
HAL Id: lirmm-01275387
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275387

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Egocentric storylines for visual analysis of large dynamic
graphs

Chris Muelder, Tarik Crnovrsanin, Arnaud Sallaberry, Kwan-Liu Ma

To cite this version:
Chris Muelder, Tarik Crnovrsanin, Arnaud Sallaberry, Kwan-Liu Ma. Egocentric storylines for visual
analysis of large dynamic graphs. Big Data: International Conference on Big Data, Oct 2013, Santa
Clara, United States. pp.56-62, �10.1109/BigData.2013.6691715�. �lirmm-01275387�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275387
https://hal.archives-ouvertes.fr

Egocentric Storylines for Visual Analysis of Large
Dynamic Graphs

Chris W. Muelder∗, Tarik Crnovrsanin∗, Arnaud Sallaberry†, and Kwan-Liu Ma∗
∗University of California at Davis

Davis, CA, USA
muelder/ma@cs.ucdavis.edu, tacrnovrsanin@ucdavis.edu

†LIRMM, Universitè Paul Valéry Montpellier 3
Montpellier, France

arnaud.sallaberry@lirmm.fr

Abstract—Large dynamic graphs occur in many fields. While
overviews are often used to provide summaries of the overall
structure of the graph, they become less useful as data size
increases. Often analysts want to focus on a specific part of
the data according to domain knowledge, which is best suited
by a bottom-up approach. This paper presents an egocentric,
bottom-up method to exploring a large dynamic network using
a storyline representation to summarise localized behavior of the
network over time.

Keywords—information visualization; dynamic graphs; story-
lines; egocentric views;

I. INTRODUCTION

Relational data, consisting of a set of entities and a network
of relationships between them, is one of the primary classes
of information (some other examples being spatial data, n-
dimensional data, or text data). This kind of data turns up
in many different disciplines, including sociology, biology,
engineering, computer networks, and many more. Analysis of
these networks can lead to important insights, but as with other
kinds of data, the scale of network data is readily increasing.
Facebook, for instance, now has over a billion users forming
an incredibly complex network of friendships, communication,
and more. As such networks become increasingly larger and
more complex, reasoning social dynamics via simple statistics
or even many traditional visalization techniques are no longer
feasible options.

Many visualizations follow the top-down information vi-
sualization mantra of “Overview first, Zoom and filter, Details
on demand” [35]. However, as the scale increases, overviews
become less useful; since the capacity of the display (and the
human eye) has an upper bound, as the data size increases, an
overview will convey a diminishing percentage of the total
information in the dataset. This is particularly problematic
if the analyst already knows what part of the network they
want to focus on, as overviews tend to abstract away the
specific details that the analyst is looking for. As an alternative,
many visualization approaches take a bottom-up approach
of “Search, Show context, Expand on demand” [38]. While
these approaches depend on domain knowledge or statistics to
provide a starting point, they are often helpful for large data
analysis, as the amount of information provided to the user at
any time can be controlled independently from the size of the
data set.

Another challenge is that many graphs are not static; data
collected in real world applications are often intrinsically time-
varying. For instance, in a social network over time, new
friendships can be made, or old friendships lost. While the
problem of visualizing static networks has been studied quite
extensively, work on dynamic network visualization is still in
its infancy. Most existing works focus on the layout stability of
time-varying node-link diagrams, either shown as animation or
small multiples. However, for large data, animation can take a
long time to watch, and small multiples reduce the already
limited screen space. A few works investigate methods of
creating time-lines for dynamic graphs to statically summarize
the evolution of dynamic graphs. However, these methods
suffer from the same overview limitations mentioned above.

This paper presents a method for visualizing a dynamic
graph that combines both bottom-up network exploration and
a static timeline representation. The result is an egocentric sto-
ryline based visualization that summarizes the behavior of the
local network surrounding user-selected foci. This approach
was also designed as a streaming algorithm, making it viable
for online dynamic graph data.

II. RELATED WORK

A common method for visualizing dynamic graphs is to
animate the transitions between time-steps [25], [10], [12],
[15], [3], [13]. This approach yields dynamic visualization
with nodes appearing, disappearing and moving to produce
readable layout for each time-step. Alternatively, multiple
time-steps can be staticly placed next to each other using
”Small Multiples” [37]. This eases the comparison of distant
time-steps but the area devoted for each time-step is small and
this reduces the readability of each graph. An empirical study
to compare the advantages and drawbacks of these approaches
(”Animation” vs. ”Small Multiples”) has been performed by
Archambault et al. [1].

A major issue for both methods is to ensure the stability of
the layout [19], [13], [5], [17]. A stable layout helps preserve
the user’s mental map as there is less movement between
time-steps, but sacrifices quality in terms of readability for
later time-steps as their layout depends on previous time-steps.
Many experiments has been proposed to examine the effect of
preserving the mental map in dynamic graphs visualization
[29], [32], [30]. The results of [30] were quite surprising be-
cause the most effective visualizations were the extreme ones,

i.e. the ones with very low or high mental map preservation:
visualizations with medium preservation performed less well.
However, most of these works do not demonstrate scalability.
The work of Sallaberry et al. [33] is one of the few dynamic
graph layout approaches that has been shown to scale to tens or
hundreds of thousands of nodes, but it still relies on visualizing
the entire network at once, so even it can not handle the
millions or billions of nodes that can occur in modern graphs.

Hu et al. [17] proposed a method based on a geographical
metaphor to visualize a summary of clustered dynamic graphs.
They also use a clustering approach similar to ours, though
it sacrifices some local quality for calculation efficiency and
additional temporal stability.

An alternate visualization approach for dealing with dy-
namic large directed graphs is to directly represent time as an
axis. In the work of Burch et al. [6], vertices are ordered and
positioned on several vertical parallel lines, and directed edges
connect these vertices from left to right. Each time-step’s graph
is thus displayed between two consecutive vertical axes.

Storyline visualizations have become popular in recent
years for showing evolution of clusterings [22], [27], [18], [31],
[9], [36]. Most of these works reference hand-drawn diagrams
such as XKCD’s movie narrative charts [22] as inspiration, in
which entities are represented as lines which move together
when in the same group and separate when they are not.
“Plotweaver” [28] is a tool to aid in semi-automatic generation
of storyline plots, but it still requires a lot of user interaction.
The works of Ogawa et al. [27] and Tanahashi et el. [36]
aim to automate the process. However, producing good results
with these algorithms is computationally expensive, so they
do not scale well to large data [36]. Working with larger
data can make the lines start to blend together into larger
flow-like structures similar to sankey diagrams [9], [26]. To
apply storyline techniques to dynamic graphs, an intermediary
step of dynamic clustering must be derived [31], [33]. These
approaches use bins to more efficiently lay out the storylines.

Since overviews are less useful for enormous networks,
researchers have introduced several bottom-up techniques.
These approaches start from a single selected node and its
immediate context. Additional relevant nodes and connections
are revealed only on demand, based on graph structure or
specialized degree-of-interest functions. Moscovich et al. [21]
designed two intuitive interaction techniques called “Link
Sliding” and “Bring & Go” for navigating large networks.
Heer and Boyd [16] presented a visualization method which
only shows a focus node’s neighboring nodes up to a certain
level. Similarly, Elmqvist and Fekete [11] described a bottom-
up system based on hierarchy traversal methods, including
above traversal, below traversal, and level traversal. These
methods are useful when the inherent graph structure is more
important than other properties for the task at hand. For
other applications, where node/edge attributes are the focus
of analysis, researchers create specialized degree-of-interest
(DOI) functions. Furnas [14] introduced a DOI function to
evaluate the importance of a selected node based on distance
and a priori interest. Van Ham and Perer [38] extended this
function to operate on embedded attributes and graph topology,
as well as user-generated search actions. Their system can then
suggest nodes with the highest degrees of interest for users to
explore. Crnovrsanin et al. [8] combine this concept with an

Fig. 1. Our overall process. The user selects a focal node (in green), the
system loads the graph data one timestep at a time (grey), clusters the time
step (blue), derives relevence values (orange), uses the relevence values to
filter the timestep (cyan), and appends the timestep to the storylines (red).

interaction history based importance similar to Amazon’s item-
to-item collaborative filtering [20]. Our approach works with
dynamic graphs, so we can use temporal history as well as
interaction history.

III. APPROACH

Storylines depict the evolution of dynamic clusters over
time. So to use storylines to depict a dynamic network, the first
step in our approach is to derive such a dynamic clustering.
Once we have this clustering, we want to be able to focus
on small portions of the network at a time. We employ an
egocentric approach to start with a single focal point and
use a recommendation algorithm to provide the local context.
Once we have this localized subset of the data, we employ
an efficient storyline layout algorithm to create the resulting
visualization. These storylines can then be explored either
through expansion via user selection of new foci or temporally
via user selection of time steps to view in more detail.

A. Dynamic Graph Clustering

A dynamic graph can be defined formally as an agglomer-
ate graph G = (V,E) and an ordered sequence of subgraphs
S = {G1 = (V1, E1), G2 = (V2, E2), ..., Gk = (Vk, Ek)}
where each Gt is the subgraph of G at time t. V, V1, V2, ..., Vk
are finite and non-disjointed sets of nodes, E,E1, E2, ..., Ek

are finite and non-disjointed sets of edges such that V =
V1 ∪ V2 ∪ ... ∪ Vk and E = E1 ∪ E2 ∪ ... ∪ Ek. What we
need is to create a time-varying clustering, i.e. a set of clusters
evolving over time. The clustering method we describe here
is a two step algorithm. The first step consists of partitioning
the nodes for each time step independently. Then, we associate
these clusters through time to derive time-varying clusters.

1) Time-step Clusterings: Finding a partition of the nodes
of a static graph according to its structure is a well studied
problem. Schaeffer has published a good overview of graph
clustering methods[34]. For our approach, we need to cluster
a dynamic graph, which is a less studied problem. We do this
by first finding a partition for each time step, i.e. a set of
clusterings C = {C1, C2, ..., Ck} where Ct = {ct1, ct2, ..., ctlt}
is a partition of the nodes Vt of Gt. In this paper, we call each
Ct a “time-step clustering” where cti is the “time-step cluster”
i at time t, and cti ⊆ Vt for 1 ≤ i ≤ lt, Vt = ct1 ∪ ct2 ∪ ...ctl
and cti ∩ ctj = ∅ for i 6= j,

Our algorithm is based on the so-called modularity function
[23]. It represents the sum of the number of edges linking
nodes of the same clusters minus the expected such sum if
edges were distributed at random. For a graph Gt = (Vt, Et)
and a partition Ct of its nodes, the modularity Q(Ct) is defined
by:

Q(Ct) =
1

2|Et|
∑

u,v∈Vt

[
Auv −

kukv
2|Et|

]
δ(ct(u), ct(v))

where |Et| is the number of edges, Auv is 1 if there is an
edge between u and v and 0 otherwise, ku =

∑
v Auv is the

number of edges attached to u, ct(u) is the time-step cluster
of Ct containing u, δ(ct(u), ct(v)) is 1 if ct(u) = ct(v) and 0
otherwise.

A partition that maximizes this function helps to dis-
cover clusters of densely connected communities. Moreover,
as shown by Noack [24], optimizing the modularity is the
same as optimizing an energy function in graph layout. This
equivalence implies that our layout based on such a clustering
algorithm yields a good representation of the graph.

The problem of finding a partition that maximizes the
modularity is hard, and the corresponding decision problem is
NP-complete [4]. We use the heuristic proposed by Blondel
et al. [2], which works well in terms of both the quality
of the results and the computation time. Initially, each node
belongs to its own cluster. Then pairs of clusters are recursively
merged such that the modularity of the partitioning increases.
If two possible merges involve the same cluster, the merge that
improves the modularity the most is performed.

2) Cluster Tracking: We define a time-varying clustering
of a dynamic graph G as a set of time-varying clusters V C =
{V C1, V C2, ..., V Cl}. Each of these time-varying clusters is
an ordered sequence V Ci = {vc1i , vc2i , ..., vcki } where k is the
number of time steps and each vcti is a subset of the vertices
Vt at time t. That is, each time-varying cluster V Ci is a cluster
whose membership can evolve over time, where vcti represents
the set of nodes in the cluster i at time t. As the number of
clusters can change between timesteps, not every cluster exists
at every timestep, so the total number of time-varying clusters
l can be larger than the number of time step clusters at any
time step.

Our overall approach is to compare the time-step clusters
pairwise between neighboring time-steps and putting the most
similar time-step clusters into the same time-varying cluster.
We start from an empty set V C of time-varying clusters and we
create a time-varying cluster V Ci for each time-step cluster c1i
of the first time-step clustering C1. The set of nodes of these
time-varying clusters V Ci at time 1 are initialized with the
time-step clusters c1i : vc1i ← c1i .

Then, starting with this partition of the graph at time 1, for
each vc2i we search for the time-step cluster of C2 that is the
most similar to vc1i . Let c2a be such a cluster, then vc2i ← c2a. If
no similar cluster can be found in C2, then vc2i is an empty set
(i.e. the time-varying cluster has disappeared at time-step 2). If
there is a time-step cluster c2a in C2 that cannot be associated
with a vc2i , then a new time-varying cluster V Cb is created

with vc1b ← ∅ and vc2b ← c2a. We iterate this process for each
time-step.

The crux of this algorithm is how to decide which time-
step cluster of Ct is the most similar to a cluster of Ct−1.
The solution we use is based on a similarity function between
time-step clusters of Ct−1 and clusters of Ct. Results of this
function can be stored in a matrix M such that Mij denotes
the similarity between ct−1i and ctj . Starting from the highest
value of this matrix and the corresponding clusters ct−1i and
ctj , we assign ctj to the time t of the dynamic cluster V Ci

that contains the cluster ct−1i at the time t − 1. Then we do
the same for the second highest value of the matrix and so
on. Any values corresponding to pairs of time-step clusters
that have already been assigned a dynamic cluster are skipped,
as a better match was already found earlier in the algorithm.
This process ends when there are no more time-step clusters or
when the highest similarity value is under a given threshold.
Finally, any remaining time-step clusters become new dynamic
clusters.

In our implementation, we use the Jaccard index to com-
pute the similarities. For two clusters ct−1i and ctj , this is
defined by the equation |ct−1i ∩ ctj |/|c

t−1
i ∪ ctj |. There are

two main advantages in using this metric. First it takes into
account the number of shared nodes as well as the total number
of nodes, which guarantees homogeneity between consecutive
steps of a time-varying cluster. Secondly it returns a value
normalized between 0 and 1 which is helpful for empirically
defining a threshold.

B. Egocentric Context Recommendation

Rather than trying to show all clusters simultaneously, we
opt for a bottom-up technique. In this approach, the user selects
a single node of interest (the ’ego’), and the system determines
and presents what is relevant with respect to the selection.
We do this by applying a recommendation algorithm to the
network. Similar to the Degree Of Interest (DOI) functions
of Furnas [14], Van Ham and Perer [38] or Crnovrsanin et
al. [8], we use a weighted combination of several relevence
functions. We combine a network relevence metric with a
temporal relevence history and an interaction relevance history.

1) Network Relevence: Many existing works use centrality
sensitivity calculations to derive relative network-based impor-
tance [7], [8]. However, at the scale of data we were analyzing,
we found that the standard centrality algorithms were too
expensive to calculate dynamically, and the sensitivities used
too much storage space to be viable, as they consist of an entire
|V |2 sized matrix for each time step. So instead, we use graph
distances directly. Since we have a single focal vertex, these
distances can be computed very efficiently using Dijkstra’s
algorithm. Then, we define the network relevance simply as
the inverse of the graph distance to the focal node. That is:

NRi,j,t =
1

di,j

2) Temporal Relevence: As in dynamic graph layouts, it is
important that the storylines be stable over time [36]. Thus,
rather than computing the overall relevance exclusively on the
current time step being worked with, we want to incorporate

previous timesteps into the relevance metric. However, it would
be wasteful to recalculate the relevances of previous timesteps,
so we cache them for a user controllable number of previous
timesteps. That is, for each of the k time steps before the
current time step t (i.e.: Gt−k, Gt−k+1, ..., Gt−1), we save the
network relevances between each pair of nodes. So for each
pair of nodes i and j in the current time step, we have an
array of the network relevances from the previous k timesteps
{NRi,j,t−k, NRi,j,t−k+1, ..., NRi,j,t−1}. In order to combine
these into a single temporal relevance value, one could simply
average them together, but this would not produce a very
smooth/stable value, as outliers would have a strong effect for
many time steps. Instead, we compute a triangular weighted
average by applying a linear weight wt−a = k−a+1

k for
1 ≤ a ≤ k. Thus, we compute the overall temporal relevance
as:

TRi,j,t =
NRi,j,t−k ∗ wt−k + ...+NRi,j,t−1 ∗ wt−1

wt−k + ...+ wt−1

This creates a sliding window which allows the effect of old
values to fade out smoothly. Higher order window functions
could be applied (e.g. quadratic or cosine weights), but we
found the linear window to be sufficient.

3) Interaction Relevence: In order to aid the user in keep-
ing mental track during their exploration, we want to preserve
some of the context of their previous steps. Each time the user
selects a new focal node, we want to preserve the importance of
the previous selection to maintain context. One way to do this
would be to cache the relevences of the most recent selections,
and weight them to have them fade out as more selections are
made, similarly to temporal relevance. However, if we cache
the combined relevence, then each cached value would already
include the previous timestep, weighted by the combination
function, and recursively, every time step before that. As long
as the weighting is less than 1, this will produce an exponential
fall off. Thus, we calculate the interaction relevance as:

IRi,j,t = CRk,j,t

where CRk,j,t is the combined relevence at time t of node j
with respect to the previously selected node k.

4) Combined Relevence Metrics: We combine these 3
metrics with a user controllable linear summation:

CRi,j,t = α ∗NRi,j,t + β ∗ TRi,j,t + γ ∗ IRi,j,t

where α, β, γ are controlled via the interface. However, to
seperate the layout from the filtering computation, we use 2
sets of constants to define 2 combined metrics: one used for
filtering and one used for layout. This allows for more flexible
control: e.g. the user can set it so that the filtering uses IRi,j,t

but not the layout, so that previous selections are still included
in the plot, but do not interfere with the layout of the current
selection.

C. Streaming Storyline Layout

With a good layout, storylines have been shown to be
effective for visualizing evolution of dynamic clusters. But
computing a good layout can be costly; e.g. Tanahashi’s layout
uses a genetic algorithm to find a global optimization [36],
which produces good results but takes a long time. In order
to lay out large, streaming data, we need a more efficient

Fig. 2. An example of our UI. One node is searched for and selected from
a list. Then the relevant nodes are plotted in the storyline view, laid out with
the selected node at the bottom and more relevant neighbors placed closer.
The lines are colored either according to the clustering or node id.

approach. Since we have a focal point and have computed
relevance metrics with respect to this focal point, we can
use the nodes’ relevences to give semantic meaning to the
ordering and placement of the storylines. Towards these goal,
we employ a greedy layout algorithm, which makes a best-
effort to quickly lay out each time step one at a time while
using the relevence information.

Similarly to the works of Sallaberry et al. [33] and Reda et
al. [31] our layout algorithm is a bin-based algorithm. For each
cluster in the current time step, we use the average relevence
of the cluster’s nodes and the cluster’s assigned slot from the
previous time step (if it existed in the previous time step)
to determine the optimal bin to assign the cluster to. If the
optimal bin is already occupied, then the algorithm assigns
the cluster to the next available bin instead. Once assigned,
the cluster does not get reassiged to a different bin, so the
order of insertion is important. Stability is more important than
rigorous ordering, so priority is given to clusters that existed in
the previous time steps. Within both groups (pre-existing and
new clusters), the clusters are inserted in order of importance
according to the relevence metric.

Once the clusters have been arranged into bins, we need
to arrange the individual lines within the cluster. One simple
way to do this would be to simply order them by relevance.
However, this can yield many gaps between lines and does
not offer any guarantee of stability. Instead, we carry over any
placement from the previous time step, insert any remaining
nodes ordered by relevence, and finally remove any gaps if
there are any. In this manner, the ordering will not be perfectly
by relevence, but the layout will be far more stable.

Since our layout is a greedy approach, it can get stuck in
local minima (e.g. when the optimal bin is already occupied).
While this does sacrifice some level of quality compared to a
global optimization, we found that the results are still sufficient
for our purposes.

D. Interactive Exploration

Any bottom up approach needs to provide the user a way
to search for and select a starting point. We provide a simple
table with a search/filter mechanic that can be sorted or filtered
on arbitrary data attributes. This way, if the user has a starting
point in mind, they can find it quickly. Alternately, the user

(a) Selecting Node 15

(b) Selecting Node 55

Fig. 3. MIT reality mining dataset. Selecting various nodes reveals differing
patterns. Node 15 changes clusters almost every timestep as the similarity
between clusters fell under the clustering threshold. Node 55 is more stable,
but also shifts cluster membership as other nodes leave or join its cluster.

can start with a more generic search, such as starting from
nodes of high degree. Figure 2 shows an example of such a
selection via our user interface.

Once the user makes an initial selection, a storyline plot is
generated. From this plot, the user can select any of the plotted
lines to refocus the plot on the selected line. In this manner,
the user can expand the view to include neighboring nodes.

IV. RESULTS

We demonstrate our approach on several data sets. First,
we apply it to the phone records from the MIT reality min-
ing dataset, aggregated per day (|Vt| ≈ [750, 1400], |Et| ≈
[1500, 2500]). This data set contains many transient nodes
due to external phone calls, so it is quite noisy at times.
But our approach reveals some interesting patterns. Figure 3
shows some examples. In both images, there are many lines
that exist for only one timestep. Node 15 (Figure 3(a)) is
clustered with many of these, so it does not have a consistant
clustering over time. Node 55 (Figure 3(b)) has a more
consistent set of neighbors, and hence a more consistant
clustering over time. The autonomous systems (AS) of the
Internet provide a much larger and more interesting test case
(|Vt| ≈ [12k, 33k], |Et| ≈ [23k, 71k]). Figure 4 shows several
examples from a year and a half subset of the available time
range. AS8307 (Figure 4(a) is clustered with a number of
other stable nodes, but their cluster changes cluster ID a
few times as it gradually incorporates nodes from the other
cluster shown in the plot. AS9695 (Figure 4(b)) on the other
hand has many chaotic neighbors in its cluster, but little
interaction with other clusters. Larger autonomous systems
such as AS174 or AS3356 (Figures 4(c) and 4(d)) interact with
many other autonomous systems, and often serve as bridges
between clusters. Thus, their cluster assignment is somewhat
less stable, and they are tightly connected to numerous other
clusters. Another interesting pattern that occurs is when a node
starts as a member of one cluster, then splits off to form a new
cluster, such as AS3707 or AS10189 (Figures 4(e) and 4(f)).
Extending our approach to a decade’s worth of time steps of
the Internet dataset yields a large and more chaotic storyline

plot, but which still has patterns similar to those in the smaller
set, as shown in Figure 5. While screenspace starts to be an
issue as the number of timesteps grows, our approach streams
each time step, so it scales well computationally.

V. FUTURE WORK

While our approach works through the data one timestep
at a time, it is still not truly streaming, where individual
changes would be streamed in and handled one at a time. The
clustering and relevance calculation can be computationally
expensive, and it would be beneficial for them to be replaced
with alternatives that could handle incremental changes. The
heuristic approach of Hu et al might be a good place to start
[17]. Then the approach might even be efficient enough for
real-time analyses. The other direction that could be pursued is
to improve the stability of the clustering itself. While this could
detract from the localized cluster quality, it would improve the
readability of the visualization overall. The system could also
use a detailed view of the underlying network itself. As in the
work of Sallaberry et al. [33], the storyline plot can be used to
define a 2-dimensional graph layout via a space filling curve.
Since the storylines guarantee clustering and aim for stability,
they would define a stable and useful dynamic layout.

VI. CONCLUSION

We have presented a new, bottom-up approach to large
dynamic graph visualization. While overviews are still helpful
to convey the overall structure of a large network, they can
be computationally costly and can either be overly cluttered
or overly simplified. Bottom-up approaches such as the one
presented here enable analysts to more directly impart domain
knowledge into the analytics process and more practically
explore the specific regions of the network of interest. We have
demonstrated the effectiveness of our approach by applying it
to several fairly large networks, but the method was designed
with even larger future networks in mind. Techniques such as
ours will become even more vital analysis tools as the size of
data is ever increasing.

ACKNOWLEDGMENT

This work was sponsored in part by the U.S. Na-
tional Science Foundation through grants CCF-0938114 and
CCF-0811422, and also by the U.S. Department of Energy
through the SciDAC program with Agreement No. DE-FC02-
06ER25777 and DE-FC02-12ER26072.

REFERENCES

[1] Daniel Archambault, Helen C. Purchase, and Bruno Pinaud. Animation,
small multiples, and the effect of mental map preservation in dynamic
graphs. IEEE TVCG, 17(4):539–552, 2011.

[2] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008.

[3] Krists Boitmanis, Ulrik Brandes, and Christian Pich. Visualizing
internet evolution on the autonomous systems level. In Proceedings
of the International Symposium on Graph Drawing (GD’07), volume
4875 of LNCS, pages 365–376. Springer, 2008.

[4] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer,
Z. Nikoloski, and D. Wagner. Maximizing modularity is hard. arxiv.
org/abs/physics/0608255, 2006.

(a) Autonomous System 8307 (b) Autonomous System 9695

(c) Autonomous System 174 (Cogent) (d) Autonomous System 3356 (Level3)

(e) Autonomous System 3707 (f) Autonomous System 10189

Fig. 4. The Internet dataset produces much more interesting patterns. Some nodes participate in very slowly evolving yet very stable clusters (a). Others have
a consistant core network and connections to neighboring clusters while neighbors fluctuate (b). High visibility autonomous systems such as those operated by
Cogent or Level3 have even more local flux, with an evolving base cluster yet strong ties to many external clusters (c,d). Some other nodes start out tightly
connected to existing clusters before branching off to start their own subnetworks (e,f).

Fig. 5. Internet dataset. When viewed over a decade’s worth of time, the details can become cluttered, but trends similar to those mentioned before are visible.

[5] Ulrik Brandes and Martin Mader. A quantitative comparison of stress-
minimization approaches for offline dynamic graph drawing. In Pro-
ceedings of the International Symposium on Graph Drawing (GD’11),
volume 7034 of LNCS, pages 99–110. Springer, 1012.

[6] Michael Burch, Corinna Vehlow, Fabian Beck, Stephan Diehl, and
Daniel Weiskopf. Parallel edge splatting for scalable dynamic graph
visualization. IEEE TVCG, 17(12):2344–2353, 2011.

[7] Carlos D. Correa, Tarik Crnovrsanin, and Kwan-Liu Ma. Visual
resoning about social networks using centrality sensitivity. IEEE TVCG,
18(1):106–120, 2012.

[8] Tarik Crnovrsanin, Isaac Liao, Yingcai Wuy, and Kwan-Liu Ma. Visual
recommendations for network navigation. pages 1081–1090, 2011.

[9] Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao,
Huamin Qu, and Xin Tong. Textflow: Towards better understanding of
evolving topics in text. IEEE TVCG, 17(12):2412–2421, 2011.

[10] Stephan Diehl and Carsten Görg. Graphs, they are changing. In Pro-
ceedings of the International Symposium on Graph Drawing (GD’02),
volume 2528 of LNCS, pages 23–30. Springer, 2002.

[11] Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical Aggregation for
Information Visualization: Overview, Techniques, and Design Guide-
lines. IEEE TVCG, 16(3):439–454, 2009.

[12] Cesim Erten, Philip J. Harding, Stephen G. Kobourov, Kevin Wampler,
and Gary V. Yee. GraphAEL: Graph animations with evolving layouts.
In Proceedings of the International Symposium on Graph Drawing
(GD’03), volume 2912 of LNCS, pages 98–110. Springer, 2004.

[13] Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE TVCG,
14(4):727–740, 2008.

[14] G W Furnas. Generalized fisheye views. In Human Factors in
Computing Systems CHI, pages 16–23, 1986.

[15] Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diehl. Dynamic
graph drawing of sequences of orthogonal and hierarchical graphs.
In Proceedings of the International Symposium on Graph Drawing
(GD’04), volume 3383 of LNCS, pages 228–238. Springer, 2004.

[16] Jeffrey Heer and Danah Boyd. Vizster: visualizing online social
networks. In IEEE Symposium on Information Visualization, pages 32–
39, 2005.

[17] Yifan Hu, Stephen G. Kobourov, and Sankar Veeramoni. Embedding,
clustering and coloring for dynamic maps. In Proceedings of the 5th
IEEE Pacific Visualization Symposium, pages 33–40, 2012.

[18] Nam Wook Kim, Stuart K. Card, and Jeffrey Heer. Tracing genealogical
data with timenets. In Proceedings of the International Conference on
Advanced Visual Interfaces, AVI ’10, pages 241–248, New York, NY,
USA, 2010. ACM.

[19] Gautam Kumar and Michael Garland. Visual exploration of complex
time-varying graphs. IEEE TVCG, 12(5):805–812, 2006.

[20] Greg Linden, Brent Smith, and Jeremy York. Amazon.com Recommen-
dations: Item-to-Item Collaborative Filtering. IEEE Internet Computing,
7:76–80, 2003.

[21] Tomer Moscovich, Fanny Chevalier, Nathalie Henry, Emmanuel
Pietriga, and Jean-Daniel Fekete. Topology-Aware Navigation in Large

Networks. In SIGCHI conference on Human Factors in computing
systems, pages 2319–2328, 2009.

[22] Xkcd #657: Movie narrative charts. http://xkcd.com/657, dec. 2009.
[23] M. E. J. Newman and M. Girvan. Graph clustering. Physical Review

E, 69(026113), 2004.
[24] A. Noack. Modularity clustering is force-directed layout. CoRR,

abs/0807.4052, 2008.
[25] Stephen C. North. Incremental layout in DynaDAG. In Proceedings

of the International Symposium on Graph Drawing (GD’95), volume
1027 of LNCS, pages 409–418. Springer, 1996.

[26] Michael Ogawa, Kwan liu Ma, Christian Bird, Premkumar Devanbu,
and Alex Gourley. Visualizing social interaction in open source
software projects. In Proceeding of the 2007 Asia-Pacific Symposium
on Visualisation, pages 25–32. IEEE Computer Society, 2007.

[27] Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In
Proceedings of the 5th international symposium on Software visualiza-
tion, SOFTVIS ’10, pages 35–42, New York, NY, USA, 2010. ACM.

[28] V. ogievetsky. plotweaver xkcd/657 creation tool. https://graphics.
stanford.edu/wikis/cs448b-09-fall/FPOgievetskyVadim, march 2009.

[29] H.C. Purchase, E. Hoggan, and C. Görg. How important is the ”mental
map”? - an empirical investigation of a dynamic graph layout algorithm.
In Proceedings of the International Symposium on Graph Drawing
(GD’06), volume 4372 of LNCS, pages 184–195. Springer, 2007.

[30] H.C. Purchase and A. Samra. Extremes are better: Investigating mental
map preservation in dynamic graphs. In Proceedings of the 5th In-
ternational Conference on Diagrammatic Representation and Inference
(Diagrams 2008), volume 5223 of LNCS, pages 60–73. Springer, 2008.

[31] Khairi Reda, Chayant Tantipathananandh, Andrew Johnson, Jason
Leigh, and Tanya Berger-Wolf. Visualizing the evolution of community
structures in dynamic social networks. Computer Graphics Forum,
30(3):1061–1070, 2011.

[32] P. Saffrey and H.C. Purchase. The ”mental map” versus ”static
aesthetic” compromise in dynamic graphs: A user study. In Proceedings
of the 9th Australasian User Interface Conference (AUIC2008), pages
85–93, 2008.

[33] Arnaud Sallaberry, Chris Muelder, and Kwan-Liu Ma. Clustering,
visualizing, and navigating for large dynamic graphs. In Walter Didimo
and Maurizio Patrignani, editors, Graph Drawing, volume 7704 of
Lecture Notes in Computer Science, pages 487–498. Springer, 2012.

[34] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–
64, 2007.

[35] Ben Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In IEEE Symposium on Visual Languages,
pages 336–343, 1996.

[36] Y. Tanahashi and Kwan-Liu Ma. Design considerations for optimizing
storyline visualizations. IEEE TVCG, 18(12):2679–2688, 2012.

[37] Edward R. Tufte. Envisionning Information. Graphics Press, 1990.
[38] Frank van Ham and Adam Perer. Search, Show Context, Expand on

Demand: Supporting Large Graph Exploration with Degree-of-Interest.
IEEE TVCG, 15(6):953–960, 2009.

