
HAL Id: lirmm-01274671
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01274671

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering numerical reproducibility in hydrodynamic
simulations

Philippe Langlois, Rafife Nheili, Christophe Denis

To cite this version:
Philippe Langlois, Rafife Nheili, Christophe Denis. Recovering numerical reproducibility in hydrody-
namic simulations. ARITH: Computer Arithmetic, Jul 2016, Silicon Valley, Santa Clara, CA, United
States. pp.63-70, �10.1109/ARITH.2016.27�. �lirmm-01274671�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01274671
https://hal.archives-ouvertes.fr

Recovering numerical reproducibility
in hydrodynamic simulations

Langlois Philippe,Nheili Rafife
Univ Perpignan Via Domitia

Digits, Architectures et Logiciels Informatiques, F-66860,Perpignan
Univ. Montpellier 2, Laboratoire d’informatique,

Robotique et de Microélectronique de Montpellier,
UMR 5506, F-34095, Montpellier. CNRS. France.

Email: first_name.last_name@univ-perp.fr

Christophe Denis
ENS Cachan,

CMLA Research Center for Applied Maths,
F-94235 Cachan. France.

Email: Christophe.Denis@cmla.ens-cachan.fr

Abstract—HPC simulations suffer from failures of numerical
reproducibility because of floating-point arithmetic peculiari-
ties. Different computing distributions of a parallel computa-
tion may yield different numerical results. We are interested
in a finite element computation of hydrodynamic simulations
within the openTelemac software where parallelism is provided
by domain decomposition. One main task in a finite element
simulation consists in building one large linear system and to
solve it. Here the building step relies on element-by-element
storage mode and the solving step applies the conjugated
gradient algorithm. The subdomain parallelism is merged
within these steps. We study why reproducibility fails in this
process and which operations have to be corrected. We detail
how to use compensation techniques to compute a numerically
reproducible resolution. We illustrate this approach presenting
the reproducible version of hydrodynamic simulations for one
test cases provided with the openTelemac software suite.

Keywords— Numerical reproducibility, finite element,
domain decomposition, hydrodynamics simulation, HPC,
compensated algorithms, openTelemac.

1. Introduction

High performance computing leads to new scientific
discoveries through complex and sensitive numerical sim-
ulations. The ability to reproduce these simulation results
becomes a crucial property to improve the confidence in
large scale numerical experiments. Reproducibility is also
required to facilitate the debug, the validation and the test of
these huge codes. The changes in a simulation outputs must
be directly linked to the changes in some of the simulation
parameters, and not accidentally affected by uncontrolled
floating-point calculations. Indeed the rounding errors inher-
ent to the floating-point arithmetic and the dynamic reduc-
tions of parallel executions modifies the numerical outputs.

Numerical reproducibility is getting bitwise identical for
every p-parallel run where p > 1 counts the number of

computing units. This requirement is not a claim for accu-
racy. Results could be reproducible but not accurate. Full
accuracy is getting bitwise exact result, which corresponds
to the correctly rounded one in the IEEE-754 scope. Of
course, correct rounding ensures numerical reproducibility.

A sequential run of a large scale simulation code
introduces many rounding errors and suffer from other
approximations. Nevertheless this approximate sequential
result is prevailing in practice: when the sequential and
the parallel simulations disagree, the latter is considered to
be the culprit and the former as the reference result. So a
convincing modified reproducible code should satisfied two
criteria: i) bitwise identical result for every p-parallel run
where p ≥ 1; ii) reproducible result within a reasonable
range of differences compared to the original sequential
simulation ones. Hence the original sequential simulation
and the sequential run of the reproducible one (p = 1)
could exhibit a reasonable relative difference.

We start exhibiting one typical reproducibility failure
case. It concerns the simulation at the industrial scale of free
surface flows in 1D-2D-3D hydrodynamic. This simulation
is processed with the open Telemac-Mascaret suite which
is an integrated set of open source Fortran 90 modules. It
consists in more than 300,000 lines of code issue from a
20 years of international collaboration and it declares 4000
registered users [10]. The gouttedo test case, available in
the distribution, is the 2D-simulation of a water drop fall
in a square basin. This resolution uses a triangular element
mesh (8978 elements, 4624 nodes) and simulates several
time steps of 0.2 sec.

Figure 1 exhibits the non reproducible behavior of
the water depth simulation between the sequential and 2
processor runs. The left plot shows the water depth values
returned by the sequential simulation. The right plot is
related to the parallel run (p = 2). White plots exhibit the
mesh elements that differ from the sequential ones. The
loss of reproducible values increases as the simulation runs
in the time scale since time step t values depends on the
previous one.

Figure 1: gouttedo: white plots are non reproducible water
depth values between the sequential (left) and a 2 processors
run (right). Time steps: 1, 2, . . . , 7, 8.

...
...

Failures of numerical reproducibility have been reported
in various application domains of HPC simulation like in
energy [13], dynamical weather science [4], dynamical
molecular [12] or dynamical fluid [11] for instance. The
first task towards reproducibility is to carefully identify its
failure sources and to apply as few as possible corrections
to manage the inherent over cost. Two types of solutions
exist in the literature. Some recover reproducibility
without improving the accuracy. For example, the effects
of non-associative floating-point arithmetic is avoided
implementing deterministic parallel reduction trees or
conversions to fixed-point numbers or integers. Some
others rely on accuracy improvement as for example, using
compensation algorithms that accumulate and correct all the
relevant rounding errors. The results we present hereafter

belong to this scheme. Solutions with double-double or
quad-double libraries have also been successfully applied.
A last and original way to reproducibility merges the
two previous ones. In [3], Demmel and Nguyen propose
algorithms that provide reproducible sums and allow the
user to increase the accuracy depending on the application
requirements (by reducing the efficiency and vice versa).

In this paper, we present how to benefit from compensa-
tion techniques to recover the numerical reproducibility in
the open Telemac-Mascaret suite. The difficulty is not the
compensation by itself since this technique is well known by
the computer arithmetic community, nor how to introduce it,
but where to introduce it. Indeed this question becomes an
actual challenge since the finite element simulation and its
implementation in a software that targets real life or large
scale applications is a complex case study.

The sequel is organized as follows. Section 2 presents
a brief overview of the main computation steps in this
kind of simulation: the building and the solving phases of
the finite element linear system. In Section 3, we exhibit
the non reproducible computing sequences and define the
compensated alternatives that will gradually lead to parallel
reproducible simulations. We successively present how to
compensate the interface node assembly introduced by the
parallel domain decomposition, the classical finite element
assembly and some algebraic transformations that simplify
the linear system. The last step is the resolution that mainly
consists here in applying the conjugate gradient algorithm.
We conclude presenting the reproducible simulation of the
gouttedo test case and some first comments.

2. Overview of the finite element computation

In this paper, we consider Telemac2D which is the open
Telemac-Mascaret 2D hydrodynamics module. Its main ap-
plication is in free-surface maritime or river hydraulics [5].
It solves the Saint-Venant equations using the finite element
method and a triangular element mesh. At every mesh
point, the simulation calculates 3 unknowns: the water depth
H and the 2D velocity components U, V . Finite element
method leads to build and solve a general sparse linear
system: Ahh Ahu Ahv

Auh Auu 0
Avh 0 Avv

HU
V

 =

Bh

Bu

Bv

 . (1)

Zero sub-matrices correspond to the coupling absence be-
tween the two velocity components.

In practice, one finite element simulation depends on
many physical and numerical parameters. For instance, [5]
uses the wave equation to decouple water depth and velocity
in (1) and introduces diagonal matrices A2 and A3. The
actual system to solve is simplified as AX = B:A1 0 0

0 A2 0
0 0 A3

HU
V

 =

C1C2
C3

 . (2)

Hence the actual building of System (2) includes the follow-
ing algebraic transformations of the matrix and the second
member:

A1 = Ahh −AhuA2
−1Auh −AhvA3

−1Avh,

C1 = Bh −AhuA2
−1Bu −AhvA3

−1Bv,

C2 = Bu −AuhH,

C3 = Bv −AvhH.

(3)

The parameters of the presented test case (gouttedo) are
the following. The A matrix is stored element-by-element
(see Section 3.2). System (2) is solved in two steps: H is
first computed applying the conjugate gradient method to
A1H = C1; then U, V derive from H thanks to diagonal
A2 and A3.

Parallelism in open Telemac-Mascaret relies on domain
decomposition method that splits the building and the reso-
lution phases to distribute them to the available computing
units. The number of subdomains modifies the computation.
This is a first source of reproducibility failure since the
generated rounding-errors differ as the subdomain number
varies. On another hand, parallel libraries (as MPI here)
also introduce indeterminate order parallel reductions. This
also generates non-reproducible algebraic operations since
floating-point addition is not associative. These two different
sources of non reproducibility affect the parallel implemen-
tation of the building and the solving phases of system (2).
Hence we aim, first to obtain reproducible matrix A and
second member B, then to reproducibly compute its solution
X .

Previous results exhibit that compensated summation
algorithms yield an efficient and numerically reproducible
finite element assembly step applied to one single vector
[8]. These well known algorithms, based on the early works
of Knuth [7], Kahan [6], and Dekker [2], improves the sum
accuracy as if it was computed in twice the working preci-
sion u [9]. So compensated summation returns a correctly
rounded sum for reasonable sum lengths with a condition
number smaller than 1/u. It consists to compute every
rounding error generated by the successive floating-point
additions and to accumulate them in one error term that is
finally added to compensate the sum. In the sequel, we apply
these compensation techniques to recover the reproducible
building and resolution of System (2).

3. Steps towards reproducible finite element
resolution

In this section, we detail the computation steps corrected
to recover a reproducible finite element resolution. The core
of this resolution is the assembly process which strongly
differs between sequential and parallel implementations. The
latter one introduces interface nodes that are assembled dur-
ing the building and the solving phases of system (2). We de-
tail each of these steps to enlighten their non-reproducibility
sources and then we define how to correct it.

Table 1 aims to help the reader to follow the
reproducibility enhancement of system (2) during the

building and the solving phases. Its first column exhibits
that all the components of system (2) suffer from non
reproducibility in the original Telemac2d computation.

original
after the

building phase
after the

H solving
after the

U,V solving

A1 7 7 7 7
A2 7 3 3 3
A3 7 3 3 3
C1 7 3 3 3
C2 7 3 3 3
C3 7 3 3 3
H 7 7 3 3
U 7 7 7 3
V 7 7 7 3

Table 1: Reproducibility enhancement steps of system (2)
components in gouttedo

The parallel resolution divides the mesh into subdomains
that are distributed over the computing units. Domain de-
composition introduces inner and interface nodes, the latter
belonging to a common boundary between several sub-
domains, i.e. shared between several computing units. In
the whole section, V denotes an arbitrary vector extracted
from system (2) and defined for every domain node both
(inner or interface ones).

Our notations means that relations and operations with
V apply to the whole vector V while those with V (i) aim
to identify separate processes with respect to the node type
(inner or interface ones).

3.1. Interface node assembly

The interface node assembly is one the main significant
differences between the sequential and the parallel resolu-
tions. We start to focus on this interface node assembly that
greatly affects the reproducibility.

3.1.1. Original computation. Let V be an arbitrary vector
extracted from system (2) and defined for every domain
node. Let i be one interface node that belongs to several
subdomains dk. Let V dk(i) be the contribution of the dk
subdomain to V at the interface node i (the computation of
V dk only includes quantities related to dk). Communications
between the subdomains dk yield the global contribution
V (i) at the node i as the following reduction:

V (i) =
∑

subdomains dk

V dk(i). (4)

This reduction occurs for every interface node i.
In practice here, every subdomain uses a local table that

defines its communication scheme. For instance subdomain
dk knows how much, which i and to which dk′ , it has
to send V dk(i) and to receive V dk′ (i). For a given i, the
Telemac2D implementation of this communication scheme
introduces different, but statically defined, accumulation or-
der with respect to the subdomains. For instance when p = 3

subdomains, the d0’s computation of V (i) with Relation (4),
denoted as V (i)|d0

, is:

V (i)|d0
= V d0(i) + V d1(i) + V d2(i),

while the d1 and d2 ones are:

V (i)|d1
= V d1(i) + V d0(i) + V d2(i),

and
V (i)|d2

= V d2(i) + V d0(i) + V d1(i).

Each reduction is statically ordered according to the in-
creased numbering of the neighbouring subdomains. Hence
the floating-point computed V (i)|dk

may differ over the
subdomains dk. Nevertheless the static strategy ensures the
reproducibility between repeated simulations for a given
number of computing units p, that is not the case with the
classical dynamic reduction.

To recover the solution continuity between the subdo-
mains, i.e. V (i)|dk

= V (i)|d′
k
, Telemac2D introduces one

more communication step to share the maximum value of
every V dk(i) (this choice is justified by physical reasons).
Nevertheless this is not sufficient to recover reproducibility
for runs with different numbers of computing units: the
exchanged maxdk

V (i)|dk
depends on the number of dk that

splits accumulation (4).

3.1.2. Reproducible computation. These computed V (i)
differ as the subdomain number varies since accumula-
tions (4) generate different rounding errors. We recover
reproducibility using compensated algorithms: these differ-
ent sets of rounding errors are taken into account such
that the remaining rounding error in the compensated V (i)
does not depend anymore of the number of subdomains.
Here compensation consists in accumulating every generated
rounding error until Relation (4) achieves to compute the
interface node assembly. Hence every member V now comes
from and goes with its accumulated rounding error EV until
the last reduction in (4), after which EV compensates V .
Compensating the accumulation (4) of the interface node
assembly now applied to the pairs (V,EV) is easy. For all
subdomains dk ∈ Di that share the interface node i, we
write:

V (i), EV (i) =
⊕

subdomains dk

V dk(i), Edk

V (i). (5)

This compensated sum uses the classical 2Sum error-free
transformation similarly as in Sum2 [9]: for every k ∈ Di,
we compute:

V (i), ek = 2Sumk(V (i), V dk(i)),

EV (i) = EV (i) + Edk

V (i) + ek.

Step (6) accumulates V and computes each corresponding
generated rounding error ek. Step (6) accumulates ek and
the previous errors Edk

V (i) in EV (i).

Finally, the compensated vector is computed after the
last reduction of every interface node i to the whole vector

V as:
V + EV . (6)

We stress that this final compensation applies to the vector
of the inner and interface nodes after the end of the
interface node assembly. We include it in this step and
describe it in this section to simplify the presentation.

Similarity with double-double arithmetic exists here
since entries are also floating-point couples (V,EV) and
computations update the error term EV . Nevertheless
no normalisation (with 2Sum or Fast2Sum) applies
here to maintain the relative accuracy between V and EV .
No partial compensation neither applies before Relation (6).

In the following, V equals the vector components of
System (2): A2, A3, C1, C2, C3. Computations (4) and
(6) appear differently during the simulation: in the building
phase for all except A1 and in the resolution phase for
the matrix-vector products A1d of the conjugate gradient
iterations (see Figure 3). Table 2 exhibits how this interface
node assembly is merged within the solving and building
phases in the resolution workflow. These two phases are
described in the next sections.

Unknowns H U V

System building:

Finite element
assembly (7) &
Algebraic trans-
formations (3)

A2, A3
C1(A2, A3)
A1(A2, A3)

C2(H) C3(H)

Interface node
assembly (4) A2, A3, C1 C2 C3

System solving:

A1, C1→ H
Conjugate
gradient

C2, A2→ U C3, A3→ V

Interface node
assembly (4)

In each iteration
A1d

Table 2: Transformation workflow in System (2) and related
component dependencies in brackets.

3.2. Building the system linear

The building phase of System (2) includes two types
of non reproducible operations: the finite element assem-
bly step (of the inner nodes of every subdomain) and the
algebraic transformations (3).

3.2.1. Original computation. Assembly and algebraic
operations depends on the (finite element) matrix storage
mode. Here applies the element-by-element storage (EBE).
Matrix-vector product of assembled quantities is the main
floating-point process of the building and the solving
phases. EBE leads to very efficient matrix-vector products
in the finite element context: it avoids to assemble the

whole matrix to compute a matrix-vector product and it
also reduces the matrix memory print. Hence EBE storage
introduces a specific processing of matrix-vector product
(merging product and assembly) that will be studied in the
next Section 3.3.

The finite element assembly accumulates the elementary
contributions We for every mesh element e that contains the
i node as:

V (i) =
∑

elements e

We(i). (7)

In the parallel resolution, this accumulation is distributed
over the subdomains dk and its computation differs between
inner nodes and interface nodes. Relation (7) returns V (i)
for every inner node i while for one interface node, it only
computes the partial contribution V dk(i) already defined in
Relation (4).

In the following, this assembly is applied to build sev-
eral vectors in System (2): the second member vectors
C1, C2, C3, the diagonal of matrix A1, the diagonal ma-
trices A2, A3, and as we will detail it in Section 3.3, the
result of the matrix-product A1d computed in the conjugate
gradient iterations.

Table 2 resumes how the finite element assembly
applies in the whole resolution. For instance, the second
member C1 of the H system depends on A2, the matrix
of the U system (see the second relation in (3)). Moreover,
the U system depends on the H value. Hence A2 has to be
assembled while building the H system.

After the assembly step, algebraic transformations (3)
are directly applied to the assembled vectors V . It only
includes products between diagonal matrices and vectors,
scalar and vector, and vector additions.

3.2.2. Reproducible computation. The elementary
contributions We in accumulation (7) only depends on
the element e and so does not depend on the domain
decomposition, i.e. suffers from no parallel effect. This
accumulation (7) has the same order with respect to
e for inner nodes in the sequential and parallel cases.
Nevertheless, a given inner node i may become one
interface node in another domain decomposition, i.e. when
the number of computing units varies. Hence we must
apply a reproducible assembly to every mesh node both
in the sequential and in parallel simulations to avoid a
non-deterministic error propagation.

Compensating this vector assembly step is efficient here
[8]. As described in Section 3.1, we introduce (V,EV) pairs
and associated computations. A reproducible finite element
assembly step is similar to a classical compensated sum,
e.g. a Sum2 [9]. It computes:

V (i), EV (i) = Compensated Sumelements eWe(i), (8)

where EV (i) is the accumulated error at the node i of the

contributions from the elements which it belongs to.

Compensated version of the algebraic transformations 3
are easy to derive computing and propagating the error term
EV . For example, the product between a diagonal matrix D
and a vector X is now computed as follows. Assuming D
stored as the vector Y , we compute the pair:

V (i), EV (i) = X(i), EX(i)⊗ Y (i), EY (i), (9)

defined as:

V (i), e = 2Prod(X(i), Y (i)),

EV (i) = X(i)× EY (i) + Y (i)× EX(i) + e,

using the classical 2Prod error free transformation. Others
operations in (3) derive similarly.

Finally, the correction of the finite element assembly,
the interface node assembly and the algebraic transforma-
tions (3) provides the reproducibility of matrices and vectors
at the end of the building phase as reported in the second
column of Table 1. System (2) is now reproducible except
A1 and the unknowns. Matrix A1 remains non reproducible
because it is never assembled for the interface nodes. This
will be integrated during the next solving phase assembling
vectors A1d.

3.3. Solving the linear system

3.3.1. Original computation. As already mentioned, the
simulation solves the three subsystems (2). Reproducible U
and V derived easily from similar algebraic transformations
to those presented in Section 3.2.

Table 3: Conjugate gradient algorithm

Entries: Matrix A, second member B
Initialization vector g, one stopping criteria

Output: Vector X
Initialization:

r0 = AX0 −B, d0 = g0

ρ0 =
(r0, g0)

(Ad0, d0)
X1 = X0 − ρ0d0

Iterate until stopping criteria:
rm = rm−1 − ρm−1Adm−1

dm = gm +
(rm, dm)

(rm−1, gm−1)dm−1

ρm =
(rm, dm)

(dm,Adm)
Xm+1 = Xm − ρmdm

The H system is solved with the conjugate gradient algo-
rithm without preconditioning – see Table 3. Dot product are
denoted in brackets. The important operation is the matrix-
vector product denoted in bold as Ad.

Thanks to the EBE storage, one matrix M is decom-
posed as one assembled diagonal matrix MD and one non-

assembled extra-diagonal matrix MXe. The matrix-vector
product R =M V is now computed as:

R =MD V +
∑

element e

MXe V = R1 +R2. (10)

Vector R1 = MD V is the product of one assembled
diagonal matrix and a vector. The product MXe V is
assembled with Relation (7) and yields the vector R2.
Finally the R result is assembled at the interface nodes in
each iteration with Relation (4).

As already mentioned, the second members C2 and C3
of the U and V systems only depends on H . Hence the
interface node assembly (4) is applied to C2 and C3 before
the last system resolutions (see Table 2).

3.3.2. Reproducible computation. Now we detail how to
recover the reproducibility of the three subsystems.

We begin with the H one, A1H = C1, which is solved
with the conjugate gradient method. The non reproducibility
of the output H comes from two sources i) the matrix-
vector product (bold) and ii) the scalar product. In Table 1
we already mentioned that second member C1 becomes
reproducible after the building phase. This is not the case
for matrix A1 that has not been assembled at the interface
nodes and so may differ from one subdomain to another.
However, A1 is build together with its accumulated errors
EA1 and only appears in the bold matrix-vector product of
the conjugate gradient iterations. Hence thanks to the EBE
storage, applying the interface node assembly (6) to (10)
leads to reproducibility as we describe it now.

The diagonal part MD is associated with its errors
EMD so the first term couple is R1 = MD V and
ER1

= EMD V . In another hand, we compute the errors
of the finite element assembly of vector MXe V with
Relation (8). This yields the second term couple (R2,
ER2

). Hence the (bold) matrix-vector product now is the
couple R = R1 + R2 and ER = ER1

+ ER2
which is

assembled on the interface nodes with Relation (6) and
finally compensated as R + ER. So all vectors in the
conjugate gradient iterations are now reproducible.

The second source of non reproducibility is the
(bracket) dot product which is computed with a parallel
dynamic reduction of MPI. In our context, we easily
derive a reproducible parallel dot product using existing
compensated dot products. Let X and Y be floating
point vectors such that, like in Telemac2D, their dot
product condition number is reasonably smaller that 1/u.
Algorithm dot2 computes an accurate sequential scalar
product [9]. A parallel implementation has to exchange
both the partial dot product result and its errors to
be reproducible. We illustrate it with some numerical
experiments. Figure 2 plots the relative differences
compared to a sequential MPFR execution (1000 bits) of
three parallel dot products.

Figure 2: Relative differences in dot product algorithms
(min, max, mean). X-axis: p processors (1. . . 128). Horizon-
tal dotted line: .̆ C ≈ 1011 and n = 105

Original Dot:
rp = dot(X,Y)

r = all_reduce(rp)

Non reproducible Dot2:
rp = dot2(X,Y)
r = all_reduce(rp)

Reproducible Dot2:
[rp, Erp] = dot2(X,Y)
r = all_reduce(rp, Erp)

Finally the reproducible versions of the matrix-vector
product (bold) and of the dot product (brakets) allows us
to perform the conjugate gradient iterations with the same
intermediate results and errors (from the divisions and the
other operations) in sequential and in parallel. So we recover
the reproducibility of the output H as mentioned in the third
column of the Table 1.

Reproducibility of the last two steps is now straight-
forward. The U and V subsystems depend on H . The
second members C2 and C3 are building (from H) and are
assembled in the interface node before the resolution, see
Table 2. The reproducible interface node assembly applies
here during the building phase as described in Section 3.2.
Reproducible members A2, C2, A3 and C3 leads to repro-
ducible diagonal resolution of the U and V subsystems, as
mentioned in the last column of Table 1.

4. Conclusion and future work

We recover the numerical reproducibility of one
Telemac2D test case using compensation techniques. Fig-

Figure 3: Numerical reproducibility for the water depth in
gouttedo

...
...

ure 3 now displays the reproducible simulation of the gout-
tedo test case: no more white plot appears. The same figures
also occur while varying the number of processors.

Figure 4 displays two last measures. The rep plot is
the maximum relative error over the whole gouttedo do-
main between the compensated parallel simulation and the
compensated sequential. The number of processors varies:
p = 2, 4, 8. All the plots are superposed and constant at
the precision level. This illustrates the reproducibility of the
compensated simulations. The second plot acc displays the
maximum relative difference between the original sequential
Telemac2D simulation and the compensated ones. Relative
differences varies from 10−14 to 10−10. This validates the
compensated simulations that are very similar to the original
sequential Telemac2D simulation. As already mentioned,
this latter is considered as the reference simulation. Never-
theless since compensation provides more accuracy than one
working precision computation, this curve certainly displays

the loss of accuracy of the reference result.

Figure 4: Reproducibility of the compensated simulation and
accuracy compared to the original Telemac2D for the water
depth in gouttedo. X-axis: time steps (1 . . . 20×0.2 sec). Y-
axis: maximum relative difference. Number of processors:
p = 2, 4, 8.

5 10 15 20
Time step

10-18

10-16

10-14

10-12

10-10

10-8

10-6

M
ax

im
um

 R
el

at
iv

e
Er

ro
r v

s.
 S

eq
ue

nt
ia

l C
om

pu
ta

tio
n

COMP P=2
COMP P=4
COMP P=8

COMP P=2
COMP P=4
COMP P=8

acc

rep

To obtain this reproducible results, it was important to
identify the sources where the rounding error differ between
the sequential and the parallel simulations. In Telemac2D,
the first source comes from a non-deterministic error prop-
agation at the interfaces nodes. So it was sufficient to store
these errors and to compensate them after every interface
node assembly step. This correction applies for both the
parallel and the sequential simulation to yield the expected
reproducibility. The second source is the dynamic reduction
of the parallel implementation for the dot product used
in the conjugate gradient iterations. Compensation yields
easy and efficient solution exchanging and reducing both
the partial values and the correction ones (the errors). With
compensated algorithm, we have been able to obtain the
reproducibility of the Telemac2D simulation for the gout-
tedo test case. The simulation accuracy has been certainly
improved. We did not measure any significant time over-
cost for the whole simulation but a more detailed analysis
will be performed.

We will also experiment this approach to some other
simulation parameters that define additional physical terms,
or introduce preconditioning to the conjugate gradient solv-
ing step, or use other linear system solvers, We also have
to study whether other modes of matrix storage allow us
to apply successfully these compensated techniques. Other
solutions like integer conversion and reproducible sums [3]
that have been applied to another openTelemac module in
[8] could also be tested here.

Acknowledgment

We thank J.-M. Hervouet, EDR R&D (Chatou, France)
for his valuable comments and his strong support to this

work.

References

[1] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric,
Dong H. Ahn, and Gregory L. Lee. Determinism and reproducibility
in large-scale HPC systems. In 5th Workshop on Determinism
and Correctness in Parallel Programming., WoDet2013. Washington,
USA, ACM, 2013.

[2] Theodorus J. Dekker. A floating-point technique for extending the
available precision. Numer. Math., 18:224–242, 1971.

[3] James W. Demmel and Hong Diep Nguyen. Fast reproducible
floating-point summation. In Proc. 21th IEEE Symposium on Com-
puter Arithmetic. Austin, Texas, USA, 2013.

[4] Yun He and ChrisH.Q. Ding. Using accurate arithmetics to improve
numerical reproducibility and stability in parallel applications. J.
Supercomput., 18:259–277, 2001.

[5] Jean-Michel Hervouet. Hydrodynamics of free surface flows: Mod-
elling with the finite element method. John Wiley & Sons, 2007.

[6] William Kahan. Further remarks on reducing truncation errors.
Communications of the ACM, 8(1):40, 1965.

[7] Donald E. Knuth. The Art of Computer Programming, Volume 2,
Seminumerical Algorithms. Addison-Wesley, Reading, MA, USA,
third edition, 1998.

[8] Philippe Langlois, Rafife Nheili, and Christophe Denis. Numerical
Reproducibility: Feasibility Issues. In NTMS’2015: 7th IFIP Interna-
tional Conference on New Technologies, Mobility and Security, pages
1–5, Paris, France, July 2015. IEEE, IEEE COMSOC & IFIP TC6.5
WG.

[9] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate
sum and dot product. SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[10] Open TELEMAC-MASCARET. v.7.0, Release notes. www.
opentelemac.org, 2014.

[11] Robert W. Robey, Jonathan M. Robey, and Rob Aulwes. In search
of numerical consistency in parallel programming. Parallel Comput.,
37(4-5):217–229, 2011.

[12] Michela Taufer, Omar Padron, Philip Saponaro, and Sandeep Patel.
Improving numerical reproducibility and stability in large-scale nu-
merical simulations on gpus. In IPDPS, pages 1–9. IEEE, 2010.

[13] Oreste Villa, Daniel G. Chavarría-Miranda, Vidhya Gurumoorthi,
Andrès Márquez, and Sriram Krishnamoorthy. Effects of floating-
point non-associativity on numerical computations on massively mul-
tithreaded systems. In CUG 2009 Proceedings, pages 1–11, 2009.

