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Abstract—In this paper a new linearized dynamical model
applied to PKM will be presented. This model allows us to do
modal analysis by taking into account the dynamics of the robot.
Finally, its influences on natural frequencies of robots will be
highlighted on two numerical exemples.

I. INTRODUCTION

Parallel robots are said to be faster and stiffer than their
serial counterparts. They benefit from continuous technical
improvments and their mechanical performances are more
impressive, as we can see in [1] (robot LIRMM 100 g). Inertia
effects due to speed and acceleration are more significant
on the mecanism. Duringa path tracking sequency, positions,
speeds and accelerations are calculated. Actuated torques
can be deduced in respect with dynamical model. Then the
command set up all the previous datas and the closed loop of
control behave as "spring" in regards to actuations. Errors on
following, speed and acceleration of the Mobile Platform will
induce error on inertia forces and on the command. This paper
introduce a methode to allow a quatification of the vibrations
and will bring to light their effect on natural frequencies of
the robots.
Inertia forces of the robot are linked with geometry weight
and acceleration. During apick and place strategy, the goal
is to move from a point A to a point B in the quickest way
possible. This induces high inertia forces and leads the system
to vibrate. In order to calculate the vibration frequencies, the
mass and stiffness matrices must been known for the robot
industriel. These matrices depend on the position. Andreas
Müller [5] shown that the stiffness matrix can be modified by
external forces, command forces and speed.
In this paper, the influence of acceleration on stiffness of the
robots and therefore on their vibration frequencies will be
explain.
This paper is organized as follows. In the next section, we
describe the family of redundant parallel manipulators we
are focusing on. Then, a simplified dynamic model based
on jacobian matrices is derived. In section IV, the proposed
analysis methodology is presented, based on the linearization
of the dynamic model. The following section gives preliminary
simulation results for two manipulators and provides some
comments.

II. PKMS CONCERNED WITH THE STUDY

This study is focused on a specific type of robots, light ones.
Moreover we are considering fast ones with parallel kinematic
structure that are redundantly in actuation. As an example, we
can consider the Par2 in [2]. The robot has, u actuated joints
and its Mobile Platform (MP) has v degrees of freedom . The

structure has also u kinematic chains between its base frame
and the MP with u≥ v due tue the actuation redundancy. The
objective of this paper is to determinate the impact of the
dynamics on robot eigen frequencies for such parallel robots.

In this paper we are considering robots with the following
architecture:
• Kinematic chains are composed by two solids and three

joints
• Actuators can be linear motors or rotative motors, they

are modelized by the L1i joints which can be revolute or
primatic

• L2i et L3i joints can be revolute in the case of a planar
mechanism or spherical (or universal) for spatial mecha-
nisms

The robot generic joint graph is shown in figure 7. Accord-
ing to this description, we can mention that this family of
robots includes R4 Par2 and Dual-V see [1] and [2] and [3]

Fig. 1. Robots type generic joint graph

The bars mass and inertia are neglected compared to its
motors and MP inertia. This structure mass repartition allows
us to formulate the following simplifying hypothesis 1 :
The constant mass repartition of intermediate bars is replaced
by two pinpoint masses weighting each half of the bars mass at
their ends. Their mass and inertia are included in the adjacent
parts mass. The paper [1] use also this hypothesis.

Hypothesis 1 allows to say that bars are only stressed with
tension or compression actions. It follows that :
− Bars dynamics are neglected
− Actuators dynamics and MP study are simplified and can

be done separately as we will see in section III of this
paper

− The robot dynamics equation can be written using only
the Jacobian matrix of the robot (the same as the one
used in kinematic study)



This is the key to have simple equations.

III. PRELEMINARY SIMPLIFIED DYNAMIC MODEL

Hypothesis 1 allows to write the Dynamic Model related to
Jacobian Matrices. Adding the following hypothesis : frictions
is neglected, solids keep their shapes and the links are perfect.
Preliminary calculus will start with the writing of Inverse
Geometric Model(IGM) before establishing robot Dynamic
equations. Robot kinematic study gives IGM which links
operational coordinates vector X of MP to actuated joint
coordinates vector q.

Jq q̇ = Jx Ẋ (1)

As Jq is a full rank square matrix (away from singular
configurations), for our family of robots we can express:

q̇ = Jm Ẋ (2)

with:

Jm = Jq
−1 Jx (3)

Actuator dynamic equation is obtained by isolating the
actuator moving parts. It is written depending on actuators
inertia and bars inertia contribution m, forces applied by bars
Fb and actuators torque τ .

τ + JT
q Fb = m q̈ (4)

MP dynamic equation is achieved by isolating it. It is written
depending on platform inertia and bars inertia contribution M,
forces applied by bars Fb and external forces Fext :

Fext − JT
x Fb = M Ẍ (5)

By derivating the IGM with respect to time (eq. 2), connec-
tion between the two dynamic equations 4 and 5 is obtained
:

q̈ = Jm Ẍ + J̇m Ẋ (6)

Which give us the complete robot dynamic model.

Fext = (M + JT
m m Jm) Ẍ + JT

m m J̇m Ẋ− JT
m τ (7)

where:
• Jq, Jx and Jm matrices are written based on the following

variables X and q
• J̇m matrix is written based on the following variables X ,

Ẋ and q, q̇
For a sake of clarity, dependence of associated variables

won’t be specified, except in case where numericals values
will have to be calculated. This point will be important in
section IV where matrices numerical evaluation and derivation
are necessary. Then we will have to keep in mind that q = f (X)
and q̇ = f (X , Ẋ).

IV. PROPOSED ANALYSIS METHODOLOGY

Robot dynamic equation is non linear. To extract informa-
tions of phenomenons which interest us, meaning actuating
and moving effects over natural frequencies, we apply first
order Taylor formula near to functional point :

Pf = (X0, Ẋ0, Ẍ0,τ0,F0) (8)

It should be noted that in this study we take into account
torques in the functional point, as cable robot studies. To
simplify the writing, we use function h as :

h = (M + JT
m m Jm) Ẍ + JT

m m J̇m Ẋ− JT
m τ−Fext (9)

Taylor equation of h gives :

∂h
∂ Ẍ

∣∣∣∣
Pf

∆Ẍ +
∂h
∂ Ẋ

∣∣∣∣
Pf

∆Ẋ +
∂h
∂X

∣∣∣∣
Pf

∆X +
∂h
∂τ

∣∣∣∣
Pf

∆τ +
∂h

∂Fext

∣∣∣∣
Pf

∆Fext = 0

(10)
To go any further, we need informations about τ , which we

can get thanks to the control law. In general, the simplest
axis control is a proportional derivative controler (PDC).
The PDC will be set in actuated joint coordinates to avoid
singularity problems which can occur. PDC will be integrated
in the equation. PDC law depends on joint position error ε ,
joint speed error ε̇ and torques that don’t cause movements
of the MP. These torques allow to solve many problems
like mechanical clearance and other issues [4]. Control law
equation is expressed:

τ(ε̇,ε) = τ0−KD ε̇−KP ε (11)

By studying the variations and supposing that control law
stay constant near to the functional point Pf , we have :

∆τ =−KD ∆q̇−KP ∆q (12)

Using kinematic equations, we can write equation 13 de-
pending on X :

∆τ =−KD Jm ∆Ẋ−KP Jm ∆X (13)

Looking at the equation terms, we notice that we get a
second order differential equations system in ∆X with constant
coefficients depending on Pf . To simplify the writing, we will
use matrices M, C, K depending on inertia, Jacobian matrix
and control law.

Then, we get the following equation:

∆Fext = M ∆Ẍ +C ∆Ẋ +K ∆X (14)

Matrices M, C and K are now expressed:

M(X0) = M + JT
m(X0) m Jm(X0) (15)

Matrices C and K which are too complex are decomposed
as follows:



− Cv, kinematic damping matrix depending on speed and
position.

Cv(Ẋ0,X0) =
∂JT

m m J̇m Ẋ

∂ Ẋ

∣∣∣∣∣
Ẋ0,X0

(16)

− Cd , command law damping matrix depending on derivat-
ing command law and position.

Cd(X0) = JT
m(X0) Kd Jm(X0) (17)

− Ki, dynamic stiffness matrix depending on acceleration
and position.

Ki(Ẍ0,X0) =
∂JT

m m Jm Ẍ

∂X

∣∣∣∣∣
Ẍ0,X0

(18)

− Kv, kinematic stiffness matrix depending on speed and
position.

Kv(Ẋ0,X0) =
∂JT

m m J̇m Ẋ

∂X

∣∣∣∣∣
Ẍ0,X0

(19)

− Kg, geometrical stiffness matrix depending on torques
and position.

Kg(X0,τ0) =−
∂JT

m τ

∂X

∣∣∣∣∣
X0,τ0

(20)

− Ka, proportional command stiffness matrix depending on
proportional command law and position.

Ka(X0) = JT
m(X0) Kq Jm(X0) (21)

Kg and Ka are the same matrices that in paper [6].
The different partial derivatives have to be done, taking into
account that q = f (X). We have therefore, for each partial
derivatives of w :

∂w(X ,q(X))
∂X

∣∣∣∣
Pf

=
∂w(X ,q0)

∂X

∣∣∣∣
Pf

+
∂w(X0,q)

∂q

∣∣∣∣∣
Pf

Jm (22)

The equation 14 becomes :

∆Fext = M ∆Ẍ +
(
Cv +Cd) ∆Ẋ +

(
Ki +Kv +Kg +Ka

)
∆X
(23)

These mathematical developments show the impact of the
functional point Pf over the different exposed matrices. These
equations are able to describe the instant vibration behaviour
of robot when it follows a trajectory, typically when there is
a shock.

V. VALIDATION CASE STUDY

A. Type Analysis

In this section, only numerical simulations will be presented.
Two cases of robots natural frequencies are shown:
− 1st case : for a given trajectory, during each interval,

position and torques static functional point lowest natural
frequency is calculated in static case.

− 2nd case : for a given trajectory, during each interval, po-
sition, speed, acceleration and torques dynamic functional
point lowest natural frequency is calculated in dynamic
case.

We chose to work with redundant PKM easy to handle,
but with Jacobian matrix which depends on the position. All
studied robots structures can be modelized in a plane: PRR-4
and Dual-V manipulators, are both three degree of freedom
robots (v = 3). MP motions are the two translations of the
(~x,~y) plane plus the rotation about ~z. Both manipulators have
four actuation degrees (u = 4):
• four translations for PRR-4
• four rotations for Dual-V
PRR-4 has been chosen and modelized to observe the im-

pact of prestress and movement around one parallel singularity.
Dual-V has been chosen because future experiments will be
possible on an existing demonstrator. More details about these
robots will be given in their respective subsection. To perform
the calculations, the following trajectory has been chosen:

a translation along the axis (O,~y) beginning from yd = 0.1m
to y f =−0.1m by blocking ~x translation and ~z rotation.

Figures 2,3 and 4 show position, speed and acceleration
with respect to time according to Table I.

parametres Values
Jerkmax 20000 m/s3

Accelerationmax 200 m/s2

Vitessemax 10 m/s
Distancemax 0.2 m

TABLE I
TRAJECTORY PARAMETERS

Fig. 2. Position over time



Fig. 3. Speed over time

Fig. 4. Acceleration over time

To find natural frequencies, equation 23 terms have to be
modified by cancelling ∆Fext , which gives modal analysis
typical equation. We can simplify the study by only calculating
the natural frequency f0 instead of calculating maximum
amplitude vibration fr, because both are close. This allows
to cancel ∆Ẋ terms in equation 23 and becomes equation 24.

M ∆Ẍ +
(
Ki +Kv +Kg +Ka

)
∆X = 0 (24)

Natural frequencies are obtained by finding eigenvalues of
the following matrix.

− 1st case : static case

M−1 (Kg +Ka
)

(25)

Kg is calculated with static torques only with redundant
PKM if not Kg = 0

− 2nd case : dynamic case.

M−1 (Ki +Kv +Kg +Ka
)

(26)

Kg is calculated with dynamic torques (redundant PKM

could have JT
m null space torques)

The only thing still needed is to formulate each robot matrices.

B. Dual-V Case

In this section the Dual-V case will be studied and robot
design is shown in figure V-B. Actuation degrees are motors
rotation at Ai and operational coordinates vector is movements
and rotation at P5. For more details about Dual-V see reference
[3]. We use the same Jacobian matrices. Geometry, inertia and
control parameters are shown in table II.

Parameters Values Paramètres Values
a 0.39 m m 0.0738 kg.m2

b 0.11 m M 2.1 kg
c 0.11 m I 0.0228 kg.m2

li 0.28 m K 900N/rad

TABLE II
GEOMETRIC, INERTIA AND COMMAND PARAMETERS OF DUAL-V

Fig. 5. Dual-V PKM

Kinematic study give the following matrices:

Jq =−l

s(θ11−θ12) 0 0 0
0 s(θ21−θ22) 0 0
0 0 s(θ31−θ32) 0
0 0 0 s(θ41−θ42)

 (27)

Jx =


c(θ12) s(θ12) −c(θ12−θ5)b
c(θ22) s(θ22) −c(θ22−θ5)b
c(θ32) s(θ32) c(θ32−θ5)b
c(θ42) s(θ42) c(θ42−θ5)b

 (28)

The actuated coordinates vector is :

q =


θ11
θ21
θ31
θ41

 (29)

The operational coordinates vector is :

X =

x5
y5
θ5

 (30)

In Figure 6, first natural mode frequencies of Dual-V will
be calculated every millisecond. The blue curve shows static
case frequencies and the green curve shows dynamic case



frequencies. When comparing both curves, we can see that
acceleration decreases the frequency and that speed inscreases
the frequency. Informations given by this model could help
to control robots because it allows to evaluate moving robot
natural frequency.

Fig. 6. First mode natural frequency of Dual-V

C. PRR-4 Case

Robot dimensions have been chosen in order to have a
parallel singularity in the center of the workspace to see the
wanted effect whatever working conditions are. Actuated joints
are the prismatic ones with the ~x direction at point Ai. This
actuation is done by linear motors (see Figure ). The robot
kinematic scheme is given on Figure 7. Geometric, inertia and
command parameters are shown in Table III.

Parameters Values Parameters Values
a 0.1 m m 8 kg
b 0.1 m M 10 kg
e 1 m I 0.36 kg.m2

l 1.27 m K 8.107N/m

TABLE III
GEOMETRIC, INERTIA AND COMMAND PARAMETERS OF PRR-4

Fig. 7. PRR-4 robot parameters

The actuated coordinates vector is :

q =


q1
q2
q3
q4

 (31)

The operational coordinates vector is :

X =

 x
y
α

 (32)

Robot Jacobian matrix will be found, based on bars speed (1
to 4) by using the following property for a rigid body (points
A and B are supposed to belong to this body):

d ~AB
dt

. ~AB = 0 (33)

Here, we chose ~ui for bar i director vector from Ai to Bi.

Jq =


~u1 ·~x 0 0 0

0 ~u2 ·~x 0 0
0 0 ~u3 ·~x 0
0 0 0 ~u4 ·~x

 (34)

Jx =


~u1

T (~u1∧
−−→
B1C) ·~z

~u2
T (~u2∧

−−→
B2C) ·~z

~u3
T (~u3∧

−−→
B3C) ·~z

~u4
T (~u4∧

−−→
B4C) ·~z

 (35)

In Figure 8, first natural mode frequencies of PRR-4 will
be calculated every millisecond. The blue curve shows static
case frequencies and the green curve shows dynamic case
frequencies. When comparing both curves, we see the same
kind of frequency behaviour. We also note that in static
case, first mode frequency become null when y = 0 (parallel
singularity) but it does not nullify in the dynamic case. This
method shows how we could go through singularities of this
kind.

Fig. 8. First mode natural frequency of PRR-4



VI. CONCLUSION AND FUTUR WORK

In this paper, we only have mathematical and numerical
developments which show the impact of movements on robots
natural frequency. Acceleration is harmful for first mode
frenquency and speed has positive effect. The experimental
confirmation of this model is in process with the Dual-V robot
and another paper will show results of experiment. The next
stage would be the improvement of the robots command by
using informations given by this model.
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with PKM. Is actuation redundancy a good solution for pick-and-place?Ť
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