first P@100 ex-

tracted terms with 96% precision whereas, in comparison, WAHI based on
Bing obtains 90 precision. For the other interval, Table 17 shows that WAHI
based on Bing generally gives the best results. This is very encouraging be-
cause it also helps alleviate the problem of manual validation of candidate
terms.

The performance of WAHI depends on the search engine because algo-
rithms designed for searching information on the web are di↵erent, so the
number of hits returned will di↵er in all cases. Another performance factor is
the quality of the re-ranked list obtained with TeRGraph, because this list is
required as input.

Moreover, Table 17 highlights that re-ranking with WAHI enables us to
increase the precision of TeRGraph. For all cases, our re-ranking methods
improve the precision obtained with LIDF-value. The purpose for which this
web-mining measure was designed has thus been fulfilled.

Note that these measures do not normalize the possible variants. This
could be a limitation for researchers looking for a preferred term for a group
of variants.

LIDF-value TeRGraph WAHI WAHI
(� � 0.60) (Bing) (Yahoo)

P@100 0.820 0.930 0.900 0.960
P@200 0.770 0.855 0.900 0.950
P@300 0.750 0.830 0.900 0.900
P@400 0.738 0.820 0.900 0.900
P@500 0.718 0.810 0.900 0.920
P@600 0.723 0.807 0.917 0.850
P@700 0.717 0.796 0.914 0.817
P@800 0.710 0.784 0.875 0.875
P@900 0.714 0.773 0.878 0.870
P@1000 0.697 0.766 0.766 0.766

Table 17 Precision comparison LIDF-value, TeRGraph, and WAHI

5 Discussion

We discuss the e↵ects of some parameters of our workflow. In the next sections,
we explain the impacts of biomedical pattern lists, size of dictionaries, and the
extraction errors.

5.1 Impact of Pattern List

In our methodology, we have shown that biomedical patterns directly a↵ect
the term extraction results. For instance, we can see that L-value, which is
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a combination of C-value and the probability of pattern lists, gives better
results than C-value for the three languages, and LIDF-value outperforms L-
value in major cases. These pattern lists work specifically for the biomedical
domain. If we use these biomedical patterns in another domain instead of
using specific patterns of that domain, they will impact the term extraction
results. To prove this, we have extracted terms from an agronomic corpus for
English and French while taking biomedical patterns and agronomic patterns
into account. We built the agronomic patterns using AGROVOC17, which
is an agronomic dictionary. AGROVOC contains 39 542 and 37 382 English
and French terms, respectively. Our corpus consists of titles plus abstracts
extracted from the list of Cirad publications (French Agricultural Research
Centre for International Development). Table 18 shows the details of the corpus
formed for this comparison.

Table 19 presents a term extraction comparison while taking patterns built
from two di↵erent domains into account. Again we note that LIDF-value ob-
tains the best results. We also see that the results of terms extracted with
agronomic patterns gives better results than when using biomedical patterns
for English and French.

Note that even if the term extraction results obtained using agronomic
patterns are higher than using biomedical patterns, these results are a bit
close. The main reason is that the biomedical and agronomic terms overlap.
It means that identical patterns exist in both domains. The results could be
improved by using patterns of two completely di↵erent domains.

Number of Titles/Abstracts Number of Words
English 156 29 740 words
French 84 14 850 words

Table 18 Details of Cirad corpus.

5.2 E↵ect of Dictionary Size

Dictionaries play an important role in term extraction, specifically during the
construction of pattern lists. Table 19 shows that a reduction in dictionary
size degrades the performance of the precision results in comparison to Ta-
bles 5, 6, 8. For instance, for the agronomic and biomedical domain, Table 19
and Table 5 show the P@100 of 0.92 and 1.00 respectively, and this di↵erence
increases as the number of extracted terms increases (i.e. P@k).

17
http://aims.fao.org/agrovoc

http://aims.fao.org/agrovoc
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English (Single- and Multi- Word Terms)
With Agronomic Patterns With Biomedical Patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000
C-value 0.910 0.825 0.631 0.255 0.870 0.790 0.527 0.223
TF-IDFS 0.900 0.830 0.667 0.335 0.810 0.845 0.587 0.284
OkapiS 0.910 0.865 0.680 0.331 0.870 0.845 0.625 0.281

F-OCapiM 0.640 0.600 0.419 0.273 0.660 0.605 0.403 0.252
F-OCapiS 0.900 0.845 0.672 0.304 0.870 0.840 0.612 0.260

F-TFIDF-CM 0.740 0.610 0.412 0.261 0.760 0.610 0.402 0.270
F-TFIDF-CS 0.900 0.835 0.664 0.323 0.810 0.845 0.600 0.272

L-value 0.700 0.660 0.542 0.338 0.840 0.795 0.688 0.320
LIDF-value 0.920 0.875 0.766 0.340 0.880 0.855 0.682 0.320

French (Single- and Multi- Word Terms)
With Agronomic Patterns With Biomedical Patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000
C-value 0.400 0.360 0.210 0.086 0.450 0.455 0.223 0.084
TF-IDFS 0.430 0.380 0.248 0.114 0.500 0.450 0.293 0.119
OkapiS 0.390 0.360 0.256 0.115 0.490 0.450 0.300 0.120

F-OCapiM 0.310 0.225 0.154 0.100 0.340 0.245 0.167 0.115
F-OCapiS 0.400 0.355 0.248 0.106 0.480 0.465 0.269 0.115

F-TFIDF-CM 0.350 0.240 0.163 0.099 0.380 0.295 0.170 0.118
F-TFIDF-CS 0.350 0.240 0.163 0.099 0.500 0.475 0.268 0.119

L-value 0.550 0.510 0.367 0.135 0.520 0.480 0.333 0.130
LIDF-value 0.560 0.535 0.367 0.135 0.510 0.510 0.336 0.130

Table 19 Precision comparison of Term Extraction with Agronomic and Biomedical Pat-
terns

5.3 Term Extraction Errors

As explained in Section 3 (step a), the term extraction results are influenced
by the Part-of-Speech (PoS) tagging tools, which have di↵erent results for
di↵erent languages. Briefly, the tool “A” can perform very well for English,
while for French the tool “B” gives the best results. For instance, the sentence
“Red blood cells increase with ...” was tagged with the Stanford tool as “ad-
jective noun noun verb preposition ...”, whereas the TreeTagger tool tagged
it as “adjective noun noun noun preposition ...”. Therefore, in order to show
the generality of our approach, we choose a uniform PoS tool, i.e. TreeTag-
ger, as a trade-o↵ for three languages (English, French, and Spanish), while
understanding that it will penalize the results for the three languages.

6 Conclusions and Future Work

This paper defines and evaluates several measures for automatic multi-word
term extraction. These measures are classified as ranking measures, and re-
ranking measures. The measures are based on the linguistic, statistical, graphic
and web information. We modified some baseline measures (i.e. C-value, TF-
IDF, Okapi) and we proposed new measures.

All the ranking measures are linguistic- and statistic-based. The best rank-
ing measure is LIDF-value, which overcomes the lack of frequency information
with the linguistic pattern probability and idf values.
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We experimentally showed that LIDF-value applied in the biomedical do-
main, over two corpora (i.e. LabTestsOnline, GENIA), outperformed a state-
of-the-art baseline for extracting terms (i.e. C-value), while obtaining the best
precision results in all intervals (i.e. P@k). And with three languages the
LIDF-value trends were similar.

We have shown that multi-word term extraction is more complex than
single-word term extraction. We detailed an evaluation over the GENIA corpus
for multi-word term extraction. Moreover, in that case, LIDF-value improved
the automatic term extraction precision in comparison to the most popular
term extraction measure.

We also evaluated the re-ranking measures. The first re-ranking measure,
TeRGraph, is a graph-based measure. It decreases the human e↵ort required
to validate candidate terms. The graph-based measure has never been applied
for automatic term extraction. TeRGraph takes the neighborhood to compute
the term representativeness in a specific domain into account.

The other re-ranking measures are web-based. The best one, called WAHI,
takes the list of terms obtained with TeRGraph as input. WAHI enables us to
further reduce the huge human e↵ort required for validating candidate terms.

Our experimental evaluations revealed that TeRGraph had better precision
than LIDF-value for all intervals. Moreover, our experimental assessments re-
vealed that WAHI improved the results given with TeRGraph for all intervals.

As a future extension of this work, we intend to use the relation value within
TeRGraph. We plan to include the use of other graph ranking computations,
e.g. PageRank, adapted for automatic term extraction. Moreover, a future
work consists of using the web to extract more terms than those extracted.

One prospect could be the creation of a regular expression for the biomedi-
cal domain from the linguistic pattern list. We plan to modify our measures in
order to normalize the possible variants, looking towards for a preferred term
for those variants.
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41. A. Névéol, J. Grosjean, S. J. Darmoni, and P. Zweigenbaum. Language resources for
french in the biomedical domain. In Proceedings of the 9th International Conference
on Language Resources and Evaluation, LREC’14. Association for Computational Lin-
guistics, 2014.

42. D. Newman, N. Koilada, J. H. Lau, and T. Baldwin. Bayesian text segmentation for
index term identification and keyphrase extraction. In Proceedings of 24th International
Conference on Computational Linguistics, COLING’12, pages 2077–2092, Mumbai, In-
dia, December 2012.

43. T.-G. Noh, S.-B. Park, H.-G. Yoon, S.-J. Lee, and S.-Y. Park. An automatic translation
of tags for multimedia contents using folksonomy networks. In Proceedings of the 32Nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’09, pages 492–499, New York, NY, USA, 2009. ACM.

44. N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. B. Gri�th, C. Jonquet,
D. L. Rubin, M.-A. Storey, C. G. Chute, and M. A. Musen. Bioportal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research, 37:170–173,
2009.

45. T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks, 32(3):245–251, 2010.

46. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bring-
ing order to the web. 1999.

47. P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas. Web-scale distribu-
tional similarity and entity set expansion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP’09, pages 938–947, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

48. M. A. Qureshi, C. O’Riordan, and G. Pasi. Short-text domain specific key terms/phrases
extraction using an n-gram model with wikipedia. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge Management, CIKM’12, pages
2515–2518, New York, NY, USA, 2012. ACM.

49. S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7: automatic ad hoc,
filtering, vlc and interactive track. IN, 21:253–264, 1999.

50. S. Rose, D. Engel, N. Cramer, and W. Cowley. Automatic keyword extraction from
individual documents. Text Mining: Theory and Applications, pages 1–20, 2010.

51. F. Rousseau and M. Vazirgiannis. Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22Nd ACM International Conference on Information and
Knowledge Management, CIKM’13, pages 59–68, New York, NY, USA, 2013. ACM.

52. D. L. Rubin, N. H. Shah, and N. F. Noy. Biomedical ontologies: a functional perspective.
Briefings in bioinformatics, 9(1):75–90, 2008.

53. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

54. A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In
Proceedings of the 19th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR’96, pages 21–29, New York, NY, USA, 1996.
ACM.

55. I. Spasic, M. Greenwood, A. Preece, N. Francis, and G. Elwyn. FlexiTerm: a flexible
term recognition method. Biomedical Semantics, 4(27), October 2013.

56. V. Stoykova and E. Petkova. Automatic extraction of mathematical terms for precal-
culus. Procedia Technology Journal, 1:464–468, 2012.

57. A. Tamura, T. Watanabe, and E. Sumita. Bilingual lexicon extraction from comparable
corpora using label propagation. In Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL’12, pages 24–36, Stroudsburg, PA, USA, 2012. Association
for Computational Linguistics.

58. Y. Tian and D. Lo. A comparative study on the e↵ectiveness of part-of-speech tagging
techniques on bug reports. In Proceedings of the 22nd International IEEE Confer-
ence on Software Analysis, Evolution, and Reengineering, SANER’15, pages 570–574,
Montreal, Canada, March 2015. IEEE.

59. N. J. Van Eck, L. Waltman, E. C. Noyons, and R. K. Buter. Automatic term identifi-
cation for bibliometric mapping. Scientometrics, 82(3):581–596, 2010.



Biomedical Term Extraction: Overview and a New Methodology 41

60. Y. Yang, T. Zhao, Q. Lu, D. Zheng, and H. Yu. Chinese term extraction using di↵erent
types of relevance. In Proceedings of the International Joint Conference on Natural
Language Processing, ACL-IJCNLP’09, pages 213–216, Suntec, Singapore, 2009. Asso-
ciation for Computational Linguistics.

61. R. B. Zadeh and A. Goel. Dimension independent similarity computation. Journal of
Machine Learning Research, 14(1):1605–1626, January 2013.

62. X. Zhang, Y. Song, and A. Fang. Term recognition using conditional random fields. In
International Conference on Natural Language Processing and Knowledge Engineering,
NLP-KE’10, pages 1–6. IEEE, 2010.

63. Z. Zhang, J. Iria, C. Brewster, and F. Ciravegna. A comparative evaluation of term
recognition algorithms. In Proceedings of the Sixth International Conference on Lan-
guage Resources and Evaluation, LREC’08, Marrakech, Morocco, May 2008.


	Introduction
	Related Work
	Methodology
	Experiments and results
	Discussion
	Conclusions and Future Work

