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f 

Abstract— This paper deals with the kinetostatic 

performance evaluation regarding translational and rotational 

motions of general robots with mixed operational degrees of 

freedom (dofs). Also, robots with different types of actuators 

can be analyzed based on the same approach without any 

problem.  Besides, the generality of the approach embraces 

serial, parallel, actuatedly or kinematically redundant robots.  

The paper seeks clarifying the issue and providing a relevant 

solution. It also clarifies some other useful points in this matter.  

I. INTRODUCTION 

Performance evaluation of robots is among the most 
important and rich research fields in robotics. In fact, the 
research in this matter can be divided into two main 
directions (although they may intersect sometimes): the first 
is the establishment of innovative performance measures 
quantifying different aspects of robot’s performance, and the 
second consists of finding relevant ways of tackling 
performance analysis of robots with mixed degrees of 
freedom (dofs) (case of non-homogeneous Jacobian 
matrices) on one hand and dealing properly with redundant 
robots (whether the redundancy is of actuation or kinematic 
type) on the other hand.  

As a matter of fact, the abstract idea of the performance 
measure itself is not problematic and we always expect to 
have new performance measures evolving based on the 
industrial needs and tasks to be fulfilled by the mechanism to 
be designed. However, the problematic being dealt with in 
the second research direction is much more severe and 
critical, especially the branch dealing with mixed dofs. In 
fact, the problem with all the so far introduced performance 
measures is the need to carry some sort of operations on the 
Jacobian matrix. These operations necessitate having the 
Jacobian matrix homogeneous regarding physical units; but 
unfortunately, this is not always the case. Actually, a 
problem in homogeneity appears in the case where we have 
actuators of different types (i.e. rotational and prismatic), or 
when having the end-effector’s dofs being mixed (i.e. 
rotational and translational dofs). 
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 Exemplification on performance measures are the 
condition number [1], manipulability [2], minimum singular 
value [3], motion/force transmissibility indices [4-6], largest 
inscribed ellipsoids semi-axes lengths based indices [7-8], 
force-velocity isotropy index introduced in [9-10], 
etc...Among the aforementioned indices, [4,7,8,9] for 
instance, have been developed to address the limitation and 
loss of significance of classical measures such as condition 
number, manipulability, minimum singular value (and all 
measures based on singular values), etc. in the case of 
redundancy. Also among the other works that addressed this 
issue is [11] in which the choice of appropriate Riemannian 
metric has been discussed.  

As for the homogeneity issue, it is has been addressed in 
numerous works. In [12], the homogenization of the 
Jacobian matrix has been achieved via considering the 
velocities of two points of the mobile frame. Based on such 
reasoning, [13] developed a homogeneous Jacobian matrix 
by relating the velocities of three non-collinear points of the 
mobile frame to the actuators velocities.  Also, [14] 
theoretically extended the idea of [13] and applied the same 
technique for the study of force-related performance. Note 
that motion/force transmissibility indices [4-6] do not 
present homogeneity problem and can also be considered as 
an approach to overcome this issue. Other works such as [15, 
16] have addressed the problem based on the apparent power 
concept of the mechanism resulting in a homogeneous 
formulation of the problem regardless of having the 
actuators of different types or the operational dofs being 
mixed (rotational and translational); in fact, this has been 

achieved by introducing some weighting factors LK  and RK  

(the ratio of which is important) and then carrying out a 
minimization of some quantity to get a unique value 

L RKK   upon which the final power manipulabity 

depends.  However, the relation of the established measures 
to operational velocities and forces is rather vague. This is 
not to mention the associated complexity. Moreover, one of 
the other approaches that have been suggested to deal with 
mixed dofs is considering the translational and rotational 
parts of the Jacobian matrix separately as highlighted in [17] 
to study manipulability.  Similar approach, called direction 
selective indices (DSIs)  [18], has been developed in which 
translational motion itself has been decomposed into its 
individual dofs and studied separately (based on 
manipulability index); such a method can similarly be 
applied for rotational dofs robots or robots with mixed dofs. 
It is also important to mention that among other spread 
methods to deal with homogenization is the use of some sort 
of weighting matrix or characteristic length such as [19, 20]. 
Unfortunately, all the aforementioned homogenization 
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techniques are characterized by arbitrariness, and/or lack of 
direct comprehensible significance from kinetostatics point 
of view... 

 In this article, we provide a general framework and a 
relevant approach to assess kinetostatic performance of 
general robot with mixed dofs based on physically 
significant and well-understood measures; these measures 
are not characterized by arbitrariness as they do not require 
homogenization and also cope up well with redundant robots 
(whether actuatedly or kinematically redundant).  Moreover, 
the measures to be presented are well-suited in the case of 
having actuators with different nature (i.e. in the case of 
having rotational and prismatic actuators at the same time).  

The paper will provide the general approach at beginning 
of section (II) with the necessary details in the dedicated four 
subsections ((II.A) through (II.D)). The subsections of (II) 
decompose the issue into singularity measurement 
(subsection II.A), relevant kinetostatic and precision 
measurements (II.B and II.C), and essential remarks 
regarding redundancy (subsection II.D). Afterwards, section 
(III) presents a case study on the actuatedly redundant 3 dofs 
(2T-1R)1 manipulator, DUAL V [22], as to illustrate the 
methodology. The paper ends in section (IV) with 
conclusions and perspectives. 

II. GENERAL APPROACH  

To address the problem correctly, we need to recall the 

simple case of performance evaluation; i.e. the case where 

the goal is performance evaluation of non-redundant robot 

that does not present any type of the homogeneity problems 

(all actuators are of same type, and all dofs are either 

translational or rotational). The condition number, 

manipulability, or singular values are beneficial in this case, 

as they give us measure of singularity (closeness of a pose to 

singularity) and kinetostatic performance significance 

regarding the velocity and force transmission values 

(isotropy of the transformation in velocity or force).  Also, if 

we estimate joint space velocity capabilities (or force 

capabilities) to be described or estimated by unitary sphere, 

then the singular values and the condition number can serve 

as measure of isotropy of output performance in velocity and 

force (for more on that refer to [7-8]).  Moreover, the norm 

of the velocity or force vector in this case is of solid 

significance.  

What about robots with homogeneity problem? Now 

suppose that we have non-homogeneous Jacobian relative to 

the physical units. Then, whatever the homogenization 

technique (i.e. for example using weighting matrices [19, 20] 

or using two or three points on the mobile frame [12-14]), 

there is no direct comprehensible physical significance 

(according to our knowledge) of the norm of such 

homogenized velocity or homogenized force vector. Thus, 

the significance remaining for the condition number and 

other singular values based indices reduces to singularity 

 
1 “T” means translational dof, and “R” means rotational dof.  

measure which is also not unique due to the undoubted 

arbitrariness of the homogenization.  

Therefore, a relevant way to deal with mixed dofs robots 

is as follows: 

1. First study the singularities of the robot analytically or 

numerically to extract the exact or approximate values 

of the singular poses. These singularities include the 

classical series and parallel type singularities (input-

output singularities) as well as constraint singularities. 

Then, based on the priori knowledge of these singular 

poses, one can choose any singular measure (condition 

number, manipulability, etc...) with any 

homogenization technique to assess singularity related 

performance. This will lead to setting the separation 

boundaries from singularities (this can be easily done 

by looking on how the singularity measure varies in 

the singular pose vicinity and as it goes away from 

singularity). In case of complex robots where we 

might have constraint singularities, the formulation of 

Jacobians must for sure consider passive joints as 

well. The arbitrariness here is still inevitable but not 

that critical.  

2. Then, assess the kinetostatic performance separately for 

translational and rotational motions. Here only input-

output relationships are concerned (i.e. Jacobians 

relating actuators’ speeds (or torques) to operational 

twist (or wrench) are considered.  However, the case 

of studying translational motion or rotational motion 

alone should be done with care. This is due to the fact 

that we are in a case similar to actuation redundancy 

where classical indices are no more as significant from 

kinetostatics point of view. It is important to note that 

still here if the actuators are not of the same type there 

is a homogeneity problem; but we will see that our 

approach to the problem is by no means arbitrary, 

because actuators types do not matter.  Also, note that 

this step cannot replace the first one as it is not 

capable of detecting singularities, but only serves for 

kinetostatic analysis. 

3. The optimization of a robot design can be established 

based on the kinetostatic analysis carried on 

translational and rotational motions separately - 

considering the results of the first step (the 

singularities). In this case, if we are interested in both 

performances (translational and rotational), we will 

surely have a multi-objective optimization problem.  

As we have generally introduced our approach to the 

problem at hand, it is time to give a relevant solution for 

kinetostatic analysis.... The global solution will be discussed 

in three subsections under the following guidelines: 

1. Singularity Measure; 

2. Isotropic Speeds and Isotropic Forces; 

3. Precision Measures: Operational Resolutions. 

A final subsection will emphasize some important remarks 

in the case of redundancy. 



  

A. Singularity Measure 

As previously stated, we can utilize any of the classically 

used indices to assess singularity performance such as the 

condition number on the homogenized Jacobian matrix. But 

it might be good to suggest here more suited measures.   

Consider now the general kinematic and force relations of 

any robot being given by: 

   mq J t t J q   (1) 

and 

 T T 
m
τ τf JJ f   (2) 

where q  and  
T

T Tt v ω  are the joint velocities vector 

and the operational twist vector (linear v  and angular ω  

velocities of the platform) respectively, and where τ  and f  

are the joint torques vector and the operational wrench 

(operational force and moment) respectively. As for 
mJ  and 

J , they are the respective representation of the inverse and 

direct Jacobian matrices. The matrices 
mJ  and J  are 

related to each other by matrix inversion procedure when 

they are square matrices (non-redundant) and by pseudo-

inversion in case of redundant robots (actuatedly redundant 

or kinematically redundant).  The expressions of (1) and (2) 

are very famous and are given at regular non-singular pose. 

In fact, the two equivalent expressions of each equation are 

admitted without any problem in case of non-redundant 

robots; however, when we have actuation or kinematic 

redundancy, only one of the two forms of (1) and (2) is 

admitted. More precisely, in case of actuation redundancy 

only relations based on 
mJ  are naturally available as those 

based on J  (pseudo-inverse of 
mJ  in this case) require 

considering some assumptions.  As for kinematic 

redundancy, expressions of (1) and (2) that are based on J  

are naturally available, while those based on 
mJ  (pseudo-

inverse of J ) necessitate some assumptions. These 

aforementioned notes will be more discussed in separate 

subsection as not to cut the main idea’s flow and maintain 

simplicity for now.   So, as we seek simplicity, we will 

consider the case of non-redundant robot with 6 dofs (3T-

3R) (i.e.    dim dim 6 6  mJ J  with -1
m

J J ). Also, we 

will assume that the actuators are of same type.   Consider 

now the homogenized matrices 
mwJ  and 

wJ  derived from 

mJ  and J  respectively, by using the characteristic length 

technique for example, i.e.: 

 
 

-1

-1

1 2 3diag 1,1,1, , ,

with  a charcteristic length i

CL CL CL

CL

 


 






mw m

w mw

J J W

J J W J

W
  (3). 

Note that if we have different types of actuators, we should 

use another weighting matrix; but it is not the case here (for 

simplicity only without loss of generality).  

 Then, as a singularity measure one can use for example 

the condition number   defined by: 

     max max

min min

cond cond
m

m


 

 
   

w mw
J J   (4) 

where 
min  , and 

max  are minimum and maximum singular 

values of 
wJ  which are the inverse values of maximal and 

minimal singular values of  
mwJ  denoted by 

max

m  and 
min

m . 

 But the condition number   or its reciprocal 1


  are 

tricky in the situation where both minimal and maximal 

singular values go toward very high value 

(
max min   ) or very small value (

max min 0   ) 

simultaneously resulting in a value of unity (indicating a very 

good situation); however, we are near singularity.  So, to 

overcome this drawback of condition number, we would 

suggest a better suited index based on singular values which 

is the MS  index (measure of singularity index) defined by: 

 min min

max max

1 1
, ,min min

m

m
MS  

 

   
    

   
  (5). 

Note that 1MS   and it is best when closer to unity value. 

Obviously, MS  does not skip any singularity case and hence 

more suited than the condition number in all cases. It is 

worth mentioning that this index has been implicitly used by 

[21] for the optimization of Orthoglide. Note that here we 

are speaking in case of simple robot where singularities can 

be of input-output type; otherwise in the case where we 

might have constraint singularities, one must perform the 

analysis including the passive joints as well in the Jacobians.  

 Another possible singularity measure can be the FVI  

(Force-Velocity Isotropy) index suggested and used in [9-

10] and given by: 

 ,min
iso iso

wl wl

v f
F I

v f
V

 
  

 
  (6) 

with wlv   and wlf  being the lower bounds desired for 

isotropic homogenized speed and isotropic homogenized 

static force respectively (the two values are set by the 

designer or end-user). As for isov  and isof , these are the 

isotropic homogenized speed and the isotropic homogenized 

static force, respectively (i.e. radii of largest spheres 

included in their corresponding operational zonotopes). This 

means the robot can move at least at a homogenized speed 

isov  in all directions and can support at least a homogenized 

static force isof  regardless of direction. For sure and as 

previously demonstrated, such homogenized values are less 

indicative regarding kinetostatic performance and only serve 

as measure of singularity (as any other performance 

measure): a good performance regarding singularity is when 

FVI  is high and worst performance is when FVI  is near 

zero ( 0isov   implies series-type singularity, and 0isof   

implies parallel-type singularity). Note that a value of 

1FVI   indicates that the desired limits are satisfied. The 

calculation of isov  and isof  is quite simple as follows: 



  

 

1...

1.

a

a

.

m x

x

.

m

min
|| ||

min
|| ||

: number of actuators

i

i

i

i

i m

iso
i m

iso

q
v

f

m







  
  

   

  

  
 

  



mwr

wc

j

j

  (7) 

where maxi
q  and maxi

  are respectively the maximal 

attainable speed and maximal torque or force capacity of the 

i-th actuator. As for 
imwr

j  and 
iwc

j , they represent 

respectively the i-th row vector and i-th column vector of 

mwJ  and 
wJ .  Note that vector  stands for the Euclidean 

norm of vector vector  and this holds throughout the paper. 

It is worth mentioning that in the case of FVI  index, 

homogenization relative to operational dofs is needed but no 

homogenization is required regarding actuators’ types (in 

case of actuators of different nature). Thus, FVI  is uniquely 

formulated regarding mixed actuators (because one is 

obliged to use the actuators’ maximal speeds and maximal 

torques only) as compared to other classical indices such as 

condition number, manipulability, MS  etc...  

Based on the latter argument, we recommend the use of 

FVI  as a singularity measure for any robot. For FVI  index, 

robots with mixed types of actuators but same nature of dofs 

do not require any homogenization or special treatment. In 

such a case, the kinetostatic significance regarding isotropic 

speed and isotropic force capabilities is retained.   

B. Isotropic Speeds and Isotropic Forces 

In the previous part, we have introduced the FVI  index 

that only loses its kinetostatic significance regarding velocity 

and force in the case of mixed dofs robots. Now, we will 

provide the modified version of FVI  to study kinetostatic 

performance of mixed dofs robots. In this case, we are not 

concerned except with input-output relationships between 

joint velocities (or joints’ torques) and operational twist (or 

operational wrench i.e. force and moment, respectively); as 

here only kinetostatic performance is sought and such study 

cannot replace the explicit prior singularity analysis as early 

mentioned. 

Let us consider the translational (or positional) parts of 
mJ  

and J  being respectively mp
J  and 

p
J . Also, let the 

orientation or rotational parts of  
mJ  and J  be respectively 

moJ  and 
oJ . This means, we have    mp mom

J JJ  and 

T
T T   p o

J J J .  Recall that  
T

T Tt v ω  and 

 
T

T T
p o

f f m  where 
p

f  and 
om  are the force and 

moment applied on the platform. 

Then, the isotropic linear speed pisov   (in the case ω 0 ) 

and isotropic pure static force pisof  (in the case om 0 ) are 

given by: 

 

1...

1...

max

max

min
|| ||
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|| ||
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i

i

i

i

piso
i m

piso
i m

q
v

f

m







  
  

   

  

  
 

  



mpr

pc

j

j

  (8) 

with 
impr

j  and 
ipc

j  being the i-th row vector of 
mp

J  and i-th 

column vector of 
p

J  respectively.  As a result, the 

translational FVI  index denoted by 
PFVI  is given for 

 oω m 0  by: 

 ,min
piso piso

p

pwl pwl

v f
F I

f
V

v

 
   

 
  (9) 

where pwlv  and pwlf  are the lower limits desired for pisov  

and 
pisof  respectively.   

 Similarly, we can calculate the isotropic angular speed 

iso  (case v 0 ) and isotropic static torque or moment isom  

(case 
p

f 0 ) as follows: 

 

max

1...

1..

a

.

m x

min
|| ||

min
|| ||

: number of actuators

i

i

i

i

i m

i m

iso

iso

q

m

m









  
  

   

  

  
 

  


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j

j

  (10) 

where 
imor

j  and 
ioc

j  being the i-th row vector of 
moJ   and i-

th column vector of 
oJ  respectively. Hence, the rotational 

motion FVI  index denoted by oFVI  is given for  
p

v f 0  

by: 

 ,min
iso iso

o

wl wl

F
m

m
VI





 
  

 
  (11). 

The terms 
wl  and 

wlm  are the corresponding desired lower 

bounds on 
iso  and isom .   

 Note that here we considered translational motion 

capabilities in velocity and force for angular velocity being 

controlled to zero and having no external torques (and vice-

versa), but we can do the same study, for example fixing a 

certain angular velocity or fixing a certain applied external 

torque (and vice-versa) without any problem.   Suppose for 

example, we need to know the isotropic linear speed sp

isov  for 

the special case where the angular velocity is assumed to be 

sp
ω 0 , then we have: 

  sp

mo mpq J J vω   (12). 

Based on (12), we have: 

 
max

1...
min

|| ||

i

i

n

sp

i m

ew

iso

q
v



 
  

 
 mprj

  (13) 

with  max maxmax
| |,| |min

i ii

off offnew

i iq q q qq     where off

iq  is 

the i-th component of off sp

mo
q J ω  and provided that 



  

 max 0
i

off

iq q    and  max 0
i

off

iq q   for all 1...i m ; 

otherwise 0sp

isov   by convention as the robot initially cannot  

provide sp
ω  angular velocity.  

 So far we have studied the kinetostatic performance of 

mixed dofs robots regarding isotropic speeds, and isotropic 

static loads in case of translation and in case of rotation. It is 

worth mentioning that in all FVI  indices, the number of 

actuators m  can be greater or equal to number of dofs (i.e. 

applicable on redundant robots as well: for more 

clarification refer to the Remark subsection).  In what 

follows, we will deal with the precision related measures of 

mixed dofs robots.  

C. Precision Measures: Operational Resolutions 

Among the significances of singular values-as applied in 

the case of non-redundant robot with homogeneous actuators 

and homogeneous dofs- is that the minimum and maximum 

singular values express how the joint errors are amplified in 

the operational space. In fact, we have: 

   mδq J δx δx J δq   (14) 

where δq   and δx  are very small displacements in the joint 

and operational spaces respectively. Then, if 
min  and 

max   

are the smallest and largest singular values of J , one is 

interested in having max  as small as possible. In such a 

case, any error in the joint positions is not amplified in the 

operational space yielding a precise robot. However, this 

means reducing the velocity capabilities. A good 

compromise then would be to have 
min  and 

max  not only 

close to each other (meaning  cond 1  J ), but rather 

having min max 1    or 1MS  ; another reason why MS  

is favored over   in such a case.  

However, in case of robots with mixed dofs, singular 

values and based-upon indices are no more useful. So, to 

assess precision related performance of mixed dofs robot, 

one can directly study the translational and rotational 

operational resolutions. 

Operational resolution is defined as the smallest step or 

increment the robot can do in the operational space and can 

be detected (by having the joint sensors increment by one 

count). In case of mixed dofs robots, there are two 

operational resolutions: translational and rotational ones. 

We will give the mathematical formulation of the 

operational resolutions in the case of redundant and non-

redundant robots.  

Let us start with the case of actuation redundancy. In such 

a case, the inverse kinematics is unique (i.e. 
mJ  is unique 

and available naturally), while the direct or forward 

kinematics J  requires a pseudo-inversion procedure (with a 

synchronization condition to be fulfilled by joints’ 

displacements and velocities). To clarify this, it would be 

good to recall the general closure or constraint equation 

(relating joint positions q  and operational pose x ) of the 

form: 

  , q xF 0   (15). 

Then, differentiating (15) with respect to joint position 

vector q  and operational pose x  , we get: 

 
,




 
    

q x

q x

J dq J dx

J J
q x

F F   (16). 

 Thus, in case of actuation redundancy 
xJ  is non-square 

and 
q

J  is a square matrix. This means we have naturally 
mJ  

given by: 

 -1m q xJ J J   (17). 

The joint displacement in the case of actuation 

redundancy is therefore subject to synchronization condition 

described by: 

  
T

Tnull   m
δqJ 0   (18) 

meaning: 

 with :

: pseudo-inverse of 




 

*

m m

δx J δq

J J J

  (19). 

 The non-redundant case is a special case of actuation 

redundancy, in which     Tnull 
mJ  (at non-singular pose 

which is always assumed as we are studying performance at 

regular pose or in the vicinity of singularity but not at 

singularity).  

 Regarding kinematic redundancy, we have in this case 
q

J  

non-square matrix, while 
xJ  is a square matrix. In this case, 

the Jacobian J  is available and uniquely given by: 

 
-1 x qJ J J   (20). 

 In such a case, there is no constraint to be satisfied by the 

joints’ displacements, and there is no unique inverse 

kinematic solution. That is to say: 

 

   ,null

with  (arbitrary vector)

:  pseudo-inverse of 

:  no. of actuators  &  :  no. of dofs

m n

m n








 

 





m

*

m

δq J δx λJ

λ

J J J
  (21). 

 Also, non-redundancy can be considered a special case of 

kinematic redundancy where    null J  (at regular 

pose). 

 After we have clarified some points regarding redundancy 

in its both types (actuation and kinematic), it is time to 

proceed with the calculation of translational and rotational 

resolutions of the robot. First, we define the feasible joint 

displacement zonotope q
Z  as follows: 

 

 

 

T
T

;   1... ,  

and null

 (case of actuation redundancy)

;    1...

 (case of kinematic redundancy or non-redundancy)

m

i qi

m

i qi

q R i m

q R i m





     
    

      



    



q

m

q

δq
Z

δqJ

Z δq

0

 (22) 



  

where 
qiR   is the resolution of the i-th joint sensor. 

 Then, the translational operational resolution is defined as: 

  maxpRes



qδq Z

p
J δq   (23).    

 As for the rotational operational resolution, it is defined as: 

  maxoRes



qδq Z

o
J δq   (24). 

 It is quite important to highlight that although the 

expressions of the resolutions in (23) and (24) indicate an 

optimization procedure over 
q

Z , yet these optimum 

solutions over the joint displacements’ zonotope 
q

Z  can be 

computed analytically. The zonotope being convex with 

vertices and straight line edges and linearly mapped by 
p

J  

or 
oJ  into the operational translational or rotational spaces, 

we know that the maximum will be at one of the 
q

Z  vertices 

(also can be said at one of the vertices of the image of 
q

Z  by 

the linear mapping of 
p

J  or 
oJ ). This simply means if we 

have iV  with 1...i N  ( N  being the number of vertices of 

q
Z ), we can rewrite (23) and (24) respectively as: 

  
1...

maxp
i N

iRes


 pJ V   (25) 

and 

  
1...

maxo
i N

iRes



o

J V   (26). 

 It is important to highlight that when we calculate pRes  , 

we do not impose a condition on orientation or rotational 

displacement to be zero. Similarly, in the case of calculating 

oRes , we do not impose a condition on the translational 

displacement to be zero.  

 The robot is more precise when both resolutions are small 

and less precise as their values increase.  

  Note that the calculation methodology used here for 

operational resolutions can also be utilized to compute the 

theoretical translational and rotational repeatabilities and 

accuracies due to joints’ repeatabilities and accuracies. This 

is done by replacing i-th joint resolution 
iqR  by the 

corresponding joint position repeatability or accuracy.    

 Moreover and as a complement to this analysis, it is quite 

important to highlight some relations with peak linear speed 

and peak angular speeds. First, let us suppose for example 

that all actuators are identical, meaning  1...qi qR R i m    

and max max  1...
i

q q i = m   .  Then, it is clear that the peak 

linear speed peakv   and angular peak speed peak  satisfy: 

 

max

max

  , all actuators being identical

peak

p q

peak

o q

R

R

v q

Res

q

Res















  (27). 

(Note that to calculate peak linear speed or peak angular 

speed, we proceed in same manner as for the resolution, but 

replacing qiR  by maxq , iq  by iq , and δq  by q . Also, note 

that when we calculate peak linear speed, we do not impose 

any condition on ω  such as being zero i.e. ω  can be any 

angular velocity. Similar explanation regarding peak angular 

speed.) 

  Thus peak operational speeds and resolutions are directly 

related, and their perfection is antagonist: meaning 

improving performance regarding resolution is accompanied 

by peak speed deterioration and vice-versa. This is generally 

the case. 

Before ending this section, it is important to emphasize 

some remarks. These are given in the upcoming subsection. 

D. Remarks 

The FVI  indices considering homogenized motion, 

translational motion and rotational motion have the same 

expressions in the case of actuation and kinematic 

redundancy as indicated in II.B, but some attention should 

be given regarding the meaning. 

In actuation redundancy, the joint velocities should be 

synchronized obeying the condition  
T

Tnull   m
qJ 0 , but 

the joint torques do not necessarily have to be perpendicular 

to the null space of T

m
J ; however, the formulae given for 

isotropic force are based on the assumption of minimum 

norm solution of the torque i.e.  
T

Tnull   m
J τ 0  and 

which can be achieved via control means (note that if  we are 

to consider isotropic force without the condition of 

orthogonality to null space, we will obtain a larger or equal 

value due to the fact that minimum norm solution set 

described by Tτ J f  is a subset of the generalized 

solution described by  
T

T Tnul  l    
m

f Jτ J λ  with 

m nλ   for m  actuators and n  dofs, and where J  is the 

pseudo-inverse of 
mJ  ).  

As for kinematic redundancy, the situation between joint 

torques and joint velocities is interchanged. In this case, we 

have the Jacobian J  unique, whereas for the inverse 

kinematics we have no unique solution and it is generally 

given by (21). 

 Then, the value of isotropic speed in this case and as 

given in the previous formulae (in section II.B) corresponds 

to the case of minimum norm solution of the inverse 

kinematics, i.e. for λ 0 . Note that if we are to consider the 

general solution of (21) without considering the 

orthogonality condition to null space, we will obtain a larger 

or equal value for similar reason as indicated for isotropic 

force in case of actuation redundancy.  

 As for the forces study in case of kinematic redundancy, 

the joint torques must necessarily obey the following 

condition (orthogonality to null space of J ): 

   
T

null J τ 0   (28). 

The formulae of isotropic forces in II.B are in agreement 

with the condition expressed in (28) (note that 

   Tnull null
mJJ ) .   

Thus, in all the cases the formulae given in section II.B 

are applicable without any problem in both cases of 



  

redundancy. Moreover, if other values for isotropic forces 

(case of actuation redundancy) exist, then these would be 

larger than those calculated by the aforementioned formulae. 

Similar conclusion can be derived regarding isotropic speeds 

in the case of kinematic redundancy.  

III. CASE STUDY: DUAL V 

To illustrate the suggested methodology, we provide a 

case study on the actuatedly redundant parallel manipulator, 

DUAL V [22], with planar motion (3 dofs, 2T-1R).  The 

manipulator is depicted in Fig. 1 with the necessary 

 

 
 

Figure 1.  DUAL V Prototype, CAD drawing and simplified schematic diagram showing the principal geometric parameters. 

     
                    

                   (a)                                                                             (b) 

Figure 2.  DUAL V Kinetostatic Evalution Based on  FVI Indices (a) and Operational Resolutions (b): (a)- Homogenized FVI Index (Top Left), 

Translational FVI Index (Top Right), and  Rotational FVI Index (Bottom Left), (b) – Translational and Rotational Resolutions’ Ratios with Respect to  

Individual Actuator’s Resolution (Top and Bottom Graphs Respectively).  



  

geometrical parameters for our study. One can derive the 

inverse Jacobian 
mJ  classically by deriving the inverse 

geometric model and differentiating it with respect to end-

effector’s pose; we will not detail this here for compactness 

reasons (the reader may refer to [22] for details). 

Note that all the actuators are identical and the lower 

bounds for isotropic speeds, forces and moments are as 

follows:  

 

max

max

max max  ,   

wl pwl

wl pwl

wl wl

v v q L

f f

q m

L



 
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


 

  

  (29). 

 In Fig. 2(a), the three FVI  indices (homogenized, 

translational and rotational indices) are presented as function 

of x  and y , while fixing 0   .  In Fig. 2(b), we depict the 

operational translational and rotational resolutions’ ratios 

with respect to the individual actuator’s resolution 
qR  (as all 

actuators are identical). 

IV. CONCLUSIONS AND PERSPECTIVES 

In this article, we have exposed the issue related to 

performance evaluation in the case of mixed dofs robots, 

discussed some of literature works in this scope, and finally 

introduced our point of view and provided a relevant way to 

tackle the issue. Our approach has been based on kinetostatic 

performance measure recently suggested in [9-10] and on the 

translational and rotational operational resolutions.  These 

measures provide concrete, clear and comprehensible 

physical significances that are undeniably useful for a robot 

designer. Moreover, this approach and these indices do not 

lose any of their significances in the case of redundant 

robots. In fact, they can be used on general robot whether 

serial, parallel, actuatedly or kinematically redundant, with 

mixed or homogeneous dofs, and with same or different 

types of actuators...To demonstrate this methodology, we 

have presented a case study on the actuatedly redundant 

parallel manipulator DUAL V with 3 dofs (2T-1R) planar 

motion.  

Regarding future work, the methodology presented here 

will be further extended and developed to allow 

simultaneous assessment of isotropic translational and 

rotational capacities in kinetostatics and dynamics for a 

general robot, including cable-driven parallel robots. These 

studies will be the subject of future publications. 
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