
HAL Id: lirmm-01275509
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275509v1

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semi-Supervised Approach to the Detection and
Characterization of Outliers in Categorical Data

Dino Ienco, Ruggero Pensa, Rosa Meo

To cite this version:
Dino Ienco, Ruggero Pensa, Rosa Meo. A Semi-Supervised Approach to the Detection and Char-
acterization of Outliers in Categorical Data. IEEE Transactions on Neural Networks and Learning
Systems, 2017, 28 (5), pp.1017-1029. �10.1109/TNNLS.2016.2526063�. �lirmm-01275509�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275509v1
https://hal.archives-ouvertes.fr


IEEE TRANS. NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2015 1

A Semi-Supervised Approach to the Detection and
Characterization of Outliers in Categorical Data

Dino Ienco, Ruggero G. Pensa, and Rosa Meo

Abstract—In this paper we introduce a new approach of
semi-supervised anomaly detection that deals with categorical
data. Given a training set of instances (all belonging to the
normal class), we analyze the relationships among features for the
extraction of a discriminative characterization of the anomalous
instances. Our key idea is to build a model characterizing the
features of the normal instances and then use a set of distance-
based techniques for the discrimination between the normal and
the anomalous instances. We compare our approach with the
state-of-the-art methods for semi-supervised anomaly detection.
We empirically show that a specifically designed technique for
the management of the categorical data outperforms the general-
purpose approaches. We also show that, in contrast with other
approaches that are opaque because their decision cannot be
easily understood, our proposal produces a discriminative model
that can be easily interpreted and used for the exploration of the
data.

Index Terms—Anomaly detection, distance learning, categori-
cal data, semi-supervised learning.

I. INTRODUCTION

IN many application domains, such as fraud detection, intru-
sion detection, satellite image analysis and fault diagnosis,

the identification of instances that diverge from the expected
behavior is a crucial task. The detection of these instances
(called anomalies or outliers) has multiple applications: it
can be used to spot possible noisy data and clean it, thus
enhancing the analysis, or to identify undesirable events when
they happen.

From a data analysis point of view, outlier/anomaly detec-
tion is the problem of finding abnormal instances in the data,
where data are considered normal if they fit some expected
distribution. It is a multi-disciplinary research area that has
been investigated extensively by researchers from statistics,
data mining and machine learning. In practice, it can be
defined as a classification task where the goal is to decide
whether an incoming instance is normal or anomalous. For a
comprehensive survey of this area we refer to [1].

Though the goal is well defined, there exist multiple
anomaly detection techniques that can be classified on the
basis of two main perspectives: (1) the availability of sup-
plementary information on training data (e.g., class labels),
and (2) the type of data they manipulate.

Concerning the first point of view, in the literature we
identify three classes of approaches: supervised, unsupervised
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and semi-supervised [1]. Supervised techniques are often
handled using classical machine learning techniques where the
problem is treated as a binary classification problem with the
abnormal class being poorly represented (imbalanced data) [2].
Unsupervised techniques detect anomalies without knowledge
on the class variable [3]. They assume that anomalies are
geometrically separated in the features space from the normal
instances. These techniques usually employ clustering algo-
rithms assuming that normal instances are closer to each others
than to outliers which are placed in low density regions. Hence,
they require the availability at processing times of instances
from all the classes.

Unsupervised and supervised anomaly detection techniques
represent the majority of the research work in the area of
anomaly/outlier detection. A limitation of these approaches
consists in the fact that they assume that training data contain
both normal and abnormal instances. In many applications
this is a strong requirement, since abnormal data are often
difficult or expensive to obtain. For instance, in aircraft engine
fault detection, collecting data related to damaged components
requires those components to be sabotaged which is costly and
extremely difficult.

A solution to this point comes from the semi-supervised
approaches [1], [4] that do not require anomalous instances in
the training phase: they build a model of the normal class in
the training data and recognize the anomalies in test data as
those instances that most differ from the normal model. As a
positive side-effect, when normality shifts it may re-learn the
data model.

Concerning the second point of view, most anomaly de-
tection methods apply to numerical or ordinal attributes for
which the normality can be defined by a proximity notion
between instances described as vectors in a m-dimensional
space. When objects are described by numerical features, there
is a wide range of possible proximity measures.

Actually data are often described by categorical attributes
that take values in a set of unordered nominal values, and can-
not be mapped into ordinal values without loss of information.
For instance the mapping of a marital status attribute value
(married or single) or a person’s profession (engineer, teacher,
etc.) to a numerical value is not straightforward. This makes
it impossible even to rank or compute differences between
two values of the feature vectors. For categorical data the
simplest comparison measures are derived from overlap [5]
in which the proximity between two multivariate categorical
entities is proportional to the number of attributes in which
they match. Clearly, these distance metrics do not distinguish
between the different values which is a strong limitation since
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it prevents to capture similarities that are clearly identified by
human experts.

In this paper we propose a solution to the problem of
anomaly detection in categorical data with a semi-supervised
setting. Our approach is based on DILCA, a distance learning
framework we introduced in [6]. The key intuition of DILCA
is that the distance between two values of a categorical
attribute Ai can be determined by the way in which they co-
occur with the values of other attributes in the dataset : if two
values of Ai are similarly distributed w.r.t. other attributes
Aj (with i 6= j), the distance is low. The added value of
this proximity definition is that it takes into consideration
the context of the categorical attribute, defined as the set
of the other attributes that are relevant and non redundant
for the determination of the categorical values. Relevancy
and redundancy are determined by the symmetric uncertainty
measure that is shown to be a good estimate of the correlation
between attributes [7].

We validate our method by an extensive experimental anal-
ysis showing that our new approach based on data proximity
outperforms the state-of-the-art semi-supervised methods in
the field of anomaly detection considering categorical data.
This also empirically demonstrates that simply adapting an
existing numerical approach to categorical data is not a suf-
ficient strategy to successfully detect anomalies. Categorical
data needs ad-hoc strategies. Moreover, the experiments show
that our method is competitive to other methods that directly
consider categorical data. A recent proposal like FRaC [8]
that directly handles categorical data is based on predictive
models: as a consequence its accuracy performance heavily
depends on the predictor models and on the tuning of many
parameters. Moreover, the choice of the predictor models can
be done only by the experts. Our method, instead, is based
on the proximity notion which is intuitive for the end-user.
Last but not least, a positive side-effect of our method, is that
the proximity values between instances provide a descriptive
model that can be easily visualized and allows the exploration
and organization of the domain knowledge by the analyst.
The key contributions of our work are the following:

• We design an anomaly detection framework for cate-
gorical data based on the distance learning approach
presented in [6];

• We embed the distance learning algorithm within differ-
ent ranking strategies and show that our approach returns
good outlier candidates for each of the four proposed
ranking strategies;

• We compare our method with state-of-the-art semi-
supervised outlier detection methods. This comparison
highlights the necessity of designing the anomaly detec-
tion specifically for categorical data.

• We show that our method is not simply a working
method, but it provides also explanatory insights about
the data.

The remainder of this paper is organized as follows: Section
II discusses related work. In section III we briefly explain
the DILCA framework for learning distances from categorical
data [6]. The distance based algorithms, the complexity discus-

sions and the exploration capabilities are presented in Section
IV. In Section V we report the experiments while section VI
concludes.

II. RELATED WORK

Outlier, or anomaly detection, has always attracted a lot of
research interest since its first definition in the late Sixties
[9]. With the advent of data mining and the advances in
machine learning that occurred in the 1990s, the research on
anomaly detection gained new impetus and gave rise to many
novel approaches and algorithms [1]. Even though all these
approaches can be classified depending on various aspects,
here we present some relevant recent algorithms by underlying
the type of data they handle and how they use data labels when
available. In particular, as regards the latter aspect, anomaly
detection approaches can be grouped into three classes: un-
supervised methods, which ignore whether training instances
are normal or anomalous; supervised methods, which leverage
both normal/anomalous class labels; semi-supervised methods,
which handle data that exhibit a partial labeling (generally,
only normal instances are known). Here, we will not address
supervised anomaly detection since the problem is similar to
building predictive models in the presence of imbalanced or
skewed class distributions [2].
Unsupervised and semi-supervised anomaly detection

A well-known proposal of unsupervised outlier detection
is LOF [10] that employs the distance between objects to
detecting local outliers that differ from dense regions. The
distance is computed on the k nearest neighbors: hence, LOF
strongly depends on the setting of the parameter k. In [11]
a cluster-based technique is employed with a kernel-based
technique for a robust segmentation of the customers base
and outlier identification. In [12], the authors introduce an
angle-based outlier method that employs the divergence in the
objects directions. [3] is also focused on unsupervised anomaly
detection on numerical data and categorical attributes are often
ignored, although it is well-known that a misused or unadapted
distance measure may negatively affect the results [13].

Semi-supervised anomaly detection has attracted more re-
search interests in the last fifteen years. A first formulation
was given in [14] with a semi-supervised outlier detection
algorithm based on SVM. The so-called One-Class SVM
algorithm maps input data into a high dimensional feature
space and iteratively finds the maximal margin hyperplane
which best separates the training data from the origin. In [15]
a statistical outlier detection framework is introduced: uLSIF.
It assumes that the density ratio between training and test
set tends to be small for candidate outliers and it estimates
a weight (importance factor) for each training instance. Both
these methods are studied principally for numerical or ordinal
data [16]. Another semi-supervised method is FRaC [8], which
uses normal instances to build an ensemble of feature classifi-
cation models, and then identifies instances that disagree with
those models as anomalous. It is not specifically tailored on
categorical data but it can adopt any classification algorithms
that work well on each specific feature type. All these semi-
supervised methods are compared with ours in Section V.
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Anomaly detection in categorical domains
Many of the early (unsupervised) methods to mine outliers

in categorical domains are based on frequent itemset min-
ing such as [17] and [18]. More recently, the problem of
mining outliers in the categorical domain has been tackled
by directly processing the data. In [19] a greedy algorithm
is presented and adopts a principle based on entropy-change
after instances removal. [20] proposes a method that assigns
a score to each attribute-value pair based on its frequency.
Objects with infrequent attribute values are candidate outliers.
Both these approaches are unsupervised. In [21] the authors
propose an unsupervised method for detecting anomalous
patterns in categorical datasets which is a slightly different
task than the detection of anomalous instances. [22], instead,
is a recent unsupervised method for categorical data that
marks as anomalies those instances whose compression cost
is higher than the cost required by the norm in a pattern-based
compression mechanism based on the Minimum Description
Length principle. The norm is defined as the patterns that
compress the data well (with a low compression cost). [23] is
also a pattern-based compression method, but, contrary to [22],
it works in a semi-supervised setting. However, its detection
accuracy is, on average, worse than the accuracy of OSVM
[14]. Yet it requires the computation of a collection of frequent
itemsets and a minimal support threshold to mine these.

Our work is motivated by the necessity of having a specific
semi-supervised technique that directly manages categorical
data. Our solution embeds a distance learning technique for
categorical data [6] into a distance based algorithm which
serves to characterize the normal class. This characterization
is successively employed to detect the anomalous instances
in a semi-supervised scenario. Our particular choice also
enables a human understandable characterization aiming at
supporting the analyst’s work. Investigating suitable measures
for computing distances between categorical data instances is
also an active field. In this context, another relevant contribu-
tion is [24] in which the authors evaluate the performance
of different distance measures for categorical data for the
anomaly detection task which is known to be affected in a
marked way by the employed measure. To this purpose, the
unsupervised algorithm LOF is combined with 14 different
distance measures. In this work, we don’t use this latter
solution since, as we demonstrated empirically in [6], our
distance learning approach outperforms the most efficient
metrics presented in [24].

III. DISTANCE LEARNING FOR CATEGORICAL ATTRIBUTES

A brief summary of DILCA (DIstance Learning for Cat-
egorical Attributes) is provided here. This is a framework
for computing distances between any pair of values of a
categorical attribute. DILCA was introduced by Ienco et al.
in [6] but was limited to a clustering scenario.

To illustrate this framework, we consider the dataset de-
scribed in Figure 1(a), representing a set of sales described by
means of five categorical attributes: Age, whose possible values
from the set {young, adult, senior} describe the client’s

age; Gender, which describes the client’s gender by means
of the values {M,F}; Profession, whose possible values
are {student, unemployed, businessman, retired}, Product
whose domain is {mobile, smartphone, tablet} and finally
Sales department whose domain values {center, suburbia}
give the location area of the store in which the sales occurred.
The contingency tables in Figure 1(b) and Figure 1(c) show
how the values of attribute Product are distributed w.r.t.
the two attributes Profession and Sales department. From
Figure 1(c), we observe that Product=tablet occurs only with
Sales dep=center and Product=mobile occurs only with Sales
dep=suburbia. Conversely, Product=smartphone is satisfied
both when Sales dep=center and Sales dep=suburbia. From
this distribution of data we infer that, in this particular context,
tablet is more similar to smartphone than to mobile because
the probability of observing a sale in the same department is
closer. However, if we take into account the co-occurrences
of Product values and Profession values (Figure 1(b)) we may
notice that Product=mobile and Product=tablet are closer to
each-other rather than to Product=smartphone, since they are
bought by the same professional categories of customers at a
similar extent.

This example shows that the distribution of the values in
the contingency table may help to define a distance between
the values of a categorical attribute, but also that the context
matters. Let us now consider the set F = {X1, X2, . . . , Xm}
of m categorical attributes and dataset D in which the in-
stances are defined over F . We denote by Y ∈ F the target
attribute, which is a specific attribute in F that is the target of
the method, i.e., the attribute on whose values we compute the
distances. DILCA allows to compute a context-based distance
between any pair of values (yi, yj) of the target attribute Y on
the basis of the similarity between the probability distributions
of yi and yj given the context attributes, called C(Y ) ⊆ F \Y .
For each context attribute Xi ∈ C(Y ) DILCA computes the
conditional probability for both the values yi and yj given the
values xk ∈ Xi and then it applies the Euclidean distance.
The Euclidean distance is normalized by the total number of
considered values:

d(yi, yj) =

√∑
X∈C(Y )

∑
xk∈X(P (yi|xk)− P (yj |xk))2∑

X∈C(Y ) |X|
(1)

The selection of a good context is not trivial, particularly
when data is high-dimensional. In order to select a relevant
and non redundant set of features w.r.t. a target one, we adopt
the FCBF method: a feature-selection approach originally
presented by Yu and Liu [7] exploited in [6] as well. The
FCBF algorithm has been shown to perform better than other
approaches and its parameter-free nature avoids the tuning step
generally needed by other similar approaches. It takes into
account the relevance and the redundancy criteria between
attributes. The correlation for both criteria is evaluated through
the Symmetric Uncertainty measure (SU). SU is a normalized
version of the Information Gain [25] and it ranges between 0
and 1. Given two variables X and Y , SU=1 indicates that
the knowledge of the value of either Y or X completely
predicts the value of the other variable; 0 indicates that Y
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ID Age Gender Profession Product Sale dep.
1 young M student mobile suburbia
2 senior F retired mobile suburbia
3 senior M retired mobile suburbia
4 young M student smartphone suburbia
5 senior F businessman smartphone center
6 adult M unemployed smartphone suburbia
7 adult F businessman tablet center
8 young M student tablet center
9 senior F retired tablet center
10 senior M retired tablet center

(a) Sales table

mobile smartphone tablet
student 1 1 1

unemployed 0 1 0
businessman 0 1 1

retired 2 0 2
(b) Product-Profession

mobile smartphone tablet
center 0 1 4

suburbia 3 2 0
(c) Product-Sales dep.

Fig. 1. Sales: a sample dataset with categorical attributes (a) and two related contingency tables (b and c).

and X are independent. During the step of context selection,
a set of context attributes C(Y ) for a given target attribute
Y is selected. Informally, these attributes Xi ∈ C(Y ) should
have a high value of the Symmetric Uncertainty and are
not redundant. SUY (Xi) denotes the Symmetric Uncertainty
between Xi and the target Y . DILCA first produces a ranking
of the attribute Xi in descending order w.r.t. SUY (Xi). This
operation implements the relevance step. Starting from the
ranking, it compares each pairs of ranked attributes Xi and
Xj . One of them is considered redundant if the Symmetrical
Uncertainty between them is higher than the Symmetrical
Uncertainty that relates each of them to the target. In particular,
Xj is removed if Xi is in higher position of the ranking and
the SU that relates them is higher than the SU that relates
each of them to the target (SUXj

(Xi) > SUY (Xi) and
SUXj (Xi) > SUY (Xj)). This second part of the approach
implements the redundancy step. The results of the whole
procedure is the set of attributes that compose the context
C(Y ).

At the end of the process, DILCA returns a distance model
M = {MXi | i = 1, . . . ,m}, where each MXi is the matrix
containing the distances between any pair of values of attribute
Xi, computed using Eq. 1.

IV. SEMI-SUPERVISED ANOMALY DETECTION FOR
CATEGORICAL DATA

The distance learning approach described in the previous
section has been successfully employed in a clustering sce-
nario (see [6] for details). In this section, we define a semi-
supervised anomaly detection framework for categorical data
which takes benefit of DILCA.

Before entering the core of our approach of anomaly de-
tection for categorical datasets, we recall the definition of a
semi-supervised anomaly detection problem [1].

Let D = {d1, . . . , dn} be a set of n normal data objects
described by a set of categorical features F . Let T =
{t1, . . . , tm} be another set of m data objects described by
the same set F , and such that part of the objects are normal

and the remaining ones are abnormal. To distinguish between
normal and abnormal objects, we define a class variable
class which takes values in the set {A,N}, and such that
∀d ∈ D, class(d) = N and ∀t ∈ T, class(t) ∈ {A,N}. The
goal of the semi-supervised anomaly detection framework is
to decide whether a previously unseen data object t ∈ T is
normal or abnormal, by learning the normal data model from
D.

Typically in anomaly detection there are two ways to present
the results: the first one is to assign a normal/abnormal label to
each test data instance; the second is to give an anomaly score
(a sort of anomaly degree) to each tested instance. The last
method is often preferred since it enables the user to decide a
cutoff threshold over the anomaly score, or to retain the top-
k instances ranked by the anomaly score values. Depending
on the constraints w.r.t. the admitted false positives or true
negatives present in the results, the user may set a high or
low threshold, or decide to consider a high or low value of
k. Our approach supplies the second type of output: given a
training data set D, the normality model learned on D and a
test instance t ∈ T , it returns the value of the anomaly score
of t.

Our approach, called SAnDCat (Semi-supervised Anomaly
Detection for Categorical Data), consists of two phases: during
the first phase, we learn a model of the normal class N
from the training data D; in the second phase we select k
representative objects from D and we take them as a reference
for the computation of the anomaly score of each test instance.
In details, SAnDCat works as follows:

1) It learns a model consisting of a set of matrices M =
{MXi

}, one for each attribute Xi ∈ F . Each element
mi(j, l) = d(xij , x

i
l) is the distance between the values

xij and xil of the attribute Xi, computed using DILCA
by evaluation of Equation 1 over the training dataset
D. These matrices provide a summarization in terms of
the DILCA distance function on the distribution of the
values of the attributes Xi given the other attributes in
the instances of the normal class.

2) Given the above computed matrices MXi
, it is possible
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to compute a distance between any two data instances
d1 and d2 on the basis of the DILCA distance between
the categorical values, using the following formula:

dist(d1, d2) =

√ ∑
MXi

∈M
mi(d1[Xi], d2[Xi])2 (2)

where d1[Xi] and d2[Xi] are respectively the values
of the attribute Xi in the objects d1 and d2. Finally,
SAnDCat measures the outlier score OS associated to
each test instance t ∈ T as the sum of the distances
between t and a subset of k (1 ≤ p ≤ k ≤ n) instances
dp belonging to D, i.e.:

OS(t) =

k∑
p=1

dist(t, dp) (3)

where dist(t, dp) is computed using Equation 2.
The key intuition behind SAnDCat is that a distance that

fits for the training dataset D should fit also for the instances
tn ∈ T whose class(tn) = N , but not for the instances ta
whose class(ta) = A. Hence, we expect that those instances
of T belonging to the normal class N are closer to instances in
D than those belonging to the abnormal class A. The reason
is that combinations of characteristic attribute values of the
normal instances in D produce low distance values between
the normal instances, and these ones are maintained also in
the normal instances of the test set T . On the contrary these
characteristic attribute values are not necessarily present in
the abnormal instances and this produces higher values of the
distances between a normal and an abnormal instance.

A. Selecting k data representatives

We discuss now the problem of the selection of a represen-
tative set of k instances of D for the computation of the outlier
score. Here, we present four different heuristics: two of them
depend on the position of the test instance in the feature space,
and require then to be re-executed for each test instance; the
other two are executed once for all, since they do not depend
on the tested instance. For this reason, the last two heuristics
are suitable also for on-line outlier detection, in application
where data need to be analyzed in real time. In the following,
we present in detail each heuristic strategy.
• Minimum Distance Top-k (MinDTK): given a test

instance t, we compute the outlier score considering the
k training instances that are closer to t. This operation
requires n distance computations to compute distances.
The complexity of choosing the top k similar instances
for each test instance is then O(n). To process the
whole test set T , this strategy requires O(mn) operations.
Supposing m ∼ n, the overall complexity of this heuristic
is O(n2).

• Maximum Distance Top-k (MaxDTK): this strategy is
similar to the previous one, except that in this case we
select the k instances that are most distant from t. The
complexity is the same as in the previous method.

• Random k (RandK): we select k random instances from
the training set, and we compute the outlier score using

these instances for all the test set. This strategy requires
O(k × m) operations. Supposing k � m and m ∼ n,
the overall complexity is O(n). This method is the less
expensive from the computational point of view.

• Central k (CentralK): this heuristic selects the k most
central instances in the training set. As regards the cen-
trality of an instance di ∈ D, we propose the following
measure that should be minimized to find the k most
central instances:

CD(di) =
∑

dp∈D, dp 6=di

dist(di, dp)
2

We use these k instances for computing the outlier score
of the whole test set. This strategy requires O(n2) opera-
tions to compute centrality values, O(n log n) operations
to rank the training instances and O(k ×m) operations
to compute the outlier score of the test set. Supposing
k � m and m ∼ n, the overall complexity of this
heuristic depends on the first step, i.e., O(n2). However,
once the central instances have been selected, it only
requires k distance computations to process each test
instance.

B. Overall complexity

The overall complexity of SAnDCat depends on three
factors: (1) the complexity of the training algorithm, which
depends on DILCA, (2) the selected strategy for computing the
k data representatives, and (3) the type of output (threshold-
based or ranked list). Concerning (1), from [6] it turns out that
the complexity of DILCA is O(nl2 log l), where l = |F |. For
(2), the worst case is given by the first two strategies, which
require O(n2) operations. Finally, for (3), using a threshold
requires constant time, while ranking the test instances requires
O(m logm) operations. Supposing m ∼ n, in the worst
case, SAnDCat requires O(nl2 log l+n2+n log n) operations.
In general l � n of at least one order of magnitude:
we can assume then that the component O(n2) prevails on
O(nl2 log l), and the overall complexity is O(n2) (we show
this empirically in Section IV-B). When using the RandK
strategy, the second component is O(n), leading to an overall
complexity of O(nl2 log l).

C. Characterization, inspection and exploration of anomalies

In addition to the anomaly detection abilities (discussed
in Section V) our approach also supports the characteri-
zation and the exploratory analysis of the anomalies. To
this purpose it provides the analyst with the explana-
tory proximity values between the values of the cate-
gorical attributes. In order to concretely show the added
value of our distance learning approach, we analyze in
detail the Contact-Lenses dataset [26]. The dataset con-
tains 24 instances belonging to 3 classes: soft, hard, none.
Each instance is described by four attributes: Age ∈
{young, pre-presbyotic, presbyotic}, Spectacle prescrip ∈
{myope, hypermetrope}, Astigmatism ∈ {no, yes},
Tear prod rate ∈ {re− duced, normal}. Its small size
allows us to show the behavior of our approach and to easily
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Age young pre-presbyotic presbyotic
young 0 0.2357 0.4714
pre-presbyotic 0.2357 0 0.2357
presbyotic 0.4714 0.2357 0

(a)

Tear Prod Rate normal reduced
normal 0 0.6680
reduced 0.6680 0

(b)

Astigmatism yes no
yes 0 0.2202
no 0.2202 0

(c)

Spectacle Prescrip myope hypermetrope
myope 0 0.2202
hypermetrope 0.2202 0

(d)

Fig. 2. Distance matrices for attribute Age (a), Tear prod rate (b), Astigma-
tism (c) and Spectacle prescrip (d) in the instances of the normal class

give a rational explication of the obtained results. In order
to be used for the purpose of anomaly detection, we update
the dataset to be organized in two classes: the normal class
including all the instances from the original class (none) and
the abnormal class including all the instances for which one of
the contact lenses types was prescribed (hard or soft). Then for
training, we apply DILCA to learn the distance matrices using
the instances alternatively from one of the two resulting classes
(normal and abnormal). In Table I for each feature we show
the attributes belonging to the related context. For instance
we observe that attribute Astigmatism is always correlated
with (Spectacle prescrip, Tear prod rate). This is actually
confirmed by a common knowledge on ophthalmology: astig-
matism is often related to a high production of tears. Also,
we observe that tear production is related to age, as expected.
When we consider the abnormal class, attribute Age becomes
part of the context of all the attributes. This also confirms a
medical common-sense, since age is an influencing factor in
eyesight problems.

In Figure 2 and Figure 3 we report the four distance matrices
learned by DILCA in the normal and abnormal cases. Let us
first consider the normal case (Figure 2). We observe that a
difference between the values of the attribute Tear prod rate
has more influence on the final distance (because the contribu-
tion to the distance is higher) than a mismatch on the attribute
Age or on Astigmatism. As regards the attribute Age we notice
that the mismatch between young and presbyotic has more
impact then all the other possible mismatches on the values
of �Age. This distance matrix is valid even considering the
order that exists among the three values according to their
real meaning: young, pre-presbyotic and presbyotic. When we
look at the abnormal class (Figure 3) the distance matrices for
Astigmatism and Spectacle prescip are confirmed, while the
differences between the values of Tear prod rate appear more
significant (they influence at a greater extent the distances
between the instances of this class). The contribution to the
distances between the values of the attribute Age, instead,

Age young pre-presbyotic presbyotic
young 0 0.1368 0.1949
pre-presbyotic 0.1368 0 0.1144
presbyotic 0.1949 0.1144 0

(a)

Tear Prod Rate normal reduced
normal 0 1.0
reduced 1.0 0

(b)

Astigmatism yes no
yes 0 0.2430
no 0.2430 0

(c)

Spectacle Prescrip myope hypermetrope
myope 0 0.2430
hypermetrope 0.2430 0

(d)

Fig. 3. Distance matrices for attribute Age (a), Tear prod rate (b), Astigma-
tism (c) and Spectacle prescrip (d) in the instances of the abnormal class

looks less significant. Indeed, Age is part of the context of
the other attributes for this class (it contributes already to the
distance computation of all the other attributes) but in isolation
it does not help much to detect instances of this class.

1) The Attribute Model Impact: Obviously, looking at each
distance matrix individually can be frustrating, especially
when dealing with high-dimensional data. We then provide an
automated way to measure the impact of each attribute in the
distance model and visualize the contribution of all attributes
at a glance. We recall that the model generated by SAnDCat
supplies a set of matrices M = {MXi

| i = 1, . . . ,m} (one
for each attribute Xi). Each of them corresponds to a point-
wise distance matrix representing the distance between each
pair of values of a given attribute Xi. The attribute model
impact of Xi, namely I(Xi), is computed as the mean of the
upper (or lower) triangular part of the corresponding matrix
MXi

= {mi(k, l)}:

I(Xi) =

∑N−1
k=1

∑N
l=k+1m

i(k, l)

N(N − 1)/2

where N is the number of values taken by the attribute Xi.
Clearly, the attribute impact takes values in the interval [0, 1]
and higher values of I(Xi) indicate a stronger impact of the
attribute on the distance. The attribute model impact computed
for the normal and abnormal classes of Contact-Lenses are
given in Table II. It is clear that the attribute Age helps to
detect well the instances of the normal class (even better for
the normal class is the attribute Tear Prod Rate); although
Age results quite insignificant in detecting the instances of the
abnormal class, while the other three attributes work better.

2) The Attribute Distance Impact: Since our method does
not compute any distance model for the abnormal class (but
only for the normal class), the attribute model impact can
only be employed when a sufficient number of anomalous
instances has been detected. However, a similar principle can
be applied to any individual test instance. In this case, instead
of computing the attribute model impact, we measure the
contribution of each attribute on the distance between the test
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TABLE I
CONTACT-LENSES ATTRIBUTE CONTEXTS FOR NORMAL AND ABNORMAL CLASSES

Context Attributes
Attribute Normal class Abnormal class
Age Tear prod rate Spectacle prescrip, Tear prod rate
Spectacle prescrip Astigmatism, Tear prod rate Age, Astigmatism, Tear prod rate
Astigmatism Spectacle prescrip, Tear prod rate Age, Spectacle prescrip, Tear prod rate
Tear prod rate Age, Spectacle prescrip Age

TABLE II
THE ATTRIBUTE MODEL IMPACT AND DISTANCE IMPACT FOR THE

ATTRIBUTES OF Contact-Lenses.

Attribute model impact
Class Age Tear Prod Rate Astigm. Spectacle P.
normal 0.3143 0.6680 0.2202 0.2202
abnormal 0.1487 1.000 0.2430 0.2430

Attribute distance impact
Class Age Tear Prod Rate Astigm. Spectacle P.
abnormal 0.2165 0.5344 0.1109 0.1109

instance and the instances from the normal class. For a given
attribute Xi, an anomalous instance ta and the set of normal
instances D, the attribute distance impact of Xi in ta, namely
I(Xi, ta) is given by:

I(Xi, ta) =

∑
dj∈Repr(D)m

i(ta[Xi], dj [Xi])

|Repr(D)|

where ta[Xi] and dj [Xi] are respectively the values of the
attribute Xi in the instances ta and dj and mi(ta[Xi], dj [Xi])
is the corresponding element in MXi

∈ M. Notice that the
set of instances dj ∈ D considered for the computation of the
attribute distance impact is the set Repr(D), i.e., the set of
the representative instances of the normal class D selected by
any of the methods described in Section IV-A.

The attribute distance impact takes values in the interval
[0, 1]: a higher value of I(Xi) indicates a stronger impact of
the attribute on the distance between the abnormal instance
and the normal ones. The average of the values of the
attribute distance impact for each attribute, where the average
is computed for all the anomalous instances of Contact-Lenses
is given in Table II.

The expressiveness of the attribute distance impact can be
further exploited by means of some visual analytic tool. For
instance, in Figure 4 we employ the well known word cloud
paradigm. A word cloud is a visual representation for text
data where the importance of each word is shown with the
font size and/or its color. In our application, the font size of
each attribute is proportional to its impact. The two clouds in
Figure 4(a) and 4(b) clearly show the impact change of the
attribute Age when moving from the instances of the normal
class to the instances of the abnormal one. Figure 4(c), instead,
shows the higher impact of some attributes (in particular of
Tear Prod Rate) in terms of the attribute distance impact for
the computation of the distance between abnormal instances
and the instances of the normal class.

tearprodrate
age

spectacleprescrip

astigmatism

(a)

tearprodrate
age

spectacleprescrip

astigmatism

(b)

tearprodrate
age

spectacleprescrip
astigmatism

(c)

Fig. 4. Word clouds for the attribute model impact in Contact-Lenses for the
instances of the normal class (a), the abnormal one (b) and the cloud for the
attribute distance impact for the instances of the abnormal class (c).

D. Exploration of the data by the DILCA distances

Finally, our method also supports visual analytic tools
for the exploration of the data and the visualization of the
anomalous instances. In fact, differently from the competitors,
SAnDCat computes a distance model (provided by the DILCA
distances) that can be employed to visualize and explore
anomalies using the Multi Dimensional Scaling algorithm [27].
This well-known technique is usually employed to derive
an m-dimensional representation of a given set of instances
(points) by only computing all the point-to-point distances.
It computes a geometrical projection of the data points such
that the original distances are preserved as much as possible.
The only required parameter is the number of dimensions m.
Figure 5 shows the multi-dimensional scaling representation of
9 test instances from Contact-lenses plotted in a 2-dimensional
space (m = 2). The point-to-point distance has been computed
by equation 2 having selected only k = 15 representative
training instances dj . Notice that the projection of some
of the instances in the 2-dimensional space makes some of
the instances coincide in the same point. The picture shows
quite a sharp separation between the normal instances and
the abnormal ones (the instances from the opposite classes
coincide only in two points out of six). This confirms that
the instances coming from the opposite classes tend to have
different attribute values and are placed in a different region
of the space. Moreover, the distances between instances of
the opposite classes are on average higher than the distances
between instances of the same class.

V. EXPERIMENTS

To assess the quality of our approach we conducted several
experiments on real world categorical datasets. In this section
we first evaluate the four heuristics, for different values of k.
Then, we compare our approach with state-of-the-art methods.
Finally, we present a simple example to analyze the obtained
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Fig. 5. Test instances visualized using Multi Dimensional Scaling for Contact-
Lenses.

model and illustrate how this model could be used to improve
the exploratory analysis.

To evaluate the performance of an outlier detection al-
gorithm, we must take into account both the detection rate
(the amount of instances of the abnormal class found by the
algorithm) and the detection error (the amount of instances
of the normal class that the algorithm misjudges as outliers).
To consider both measures at the same time, it is common to
evaluate the results using the Area Under the Curve (AUC)
[28]. In this work, we use the approach proposed in [29], in
which the AUC score is computed with a closed-form formula:

AUC =
S0 − n0(n0 + 1)/2

n0n1

where n0 is the number of test instances belonging to the
normal class, n1 is the number of abnormal test instances and
S0 =

∑n0

i=1 ri, where ri is the rank given by the class model
of the normal class to the i-th normal instance in the test set.
In our case it is the OS score given to each normal instance
in the test set.

In order to evaluate our approach we use 13 real-world
datasets, from the UCI Machine Learning repository [26].
A summary of the information about the datasets is shown
in Table III, where we report the number of normal and
anomalous instances, the number of attributes and the overall
number of different attribute-value pairs. These datasets have
been chosen because they exhibit a variety of properties in
terms of number of attributes, attribute cardinality and number
of objects.

We compare our method with four competitors: LOF (Local
Outlier Factor) [10], OSVM (One-Class Support Vector Ma-
chine) [14], uLSIF (Unconstrained Least-Square Importance
Fitting) [15] and FRaC (Feature Ensemble model) [8]. We
use the authors’ implementations of OSVM (in C++), uLSIF
(in Octave), FRaC (in Java) and our own implementation of
LOF in Java. SAnDCat is implemented in Java.

To allow LOF working with categorical attributes we need
to couple it with a distance function that is able to manage this
kind of data. In [24] a comparative study of similarity/distance
functions for categorical data is presented. We choose to
couple LOF with the Occurrence frequency (OF) distance
function because this measure was reported to obtain the
highest performance results. This measure assigns a high
distance value to mismatches on infrequent values.

For each dataset, we discretized the numerical features using
equi-depth bins with the number of bins equal to ten. We

TABLE III
DATASETS CHARACTERISTICS.

Dataset # Normal # Abnormal # Attr. # Val.
Adult 37 155 350 13 118
Audiology 57 1 69 154
Breast-cancer 201 6 9 51
Credit-a 383 9 15 101
Dermatology 112 3 34 139
Lymph 81 1 18 74
Hepatitis 123 3 19 86
Madelon 1 300 39 500 5 000
Mushroom 4 208 126 22 125
Nursery 4 320 129 8 27
Page-blocks 4 913 147 10 100
Spambase 2 788 54 57 570
Votes 267 8 16 32

performed the data pre-processing required by uLSIF and
OSVM and converted each categorical attribute assigning a
boolean attribute to each categorical value (a standard pre-
processing for SVM). We adopt the same pre-processing for
uLSIF.

The experiments were conducted as follows. Given a
dataset, we labeled as normal instances the instances belonging
to the majority class (the class with the highest number of
instances). Then we selected randomly 3% of instances from
the other classes and we label these instances as abnormal.
To evaluate the performance of the different semi-supervised
approaches we performed a 5-fold cross validation. This means
that for each dataset we divided all the instances of the normal
class into 5 folds. At each iteration of the cross-validation we
learned the model on 4 folds and tested the method on the
remaining fold plus the instances of the abnormal class. At the
end of the procedure we report the average on the different
folds. All the experiments were conducted on a MacBook Pro
equipped with a 2.6 GHz Intel Core i5 processor, 8GB RAM
and running OS X 10.9.2.

Unfortunately OSVM outlier scores cannot be obtained
directly. Thus, in our experiments, the outlier score is the
distance from the separating hyperplane, as suggested in [15].
uLSIF is based on a random selection of training instances.
Hence, we ran the algorithm 30 times and we retained the
average of the results. Similarly it was done for the RandomK
strategy: we averaged its results over 30 runs. Finally, LOF
was launched using four different values (10, 20, 30, 40) of
the k parameter (the number of neighbors).

A. Evaluation of the results

In Figure 6 we report the results of the first experiment that
had the purpose of evaluating the four different strategies em-
ployed by SAnDCat for the selection of the k representatives.
For each heuristic the value of k ranges over the set: {10,
20, 30, 40}. In Figure 6 we report the average AUC results
of SAnDCat on all the datasets. In general the average AUC
values are quite high. They vary from a minimum of 0.7568 for
the MinDTK method with k = 10, to a maximum of 0.8001
for the MaxDTK method (with k = 40). Interestingly, this
method achieves the best results for all the employed values
of k. In general, however, the different strategies return similar
results, and the value of k does not seem to be much significant



IEEE TRANS. NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, NOVEMBER 2015 9

k MinDTK MaxDTK RandomK CentralK
10 0.7568 0.7805 0.7782 0.7654
20 0.7775 0.7966 0.7816 0.7693
30 0.7858 0.799 0.7865 0.7735
40 0.7832 0.8001 0.7877 0.777

(a)

k MinDTK MaxDTK RandomK CentralK
10 2 3 0 0
20 1 1 0 0
30 1 0 0 1
40 1 3 0 0

(b)

Fig. 6. Average AUC (a) and number of wins (b) for all heuristics of SAnDCat
and for any given value of k.

for the accuracy of our algorithm. It shows that values of
k between 20 and 30 are sufficient to guarantee acceptable
anomaly detection rates. Moreover, the differences in AUC
for a given heuristic are not significant.

In order to compare our approach with the competitors,
we selected the combination of k value and heuristics for
SAnDCat that provides the best average results (that in our
case corresponds with one of the combinations that win most
of the times as well). Thus, we select MaxDTK with k = 40.

We perform a similar experiment for LOF. We compare the
results for k = {10, 20, 30, 40} (see Figure 7) and retain the
parameter value which provides the best result (k = 40).

The results of the experiments are reported in Table IV.
SAnDCat wins most of the times (8 datasets over 13). If we
look at the competitors, OSVM wins on three datasets only,
FRaC wins on 4 datasets; uLSIF and LOF never achieve the
best result, but this is not surprising. These two algorithms
performs poorly on high-dimensional data, since they are
based on density estimation, which is known to work well
only on low-dimensional numerical data. Notice that, even
when our approach does not win, its AUC is close to the
winner’s one. The only exception is constituted by Lymph,
but other combination of SAnDCat’s parameters bring to better
results for this dataset (e.g., MaxDTK with k = 20 achieves
an AUC of 0.8404). These results underline that taking into
account the inter-dependence between attributes allows the
management of the categorical data and it helps to obtain
the best accuracy results for the detection of the anomalous
instances. This impression is also confirmed by the average
results (see Figure 8) showing that SAnDCat’s average AUC
computed on all datasets is sensibly higher than competitors’
ones.

It is worth noting also the poor performance of all al-
gorithms when applied to Madelon. In this case, the low
AUC values are due to the extremely high dimensionality of
the dataset: 500 attributes with 10 values per attribute for a
relatively small amount of instances. In these situations, most
algorithms are prone to generalization errors.

As additional evaluation, we also perform statistical tests to
show the significance of the obtained results. More in detail,
we employ the Friedman test [30] based on the average rank

k 10 20 30 40
Avg. AUC 0.3976 0.5067 0.5898 0.6147
No. of wins 1 1 3 8

Fig. 7. LOF’s average AUC and number of wins for any given value of k.

TABLE IV
AUC RESULTS ON UCI DATASETS: SANDCAT VS LOF, ULSIF, OSVM

AND FRAC.

Dataset SAnDCat LOF uLSIF OSVM FRaC
Adult 0.5743 0.4478 0.3706 0.5961 0.551
Audiology 0.8606 0.8245 0.3595 0.4956 0.4504
Breast-cancer 0.6070 0.5091 0.3624 0.5268 0.5258
Credit-a 0.7494 0.5201 0.3572 0.7317 0.4761
Dermatology 1.0000 0.7857 0.3587 1.0000 1.0000
Hepatitis 0.8860 0.6476 0.3607 0.8136 0.8758
Madelon 0.5063 0.4770 0.2506 0.496 0.5186
Lymph 0.7890 0.8641 0.3635 0.8520 0.8657
Mushroom 0.9995 0.5243 0.3594 0.6730 0.6959
Nursery 1.0000 0.5852 0.3592 0.5667 0.5807
Page-blocks 0.7513 0.2993 0.3626 0.6314 0.6665
Spambase 0.7022 0.4451 0.3383 0.7281 0.7132
Vote 0.9762 0.8979 0.5000 0.9375 0.9942
Avg. AUC 0.8001 0.6021 0.3617 0.6960 0.6856
Std. Dev. 0.1710 0.1868 0.0517 0.1661 0.1927
Max AUC 1.0000 0.8979 0.5000 1.0000 1.0000
Min AUC 0.5063 0.2993 0.2506 0.4956 0.4504
Avg. Rank 1.6154 3.5385 4.9231 2.4615 2.2308

of 5 algorithms on 10 datasets. We compare SAnDCat with
all the competitors (FRaC, uLSIF, OSVM, LOF) over all the
datasets. The average rank is provided on bottom of Figure IV.
According to the Friedman test, the null hypothesis is that all
the methods obtain similar performances, i.e., the Friedman
statistics X 2

F is lower or equal to the critical value of the chi-
square distribution with k − 1 degrees of freedom (k being
the number of algorithms). At significance levels of α = 0.01,
X 2
F = 29.09 while the critical value of the chi-square dis-

tribution is 13.28. Thus, the null hypothesis is comfortably
rejected underling statistically significant differences among
the methods. The post-hoc Nemenyi test [30] confirms that,
at significance level α = 0.10, our algorithm is the only one
that achieves statistically better results w.r.t. the two worst
competitors in our experiments, the critical difference being
CDα=0.1 = 1.7036.

B. Computational complexity

As we have shown in Section IV-B, the theoretical com-
putational complexity of our algorithm is O(nl2 log l) for
training and O(n2) for testing, where l is the number of
features and n is the number of data objects (assuming that
the number of training instances and test instances are of the
same order of magnitude). To confirm this theoretical result
experimentally, we perform a scalability test by measuring the
time performances of SAnDCat (using MaxDTK as heuristic)
w.r.t. the number of data instances and features. In details, we
consider different percentages (from 10% to 100%) of data
instances from Adult, and different percentages (from 10% to
100%) of features from Madelon. Then we train SAnDCat on
80% of the instances and test the remaining 20%. In Figure 9
we report the measured running time for training and test in
the two cases. The curves confirm our theoretical analysis.
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Fig. 9. Runtime of SAnDCat for increasing percentages of instances (left)
and features (right).

In particular, training time is mostly affected by dataset
dimensionality, while test time strongly depends on dataset
size. These results highlight a limitation of our approach:
when MaxDTK is chosen as strategy for testing new instances,
it is not adapted to online/real-time anomaly detection tasks.
However, CentralK and RandK strategies can be used to speed-
up the test phase at a reasonable cost in terms of detection
accuracy (see Figure 6(a)).

Since the algorithms are implemented in different program-
ming languages, we didn’t perform any runtime performance
comparison, which would be biased by the specific compiler
optimizations and weaknesses. Nonetheless, here we provide
a discussion about the theoretical complexity of all the com-
petitors.

The only competitor that achieve better theoretical perfor-
mances is LOF, whose complexity depends on the nearest
neighbors materialization step which requires O(n log n) op-
erations [10]. However, when LOF operates on categorical
data, it can not leverage any optimized data structure. In
this case its complexity is also quadratic. The performances
of the other two competitors are in line with those of our
algorithm. OSVM involves a complex quadratic programming
problem whose solution requires between O(n2) and O(n3)
operations [14], uLSIF requires a matrix inversion step [15],
whose complexity is cubic, even though there exist slightly less
complex approximation algorithms. Finally, the complexity of
FRaC depends on the complexity of the predictors employed
to compute the feature models. Some predictors are linear in
the number of data objects (e.g., Naive Bayes), however FRaC
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Fig. 10. Attribute clouds for the normal and abnormal classes of Hepatits (a
and b), Breast cancer (c and d), and Adult (e and f) employing the attribute
model impact.

runs multiple cross-validation loops for each feature and for
each classifier of the ensemble, so the complexity may easily
approach O(n2) in some cases.

C. Characterization of anomalies

Here, we show how to inspect the model generated by
SAnDCat with the purpose of understanding the contribution
of each single attribute to the final decision and supporting
the usage of visual analytic tools for the exploration of the
data. For this experiment, we employ Adult, Breast-cancer and
Hepatitis datasets. We have chosen these three datasets since
the names of their attributes are self-explaining and may then
support a qualitative (rather than quantitative) analysis of the
results.

We first employ the attribute impact metric (see Sec-
tion IV-C) to obtain visual hints regarding the importance
of each attribute. In Figure 10 the word cloud paradigm is
adopted in order to provide a graphical representation of the
attribute impact.

We observe, for instance, that in Breast cancer attributes
menopause, irradiat and nodeCaps have discriminant values
for the normal class (patients with no recurrence events,
Figure 10(c)), while a variation of these attributes values is
less significant for the abnormal class (patients with recurrence
events, Figure 10(d)). This means that the values of these
particular attributes are homogeneously distributed over all
the instances belonging to the abnormal class (therefore they
are not predictive of this class). On the other hand, breast,
breastQuad and tumorSize have a different distribution in
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Fig. 11. Attribute clouds for Hepatits(3) (a), Breast cancer(3) (b), and
Adult(3) (c) employing the average attribute distance impact.

the anomalous instances. This change is detected by our
algorithm and used to decide whether an instance is normal or
anomalous. In Adult, the normal class corresponds to people
making less than 50K dollars per year (Figure 10(e)). In this
class, the most discriminative attributes are race and sex.
In the abnormal class, race is distributed more uniformly,
while many other attributes have a more important impact (see
Figure 10(f)). Clear variations between the attributes impact
are also evidenced in Hepatitis (e.g., see the attribute liverFirm
in Figures 10(a) and 10(b)).

In Figure 11 we report the word clouds representing the
average attribute distance impact values of the anomalous
class. In Adult (we recall again that this dataset has the goal
of retaining the people making more than 50K dollars per
year, Figure 11(c)), we can observe that race and sex do not
contribute much to the distance computation (i.e., the values
of these attributes do not differ so much between the normal
and anomalous instances). In the case of Hepatitis, the main
differences between the anomalous class (died patients, Fig-
ure 11(a)) and the normal one (survived patients, Figure 10(a))
lie in the impact of the attribute histology that does not result
so important for the purposes of detecting instances of the
normal class while it plays an important role in discriminating
between normal and anomalous instances. In the same dataset,
we note that the attribute ascites represents a valuable infor-
mation because it helps to distinguish normal instances and
it is also crucial to discriminate anomalous examples. Similar
considerations apply for attributes menopause and invNodes in
Breast cancer as well (see Figure 11(b)).

As a further study, we analyze the discriminative power of
SAnDCat with respect to the attribute impact. To this purpose,
we rank the attributes in ascending order of I(Xi) and we
retain only top-n features to build the discriminative model.
By varying n, we may measure how the attribute impact
is related to the accuracy of SAnDCat. The results of these
experiments are reported in Figure 13: on the X-axis we report
the number of retained attributes, while on the Y-axis we show
the achieved AUC. As a general remark, we observe that using
half of the attributes in the prediction allows SAnDCat to
obtain reasonable and competitive results as with the whole
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Fig. 12. Test instances visualized using Multi Dimensional Scaling for
Dermatology (a) and Hepatitis (b).

feature space. In some cases using a low number of attributes
has a positive impact over the final results. We can observe
this phenomenon in Figure 13(c) for SAnDCat applied on
Adult. In this case the model built using only 4 to 7 attributes
outperforms the model built on the whole attribute space (14
attributes). As a future work, we will study how this selection
process can be related to the feature selection task whose goal
is the selection of a subset of attributes with the purpose of
improving the performance of a classifier [31].

As a final experiment, we employ the MDS (multi-
dimensional scaling) technique to plot normal and anomalous
data points in a reduced dimensional space. Figure 12 shows
the plots obtained by applying a 2-dimensional scaling to the
test examples of two datasets: Dermatology and Hepatitis. We
observe that the normal instances are well separated from
the abnormal ones. Interestingly, some abnormal points are
close to each other and they form small clusters in this
2-dimensional representation. A possible application of this
technique, is to employ an interactive MDS plot, where the
color of each point depends on the outlier score given in
Section IV by Equation 3. Thanks to this tool, an analyst
may select potential anomalies and inspect them. This tool
also supports an active learning process: in fact, the analyst’s
feedback on potential anomalies can be used to enrich the
positive model, thus providing a more accurate classifier.

In conclusion, while the competitors only aim at the im-
provement of the detection performances, SAnDCat not only
obtains comparable or better results, but it also supplies
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Fig. 13. AUC for Hepatits (a), Breast cancer (b) and Adult (c), considering only top-k attributes ranked by their impact.

explanatory information that supports an exploratory analysis
of the anomalies. Statistical information extracted from the
model learnt by SAnDCat can be easily exploited by the user
in order to get extra information on how the process works
and how it makes its decision.

VI. CONCLUSION

Managing and handling categorical data is a recurrent
problem in data mining. Most of the times this kind of data
requires ad-hoc techniques in order to obtain satisfactory re-
sults. Following this direction, in this paper we have presented
a new approach to semi-supervised anomaly detection for
categorical data. We have shown that our framework, based on
information-theoretic techniques, is able to model categorical
data using a distance-based algorithm. We obtain very good
results w.r.t. other state-of-the-art semi-supervised methods
for anomaly detection. We show that our approach outper-
forms also a fully unsupervised anomaly detection technique
like LOF that we have coupled with a specific measure
for categorical data. We underline also the complementary
information that our approach produces during the learning
step. In the paper we gave some practical examples of how it
is possible to exploit this additional information extracted by
our method (distances between instances and the models) in a
visualization framework and providing a summary information
on the classes.

As a future work we will investigate the following issues: i)
new data structures to handle categorical data more efficiently
and speed-up the anomaly detection task; ii) new distance-
based algorithms that are able to couple the DILCA measure
with the usage of feature weights and their employment for
data cleaning; iii) a way to extend our analysis in order to
manage both continuous and categorical attributes in a unique
and more general framework; iv) an extension of the semi-
supervised method with active learning.
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