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Abstract—Recent advances in network science allows the
modeling and analysis of complex inter-related entities. These
entities often interact with each other in a number of different
ways. Simple graphs fail to capture these multiple types
of relationships requiring more sophisticated mathematical
structures. One such structure is multigraph, where entities
(or nodes) can be linked to each other through multiple edges.

In this paper we describe a new method to manage multiple
types of relationships existing in multigraphs. Our approach
is based on the concept of pair of nodes (edges) and, in
particular, we study how nodes on different layers interact
which each other considering the edges they share. We propose
a two level strategy that summarizes global/local multigraph
features. The global view helps us to gain knowledge related
to the characteristics of layers and how they interact while the
local view provides an analysis of individual layers highlighting
edge properties such as cluster structure. Our proposal is
complementary to standard node-link diagram and it can be
coupled with such techniques in order to intelligently explore
multigraphs. The proposed visualization is tested on a real
world case study and the outcomes point out the ability of our
proposal to discover patterns present in the data.

Keywords-Graph Visualization; Multi-graph; Graph with
multiple edge sets

I. INTRODUCTION

Nowadays relational information is ubiquitous and com-

plex structures are required to manage and mine this data.

For instance, if we consider social interactions among two

people that communicate with each other, they can con-

nect through a variety of different media such as emails,

telephones, online messengers. Similarly a user can have

accounts on different online social networks. Each online

network can have a specific semantic, for example (LinkedIn
is related to work, Facebook to leisure, Last.FM to music). If

these semantically different social networks are aggregated,

ideally we would want to preserve these distinct links in

order to better understand connectivity patterns and extract

knowledge. Unfortunately, simple graphs fail to represent

these semantically different relations and they are not well

suited to model complex relationships.

These scenarios require a relational structure to support

the representation of multiple relations among entities. One

such structure is the multigraph, which is defined as a graph,

with the additional feature that more than one edge can exist

among the same pair of nodes. Semantically, multiple edges

can be interpreted as social interactions among individu-

als through different channels, or layers. For example, an

interaction layer can represent connectivity through Face-
book, another layer can represent the connectivity through

LinkedIn and so on. Furthermore, weights can be assigned

to these edges and a weight of zero can be interpreted as

the absence of such a connection.

Currently, standard node-link diagrams are not well suited

for a number of different analysis tasks for multigraphs. For

instance, it is hard to visually describe what is the weight

distribution of a particular edge (or a group of edges) over

the different layers. Additionally, other practical scenarios

involving multigraphs can hardly be solved by classical

visualization methods and thus motivate us to develop a

new visualization technique for weighted multigraphs. The

proposed visualization provides two types of data views:

(i) a global view provides information related to layer

characteristics and how different layers interact (ii) a local

view to analyse each layer in terms of its edges. These two

views are complementary to standard graph visualizations

and they can be coupled with node-link diagrams in order

to improve multigraph exploration.

The remainder of this paper is organized as follows.

Section II lists the different tasks that can be achieved by the

proposed visualization. In Section III we formally define a

multigraph. The new visualization technique is introduced

in Section IV while qualitative analyses on a real world

case study are discussed in Section V. Section VI highlights

possible future research directions and improvements. We

briefly discuss related literature in Section VII. Finally,

Section VIII concludes our contribution.
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II. TASKS

Common approaches in graph visualization are mainly

based on node-link diagrams [1]. This representation high-

lights well the topological properties of simple graphs but

it is not enough to model some aspects of multigraph such

as multiple edges between nodes. In the case of multigraph,

where different types of edges can represent different layers

of interaction, one of the key aspect to investigate is the cor-

relation among the different layers: How much is the overlap
between two different layers in terms of nodes? Which
layers are used for interaction between two specific nodes?
Such examples of questions are relevant in the case of

multigraphs. Solving them by standard node-link diagrams

is tedious and interactive techniques (filters, color mappings,

etc.) available on most graph visualization systems such as

Tulip [2], [3], Gephi [4] or Cytoscape [5] must be used. In

this paper, with the aim to simplify the knowledge extraction

process, we propose a dedicated visualization to deal with

these questions.

Saket et al. [6] supply a task taxonomy of group-level

graph visualization that categorize the tasks in four subcate-

gories: group only tasks, group-node tasks, group-link tasks

and group-network tasks. In the case of multigraphs, specific

tasks concern groups of links over the different layers

(group-link tasks). Following the categorization proposed

in [6], we define a set of Global and Edge Layer Centered
(or simply, local) tasks for multigraph visualization:

• Global - (Task 1): 1.1) Evaluate the size of each layer

in terms of number of edges 1.2) Evaluate the number

of edges specific/common for a particular layer. 1.3)

Given a layer, estimate the distribution of shared edges

among the other layers.

• Edge Layer Centered - (Task 2): 2.1) Evaluate the

number of times an edge appears in all layers. 2.2)

Evaluate the distribution, in term of layers, for a specific

edge. 2.3) Compare and cluster similar edges inside a

layer.

In order to make the connection between the proposed

tasks and the ones presented in [6], we can underline that

Task 1.1 is related to both Count the number of links
in a given group and Find the group with the maximum
(minimum) number of links, Task 2.2 and Task 2.3 deal with

List groups which contain a link with specific characteristics
while Task 1.2 casts the task Find the group with the smallest
(largest) number of links connecting it nodes outside the
group for multigraph visualization. We refer the interested

to [6] in order to access the whole set of group-level

visualization tasks.

In the following sections, we describe our proposal that

is specifically developed to solve the tasks related to both

global and local multigraph visualization. In particular, we

design a data transformation and visual mappings that ef-

fectively deal with the proposed tasks.

III. PRELIMINARIES

In this section we introduce the definition of weighted

multigraph and the data transformation we developed in

order to perform our pairwise analysis .

A weighted multigraph G is defined as a triple

(V, {Ei}|C|
i=1, {Li}|C|

i=1) where V is the set of nodes, C are

the possible edge layers, Ei : V × V is the set of edges of

layer i and Li is a function Li : Ei → R that given an edge

of layer i returns its weight.

A weighted multigraph G is the basic input to our data

transformation. Given a weighted multigraph G a trans-

formed data graph Gt is derived. The new data structure

is defined as Gt = (Ct, Et,W t) where Ct is the set of

meta-nodes, Et is the set of meta-edges and W t returns the

weight of a meta-edge.

More precisely, each meta-node of Ct is a one to one

mapping to an edge layer of G, this mapping implies that

|Ct| is equal to |C|. In the following work, both the terms

edge-layer and meta-nodes, convey the same meaning. The

meta-edge set Et of the transformed graph is defined as

Et : C ×C where C are the layers of the original graph G.

The weight between two meta-nodes in Gt is the number of

edges that two layers share in the original weighted multi-

graph G. More formally, given cj , cl ∈ Ct, W t((cj , cl)) =
|{(vm, vk) ∈ V × V |(vm, vk) ∈ Ej , (vm, vk) ∈ El}|.

We can also define an auxiliary function PW over a node

of Gt that returns the set of edges of the corresponding edge

layer in G. Formally, we can define PW (cj) = {(vm, vk) ∈
V × V |(vm, vk) ∈ Ej}.

IV. VISUAL MAPPING

Our visual mapping is based on two complementary

views. The first one is based on a global visualization that

solves Tasks 1. The second one is an edge layer centered

view that solves Tasks 2.

A. Global View

Figure 1 shows an example of this first view. Edge layers

ci ∈ Ct are represented as arcs forming a ring. Their length

along the ring is proportional to the number of edges they

share with any other layers, which is equal to |{e ∈ Ei|∃j �=
i, e ∈ Ej}| for the layer ci. In the example, the red layer

shares twice as many edges as the blue one. The width of

the arc associated to layer ci represents |ci|, i.e. the number

of edges it contains (Task 1.1). White and colored areas

of the arcs are respectively proportional to the number of

shared and non-shared edges of the considered layer (Task
1.2). In the example, the red layer shares half of its edges

while the blue one shares all its edges. Meta-edges from

Et are represented by curved ribbons between arcs. Their

sizes and their colors are proportional to the relative number

of shared edges between the two meta-nodes they link, i.e.

W t(ci, cj) for two meta-nodes ci and cj (Task 1.3). In the

example, the red layer shares 50% of its edges with the
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Figure 1. Global View. Arcs are layers, size of ribbons represents the
number of edges shared between layers.

blue layer while the rest of the edges are shared between

both purple and green layer with the same percentage (25%

each). Continuing with the same example, we can see that

the blue layer shares all of its edges with the red layer. For

each layer, meta-edges are ordered in the opposite direction

as the target meta-nodes appear along the ring. This is done

to reduce edge crossing.

B. Edge Layer Centered View

This view is centered on an edge layer ck ∈ Ct (called

focal layer hereafter). ck is represented by a large circle.

Figure 2(a) shows an example centered on the red layer.

Other layers are represented by arcs forming a ring around

the circle. In the example, we observe three other layers:

purple, blue and green. Their length along this ring is

proportional to the number of edges they contain, i.e |ci|
(Task 1.1). The green layer in Figure 2(a) contains more

edges than the purple and blue layers. A ribbon links the

focal layer with the other ones. Its width depends on the

number of shared edges between the external layer and the

focal one, that is W t(ck, ci) with ck the focal layer and ci
the external one. This mapping helps to perform what can

be considered as a subtask of Task 1.2. In the example, we

see that the blue layer shares all its edges with the red layer,

the width of the ribbon is the same as the length of the blue

arc. We also see that green and purple layers share a similar

amount of edges with the red layer. Instead, considering a

relative proportion, we observe that the green layer only

shares a small part of its edges (the green ribbon is very

small w.r.t. the corresponding arc) while this ratio is bigger

for the purple one.

The circle of the focal layer ck (the red layer in the

example) contains pie charts representing the elements of

PW (ck), that is the set of edges of the edge layer ck. The

size of a pie chart depends on the sum of the weights of this

edge in the different layers: let e be an element of PW (ck),

then size(e) =
∑|C|

i=1 Li(e) (Task 2.1). The pie chart of an

edge represents the distribution of its weights among all the

layers (Task 2.2). In the example, we see that the pie chart

highlighted in Figure 2(b) represents an edge with a high

(a) (b)

(c) (d)

Figure 2. Edge Layer Centered View. The focal layer is represented by the
red circle. Pie charts represent edges and their distribution among layers.
Arcs forming a ring around the red circle correspond to the other layers.
The size of ribbons linking these arcs to the focal layer is proportional to
the number of edges they share.

weight in the blue layer, a low weight in the red one and it

does not appear in the purple and green layers.

Pie charts are organized inside the circle to locate together

edges having similar distributions of their weights among the

layers (Task 2.3). We first position them at the barycenter of

the edge layers they belong to. Then, for each pair (ei, ej)
of PW (ck), we compute a distance that corresponds to their

cosine similarity:

dist(ei, ej) =
v(ei).v(ej)

||v(ei)||.||v(ej)||
where v(ei) is a vector containing Ll(ei) for all the edge

layers l. We then apply a force directed layout1 on a graph

where the set of nodes is PW (ck) and the edges are pairs

(ei, ej) having the lowest distances (these distances are

mapped to the lengths of the springs). Figure 2(a) shows

how similar edges are grouped together producing a visual

clustering. We clearly observe 5 clusters. The two clusters

highlighted in Figure 2(c) are closer to each other because

corresponding edges belong to the same layers.

In order to improve the visualization, before running the

force directed algorithm, we also add to the dedicated graph

a static node for each external layer ci at the middle of the

corresponding arc. After that, each static node is connected

to all the other nodes of the dedicated graph. That’s why in

1https://github.com/mbostock/d3/wiki/Force-Layout [Online; accessed
12-Mars-2015]
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Figure 2(c), the highlighted pie charts are close to the blue

ribbon while the highlighted pie charts in Figure 2(d) lie far

from all the ribbons.

V. CASE STUDY

In this section we illustrate one case study that shows

the practical benefits of our method to visualize multigraph

data. The case study investigates social interaction among

people who communicate through different media. Figure 3

shows the Reality Mining dataset2 This multigraph contains

data collected by the MIT Media Lab, including subjects

(undergraduate and graduate CS and business students)

whose interactions were monitored by a pre-installed piece

of software on their mobile devices. The experiment was

carried out on a total of 94 people and this also represents

the number of nodes in the corresponding multigraph. The

different layers offered by the dataset pertain to the means of

interaction between a pair of subjects. Namely, CALL layer

refers to subjects calling each other, DEVICE layer contains

Bluetooth device scans, FRIEND layer contains friendship

claims and TEXT layer is constructed based on text message

exchanges (SMS). Each layer has, respectively, 177, 3003,

82 and 96 edges.

The Global View supplied by our approach is sketched

in Figure 3(a). We can note that our visualization easily

underlines differences between layers. For instance we can

see that DEVICE is the most popular way to communicate

while CALL is the second one. According to this global

view, we can rank the layers by considering their arc size.

This information can be exploited to accomplish Task 1.1.

By investigating this view we can highlight other useful

information. For instance, we can say that only a small

percentage of people using bluetooth (DEVICE) uses SMS

(TEXT) too. Conversely, people making CALL are also

usually send SMS to each other. This kind of analysis fulfills

Task 1.3. As additional feature, we can also evaluate how

much information is shared between layers (Task 1.2). For

example, we can observe that most of the people using

bluetooth (DEVICE layer) mainly interact with this media

while, only a small portion of them employs other kind of

communication.

The Edge Layer Centered Views are shown in Figures 3(c),

3(d), 3(e) and 3(f) (respectively CALL, DEVICE, FRIEND
and TEXT). Each Edge Layer Centered View allows to

locally describe how the data are distributed. Considering all

the different layers, we can see that our approach automati-

cally regroups interactions according to the layers in which

they appear. This organization provides a general picture

about the internal distribution of a layer. This feature can be

used to accomplish Task 2.3. Inspecting the local view for

the FRIEND layer, we can visually depict 6 clusters with

2http://realitycommons.media.mit.edu/realitymining.html [Online; ac-
cessed 12-March-2015]

(a) Global View (b) Legend

(c) CALL Edges Layer (d) DEVICE Edges Layer

(e) FRIEND Edges Layer (f) TEXT Edges Layer

Figure 3. Reality Mining dataset

different behavior. Most of the piecharts (representing the

interactions) have at least three colors. In the top left part

our system is able to isolate an interaction that clearly rep-

resents an anomalous profile and the two persons involved

claim that they are friends but they only communicate with

SMS. Another interesting group is constituted by red/blue

interactions in the bottom part of the FRIEND View. These

ones highlight people that claim to be friend and really call

each other. All these points help to realize Task 2.2.

VI. DISCUSSIONS

In this section we discuss some possible improvements,

directions and scalability aspects of the proposed visualiza-

tion.

Figure 4 shows one common drawback of visualization

techniques exploiting color as visual variable. The number

of employed colors is directly proportional to the number

of layers. When the number of layers increases the number

of used colors increases. Previous studies [7] agree on the
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difficulty to use more than 8 easily distinguishable colors.

This fact negatively impacts on the visual result decreasing

the usefulness of such exploration tools. In our case, this

phenomenon can influence both global (the arcs associated

to the layers) and local (the displayed pie chart distribution)

visualizations. We are aware of this issue, but, on the other

hand, recent works [8] on real multigraph data analysis

show that such kind of networks often contain less than 8

layers. This number of layers can be easily managed by our

approach.

Figure 5 shows an edge-layer visualization of a multigraph

bigger than the ones employed in the case studies. We can

observe that also in this example our method is able to

visually depict the cluster structure. In the case where the

number of edges grows too much, we could also introduce

an interactive exploration system for the local view inspired

by the ones proposed in [9], [10]. More in detail, firstly

we can perform a hierarchical clustering on the pie charts

and then allow to navigate over the different granularity

levels supplied by the hierarchical organization. At each

level of granularity the cluster can be replaced by a pie chart

obtained as the average of the original pie charts belonging

to that group. In this way our system could easily scale up

to multigraphs containing thousands of edges per layer. We

leave this amelioration as a possible future work direction.

Technically, our proposal has been developed using the

D3 library [11]. This tool is a data-driven Javascript library

that supplies visualization components and interaction capa-

bilities in order to develop web based prototypes.

Figure 4. Common limits supplied
by the use of colors as visual variable

Figure 5. Visual scalability of
Edge Layer View in terms of num-
ber of edges

VII. RELATED WORK

Although graph visualization techniques have become a

popular way to analyze networks, little effort has been made

to develop techniques that support visualization of particular

aspects of multigraphs. Furthermore, the focus of these

works is not to highlight the different pair-wise interactions

as compared to what we have proposed in this paper.

For example, [12] proposes a system to visualize multiple

relationships among nodes by iterating between link types

keeping the spatial layout of nodes stable. This type of

visualization is useful to study relationships of nodes in

certain layers but has limitations if relationships across

different layers need to be studied at the same time. The

authors also propose a matrix visualization which summa-

rizes relationships of different link types among individuals

to discover patterns. The visualization is effective for small

size networks but it becomes very difficult to find patterns

in large networks.

A recent work [13] discusses a number of different well-

known visualization techniques and methods to help analyze

complex networks. One of these methods is particularly

suited for networks containing multiple edges which is

parallel coordinates. Each column in the parallel coordinates

view corresponds to a replica of nodes, one for each edge

set to help analyze different relationship sets in a network.

Different from this work, we used a ring based visualization

to improve space utilization and we also supply a local view

(edge layer centered) devoted to inspect each layer.

The problem of tracing edge paths and rendering them

easily readable has been well addressed by [14], although

in a completely different context. The authors present a

new visual representation for state transition graphs. The

focus is to uniquely visualize higher-order state transitions.

They use smooth curved lines to make it easier to trace

state transitions. Edges are encoded with animated textures

to represent different types of links and the orientation of

edges to enhance their representation. On similar lines, [15]

explore the use of link curvature proposing four families

of techniques. The authors used different visual encodings

from these four families to facilitate the visual representation

and interaction with multiple edges. They also suggested

extensions to existing techniques to further ameliorate their

representation.

Hybrid visualization techniques have also been introduced

to visualize large instance sets with multiple relations. One

such technique [16] combines the classical node-link dia-

grams and the adjacency matrix representation to visualize

different parts of the data. The technique uses different

glyphs to encode multiple types of links making it easier

to visualize different relations.

Elzen and van Wijk recently proposed a tool for exploring

multivariate graphs. It combines two views, a detail view

to select areas of interest and an high-level infographic-

style overview of the selected areas [17]. The originality

of this approach lies to start from the detail view instead of

global one as usually done following the strategy proposed

by Shneiderman’s mantra [18]. The resulting tool combines

node-links diagrams with standard diagrams (scatter plots,

histograms, treemaps and parallel-coordinate plots).

In this paper, we address a different set of objectives and

thus, clearly differ from the previously existing works. A

good recent resource highlighting the problems and state

of the art research for multivariate graphs is [19]. This
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resulted from a seminar where well known researchers

from the graph visualization domain discussed several issues

pertaining to the problem of visualizing multivariate graphs.

VIII. CONCLUSION

In this paper we have presented a new approach to

visualize multigraph layers. Our proposal showed ability to

capture both global and local behaviors of the underlined

data. We demonstrated the quality of our proposal on a

real world dataset highlighting how our visualization can

accomplish tasks described in Section II that common graph

based visualization strategies fail to solve. Our proposal is

complementary to standard graph visualization techniques

(such as node-link diagrams). As future work, we plan

to investigate those techniques that can be coupled with

our approach to develop a complete exploration system for

multigraph data.
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