Co2Vis: A Visual Analytics Tool for Mining Co-Expressed and Co-Regulated Genes Implied in HIV Infections

Abstract : One of the key challenges in human health is the identification of disease-causing genes like AIDS (Acquired ImmunoDeficiency Syndrome). Numerous studies have addressed this challenge through gene expression analysis. Due to the amount of data available, processing DNA microarrays in a way that makes biomedical sense is still a major issue. Statistical methods and data mining techniques play a key role in discovering previously unknown knowledge. However, applying such techniques in this context is difficult because the number of measurement points (i.e., gene expression levels) is much higher than the number of samples resulting in the well-known curse of dimensionality problem also called the high feature-to-sample ratio. We propose a combination of data mining and visual analytics methods to identify and render groups of genes implied in HIV infections and sharing common behaviors.
Type de document :
Poster
BioVis: Biological Data Visualization, 2013, Atlanta, United States. 2013
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275395
Contributeur : Arnaud Sallaberry <>
Soumis le : mercredi 17 février 2016 - 13:58:19
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21
Document(s) archivé(s) le : mercredi 18 mai 2016 - 13:13:44

Fichier

zineElAabidine_al_2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01275395, version 1

Citation

Amal Zine El Aabidine, Arnaud Sallaberry, Sandra Bringay, Mickaël Fabrègue, Charles-Henri Lecellier, et al.. Co2Vis: A Visual Analytics Tool for Mining Co-Expressed and Co-Regulated Genes Implied in HIV Infections. BioVis: Biological Data Visualization, 2013, Atlanta, United States. 2013. 〈lirmm-01275395〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

112