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ABSTRACT
In this letter, we propose a new active transductive learning (ATL)
framework for object-based classification of satellite images. The fra-
mework couples graph-based label propagation with active learning
(AL) to exploit positive aspects of the two learning settings. The
transductive approach considers both labelled and unlabelled image
objects to perform its classification as they are all available at training
time while the AL strategy smartly guides the construction of the
training set employed by the learner. The proposed framework was
tested in the context of a land cover classification task using RapidEye
optical imagery. A reference land cover map was elaborated over the
whole study area in order to get reliable information about the per-
formance of the ATL framework. The experimental evaluation under-
lines that, with a reasonable amount of training data, our framework
outperforms state of the art classification methods usually employed
in the field of remote sensing.
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1. Introduction

Data labels are usually difficult and expensive to obtain. Standard classification techniques
heavily rely on the hypothesis that a big quantity of labelled examples (training set) is
available to build predictive models. Considering the remote sensing domain, in particular
the object-based image classification, the label acquisition constitutes a time and effort
consuming task for the expert. The collection of such labels can affect negatively the image
classification task from two points of view: the quantity of labelled data commonly needed
by standard inductive classifier and the way the objects to label are chosen.

Classical supervised inductive classification approaches (i.e. Support Vector Machine (SVM),
Naive Bayes (NB), RandomForest (RF), etc.) requiremany labelled data to train themodel. Also,
they assume that training and test data are not available at the same time since the model
they have learnt needs to be enough general to classify new unseen examples available in a
near future (Vapnik 1998). However, in the case of remote sensing image classification,
training examples are limited and all the objects (training and test) are available at the
same time.

A different classification setting is supplied by transductive learning (Joachims 1999),
which belongs to the family of the semi-supervised approaches. Transductive learning tries
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to propagate information from the labelled data to the unlabelled one leveraging the
availability of training and test data at the same time. These kinds of techniques offer an
effective approach to supply contextual classification of unlabelled examples by using a
relatively small set of labelled examples. Many real-world applications can be modelled
through a transductive setting. In particular, it has been also applied in the remote sensing
domain (Sun et al. 2014) where labels are difficult to obtain and the classification decisions
should not be made separately from learning the current data. Differently from inductive
classification, transductive learning does not produce any reusable model.

The second issue regards the way labels are collected. Objects which are usually labelled
almost randomly by an expert while choosing examples guided by the needs of the classifier
can drastically improve classification performance (Demir, Minello, and Bruzzone 2014). This
kind of technique is called active learning (AL), and it allows to involve expert interaction
during the classifier construction. More in detail, the choice of the objects to label is guided by
the learner needs; therefore, labels are obtained for the objects that can, potentially, improve
the performance of the model. The objects are generally selected considering the classifier
uncertainty over the set of possible examples to choose (Fu, Zhu, and Li 2013). In remote
sensing applications, this approach is getting more and more attention (Demir, Minello, and
Bruzzone 2014) due to the improvement it can supply in the task of image classification.

In this letter, we propose to couple transductive and AL in order to design a new active
transductive learning (ATL) framework. We adapted a label propagation approach (Liu and
Chang 2009) to object-based image classification and combined it with an effective AL
strategy. The proposed methodology was experimented in the context of land cover
object-based image classification.

2. Study area and data set description

2.1. Study area

Experiments were performed on the Lower Aude Valley site, located in the south of France.
Spanning over a coastal wetland area of about 4842 ha, this site is part of the European
network of protection areas called Natura 2000. Most of the site (56.3%) is composed of
natural and semi-natural areas, specially salt-meadows, salt-marshes and coastal lagoons. The
rest (43.7%) is mainly occupied by agricultural parcels (vineyards, cereal crops, orchards) and
some small built-up areas (roads and houses).

2.2. Data set preparation

As input raster data we used a RapidEye multispectral image acquired in 24 June 2009 and
available in the context of the Geoinformation for Sustainable Development (GEOSUD)
project. The image was provided in level 3A, which means that radiometric, sensor and
geometric corrections were performed. At this processing level, the RapidEye product has a
pixel spacing of 5 m and contains five spectral bands (approximate centre in nm): blue (475),
green (555), red (657), red-edge (710) and near-infrared (805).

Image segmentationwas performed using the five spectral bands and considering only the
area inside the Lower Aude Valley site. This step is of great importance as it provides a new and
more meaningful representation of the image. Instead of the arbitrary pixel grid, segmenta-
tion aims to create spatially coherent objects based on spectral and spatial features of
adjacent pixels over the image. The segmentation was performed using the multiresolution
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segmentation algorithm (MSA) available at eCognition Developer 8.8.1. MSA is a bottom-up
segmentation based on a pairwise regionmerging technique. It uses a homogeneity criterion
(combination of spectral and shape criteria) to decide whether to merge or not neighbouring
pixels or objects. In our case, we set the MSA user parameters as following: scale = 100,
shape = 0.2, compactness = 0.5. It generated a set of 13,292 objects with a good compromise
in terms of under and over segmentation (Troya-Galvis et al. 2015). For each object, we
calculated the following attributes: mean value for the five inner spectral bands and for five
additional spectral indices – normalized difference vegetation index (NDVI) (Rouse et al. 1974),
red edge normalized difference vegetation index (NDVIre) (Gitelson and Merzlyak 1994; Kross
et al. 2015), red edge normalized difference water index (NDWIre) (Klemenjak et al. 2012), red
edge triangular vegetation index (RTVIcore) (Chen et al. 2010) and simple ratio (SR) (Jordan
1969).

In parallel, the RapidEye image was used to create a reference map over the whole study
site (see Figure 1). This task was carried out through a manual land cover digitalization and
interpretation process at the scale of 1:10,000. Field surveys and precise aerials photographs
(0.5 m of spatial resolution) were employed to ensure the exactness of the land cover map.
Two specific sets of land cover classes were used label the individual map units (polygons in
our case). The first set is specific to natural and semi-natural areas (from now called natural
data set) while the second set concerns artificial, cultivated and managed areas (from now
called artificial data set).

Finally, the land cover information (from the reference map) was propagated into the set
of objects (from the image segmentation). Only the objects fitting completely inside the
polygons of the reference map received a land cover label (see Figure 1). In total, 3357
objects were labelled for the natural data set and 3637 for the artificial data set. As the
experiment reproduces a real task of land cover image classification, the number of objects

Natural and semi-natural areas (Natural dataset)

Ar tificial, cultivated and managed Areas (Ar tificial dataset)
AA1 - Highway and major road sections

AA2 - Other built-up and associated areas

AB1 - Artificial lakes and ponds

AC1 - Crops - dense cover and high greenness values

AC2 - Crops - moderate/sparse cover and high greenness values

AC3 - Crops - low greenness values

AC4 - Crops - harvested parcels

AC5 - Crops - floating row covers and bare soils

AC6 - Vineyards - sparse cover

AC7 - Vineyards - dense/moderate cover

AC8 - Orchards

NA1 - Dense/moderate vegetation cover and high greenness values

NA2 - Dense/moderate vegetation cover and moderate greenness values

NA3 - Dense/moderate vegetation cover and low greenness values

NA4 - Sparse vegetation cover

NB1 - Dry flats

NB2 - Unvegetated dunes and beaches

NC1 - Shallow waters

NC2 - Deep waters

0 3km 0 3kmLand cover map Labelled objects

3° 6' 39'' E

43
° 

16
' 3

9'
' N

3° 6' 38'' E

43
° 

11
' 0

3'
' N

Figure 1. Land cover reference map for the Lower Aude Valley site (left side) and the spatial
distribution of the labelled objects generated by the segmentation (right side).
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per class is strongly unbalanced as one can notice in the following lists (the number of
objects is indicated in brackets). Natural classes: NA1(264), NA2(760), NA3(1019), NA4(161),
NB1(253), NB2(155), NC1(529) and NC2(216). Artificial classes: AA1(21), AA2(418), AB1(77),
AC1(439), AC2(277), AC3(658), AC4(542), AC5(209), AC6(75), AC7(900) and AC8(21).

3. Methodology

In this section, we introduce the different components used to implement the ATL frame-
work: (i) the transductive setting, (ii) the label propagation algorithm and (iii) the AL strategy.

3.1. Transductive setting

Given a set of objects O ¼ oif gNi¼1, let us denote with L the subset of labelled objects of
O, and with U the subset of unlabelled ones. U can have any proportion w.r.t. L, but in
many real cases U is much larger than L. Every object in L is associated to one class

belonging to C ¼ Cj
� �M

j¼1, where M is the number of possible classes. We also denote

with Y a N × M matrix such that the (i, j)th element of this matrix, Yij, equals 1 if Cj is the
label assigned to object oi; Yij ¼ 0 otherwise. Without loss of generality, we can refer to L
as training data and to U as test data.

The goal of a transductive learner (TL) is to make an inference ‘from particular to
particular’, i.e. given the classifications of the instances in the training set L, it aims to
predict the classifications of the instances in the test set U, rather than inducing a
general rule that works out for classifying new unseen instances (Vapnik 1998).
Transduction is naturally related to the class of case-based learning algorithms, whose
most well-known algorithm is the k-nearest neighbour (k-NN) (Joachims 2003).
Differently from standard supervised setting, in the transductive setting there is no
separation between model training and testing phase. The classification of new unseen
example is performed at the same time the model is learnt over L.

3.2. Label propagation algorithm

In order to perform transductive learning, we adapted the approach named robust
multi-class graph transduction (RMGT) proposed by Liu and Chang (2009). From the
best of our knowledge, it is the first time this kind of approach is employed in a remote
sensing application, in particular to perform an object-based classification.

Essentially, RMGT implements a graph-based label propagation approach, which exploits
a k-NN graph built over the entire data set to propagate the class information from the
labeled to the unlabelled examples. The assumption behind this approach is that adjacent
vertices are likely to have similar labels. For this reason, the label propagation procedure
ensures that the classification function varies smoothly along the edges of the k-NN graph.
In the following, we describe in detail the mathematical aspects of RMGT.

Let G ¼ V; E;wh i be an undirected graph whose vertex set is V ¼ O, edge set is
E ¼ oi; oj

� �joi;oj 2 O ^ sim oi; oj
� �

>0
� �

, and edge weighting is w ¼ sim oi; oj
� �

, where sim

(·,·) is defined as 1
1þdist �;�ð Þ and dist(·,·) is the Euclidean distance between the feature vectors of

two objects.

Input: A collection of objects O, with labelled objects L and unlabelled objects U (with
D ¼ L [ U and L \ U ¼ 0=);
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Output: A classification over C for the objects in U.

(1) Build the similarity graph G for the object set O.
(2) Extract the k-nearest neighbour graph Gk from G. /* Section 3.2 */
(3) Build the matrix W from Gk, which represents the symmetry-favoured k-NN graph. /*

Section 3.2 */
(4) Compute the normalized Laplacian of W. /* Section 3.2 */
(5) Compute the RMGT solution F. /* Equation 2 */
(6) Assign object oi 2 U to the class C�

j that maximizes the class likelihood, j* = arg maxj Fij.

Algorithm 1: Object-Based Transductive Classification

Given a positive integer k, consider the k-NN graph Gk ¼ V; Ek;wh i derived from G
and such that E ¼ di; dj

� �jdj 2 Ni
� �

, where Ni denotes the set of di’s k-nearest neigh-

bours. A weighted sparse matrix is obtained as W ¼ Aþ AT, where A is the weighted
adjacency matrix of Gk and AT is the transpose of A; the matrix W represents a symmetry-

favoured k-NN graph (Liu and Chang 2009). Moreover, let P ¼ IN � D�1=2WD�1=2 be the
normalized Laplacian of W, where IN is the N × N identity matrix and D = diag(W1N),
where 1N is a vector of 1 s of size N. Without loss of generality, we can rewrite P and W
as subdivided into four and two submatrices, respectively:

P ¼ ΔLL ΔLU

ΔUL ΔUU

� �
; Y ¼ YL

YU

� �
(1)

whereΔLL and YL are the submatrices of P and Y, respectively, corresponding to the labelled
objects. More in detail, ΔLL contains the similarity between each pair of examples belong to
the set of labelled objects while ΔUL contains all the distances between the unlabelled
objects and the labelled one. The same analogy applies for all the other submatrices. The
RMGT learning algorithm finally yields a matrix F 2 RN�M defined as

F ¼ �Δ�1
UUΔULYL þ

Δ�1
UU1 Uj j

1TUj jΔ
�1
UU1 Uj j

Nω� 1TLj jYL þ 1TUj jΔ
�1
UUΔULYL

� 	
; (2)

where ω 2 RM is the class probability distribution that is assumed uniform.
The learning schema used by RMGT employs spectral properties of the k-NN graph to

spread the labelled information over the set of test instances. Specifically, the label propaga-
tion process is modelled as a constrained convex optimization problem where the labelled
objects are employed to constrain and guide the final classification. Equation 2 represents the
closed form solution of the propagation process. This equation shows how labelled (L) and
unlabelled (U) examples are combined to implement the main assumption that adjacent
vertices are likely to have similar labels. After the propagation step, every unlabelled object oi
is associated to a vector (i.e. the ith row of F) representing the likelihood of the object oi for
each of the classes; therefore, oi is assigned to the class that maximizes the likelihood.

Algorithm1 sketches themain steps of the approach. Initially, the similaritymatrix between
all the objects is computed (Line 1). The graph-based label propagation process requires the
construction of the k-NN graph (Line 2) and its symmetry-favoured transformation (Line 3).
After that, the algorithm computes the normalized Laplacian of the matrix (Line 4) and the
RMGT algorithm is applied on such datamatrix. Line 6 describes the decision rule we adopted
to perform the classification.
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3.3. Active transductive learning

AL is gettingmore attention in remote sensing image classification as it helps to deal with the
time and effort consuming task of collecting a good quality training set to build a classification
model (Demir and Bruzzone 2015; Demir, Minello, and Bruzzone 2014). The general AL loop
(Fu, Zhu, and Li 2013) involves the interaction between the classifier and the expert. Firstly a
budget is defined, it represents the percentage of examples the experts is willing to label.
Then the AL loop starts. At each iteration, the procedure ranks the set of unlabelled examples
in order to promote in the rank the more relevant examples to label. Each example with is
ranked considering its importance to the current learnt classifier. Once the rank is produced,
the procedure chooses the top objects (one or more) and asks to the expert their true labels.
The selected objects are added to the current training set and the classifier is updated. The AL
loop stops when the budget is exhausted.

In this work, we adopted the margin-based strategy to score examples. This heuristic is
chosen as it usually obtains better results than other uncertainty sampling methods (Fu, Zhu,
and Li 2013). This strategy considers the probability distribution of a classifier c on the example
x over the possible set of classes C. It is prone to select instances with minimum margin
between posterior probabilities of the two most likely class labels. More formally, it is defined
as: margin xð Þ ¼ Pc xjCfirstð Þ � Pc xjCsecondð Þ, where given the classifier c, Pc(x|Ci) is the prob-
ability of the classifier c to predict the class label Ci for the example x, Cfirst is themost probable
class for the example x and Csecond is the secondmost probable class for the classifier c. Values
of margin(x) close to 0 indicate big uncertainty on xwhile values close to 1 underline reliable
confidence in the prediction. In the AL step, first the unlabelled instances are ranked in
ascending order w.r.t. their margin value, then the top n examples are supplied to the expert
and their true label is obtained. We fixed the number of examples at each loop equals to 20.

Considering our framework, we coupled the margin-based heuristic with Algorithm 1.
Given an object to classify oi, we employ the likelihood vector (Fi) as posterior probability
distribution to implement the margin-based strategy.

3.4. Experimental setting

We compared our proposal with respect to state of the art classification approaches. As
competitors we used the RF classifier, the SVM and the NB approach. For SVM, we evaluated
both radial basis function and polynomial kernel and, at the end, we chose polynomial kernel
with exponent value equals to 8 as it supplied the best results. We coupled each of the
competitors with the same AL strategy that we employed in our ATL framework (RF + AL,
SVM + AL, NB + AL).

This was done in order to fairly compare our proposal with the competitors. We also
investigated the benefit supplied by the AL step by comparing the performances of our ATL
against the base TL. For all the competitors we used theWeka1 implementation. For the RMGT
a k value equals to 15 was used for building the k-NN graph. We varied the training
percentage (budget) between 2% to 40% in steps of 2%. This percentage indicates the
proportion of the data set that was randomly sampled to create the training set. We evaluated
the classification performance using the F-measure (Gómez-Chova et al. 2011). We used
F-measure instead of general accuracy due to its ability to better describe classifier perfor-
mance on unbalanced data sets. We randomly initialized each classifier with an object per
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class before of starting the AL process. For each pair ‘classifier and training percentage’ we
reported the average results over 30 runs.

4. Results and discussion

Classification performances over the two data sets (Natural and Artificial) of the Lower
Aude Valley site are synthesized on Figure 2. As a general trend, for both data sets, we
can observe that the classification performance usually improves by increasing the
number of objects available in the training set.

Considering the Natural data set, we can notice that ATL outperformed all the other
algorithms for any training percentage. Among the competitors, RF clearly outperformed
SVM and NB. The F-measure curves obtained for the ATL and RF approaches are similarly
shaped but separated by a regular shift of almost 3 points. The NB F-measure curve has also
the same general shape but the shift is around 10 points w.r.t. ATL. Conversely, the SVM curve
presented a distinct shape as it becomes stable much earlier than the other approaches. With
training percentages bigger than 12% only marginal improvements are obtained for SVM.

Over the artificial data set, we can observe that all the algorithms, excepted SVM,
presented lower performances, for small training percentages, in comparison with the
first data set. However, when the budget increases and reaches a reasonable percentage
(equal or bigger than 20%) the general trend changes, ATL continues to improve its
performance outperforming SVM. The maximum gap between ATL and SVM is around 7
points, achieved for a budget of 40%.

The two plots (b and d) of Figure 2 report the performance of our approach with and
without AL. For training percentages bigger than 6% ATL clearly outperforms the base TL
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Figure 2. Classification results varying the percentage of training examples between 2% to 20% for:
the Natural (left side) and the Artificial (right side) data sets. (a) All classification methods coupled
with AL over the Natural data set. (b) Our framework with and without AL over the Natural data set.
(c) All classification methods coupled with AL over the Artificial data set. (d) Our framework with and
without AL over the Artificial data set.
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underlining that building a training set guided by the classifier needs positively influences the
final performance. Regarding smaller training percentages, we notice that the difference is
very small. This fact points out that the benefit of AL only becomes evident when the training
set size exceeds a minimum threshold, in our case between 6% and 8%.

In a more general evaluation, our experiments showed that the ATL framework outper-
forms all the state of the artmethods in both data sets. However, considering the artificial data
set with training percentages smaller than 20%, the SVM + AL obtained results that differ of 2
or 3 points from the ATL. The differences in the performances can bemainly explained by the
nature of the two classifiers.

For both data sets, SVM + AL quickly reaches its maximum, and then it remains stable. In
the first iterations, the AL strategy successfully selects the optimal support vectors allowing to
define the best classification hyperplane. Once those instances are included in the training set,
no more examples can improve the performance as they will not modify the classification
hyperplane. Instead, considering our proposal, the AL step continuously selects useful exam-
ples that are employed by the transductive learner to improve the classification performance.

4.1. Per class analysis of ATL performance

In order to obtain amore accurate understanding of the ATL performances, we analysed the
F-measure results per class for both data sets. This analysis is also useful to highlight some
specificities of the data sets. Figure 3 shows per class performance obtained using a training
percentage of 20% for the natural (a) and the artificial (b) data sets.

Considering the eight classes of the natural data set, three of them presented very good
performanceswith the F-measure values ranging from 0.80 to 0.82 (sandy areas, shallow and
deep waters). Four classes (mainly related to natural vegetation areas) showed intermediate
performances ranging from 0.68 and 0.76 while only one class (NA4) presented poor results
with less than 0.09. This class represents areas with sparse vegetation cover and is the
smallest class of this data set (161 objects). The omission errors are dramatic here as most of
the NA4 objects were classified as NA3 or NB1, which corresponds to low greenness
vegetation areas and dry flats, respectively. These confusions are not really surprising as
the sparse vegetation cover combines small vegetation patches surrounded by bare areas.
Here, we should consider the influence of over-segmented areas: instead of creating large
objects including ‘patches and surrounding areas’ the segmentation mostly isolated such
small patches into separated objects.
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Figure 3. F-measure values for each class obtained with the ATL framework using a training
percentage of 20%. (a) Natural data set classes. (b) Artificial data set classes.
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Analysing the 11 classes of the artificial data set, we observe that two of them presented
very good F-measure results (0.81 for vineyards with dense/moderate cover and 0.85 to
artificial lakes and ponds). Five classes (concerning different crops and built-up areas) showed
intermediate performances ranging from 0.54 to 0.68 and the four remaining classes pre-
sented poor results ranging from 0.01 to 0.36. All these four classes (AC2, AC5, AC6 and AC8)
are characterized by extreme omission errors. The worst of them (AC8) possesses only 21
objects and corresponds to an orchard area. Most of their objects were classified as crops
fields with vegetation (AC1 or AC3) what is somehow logical. During these periods of the year
(early summer), the orchard presented a dense cover with a spectral response very near to
some cereal crops. In fact, this class was created in the reference mapmostly based in context
and field survey information instead of the spectral information. This is also true for the AC6
class where vineyards with sparse cover were classified sometimes as vineyards with dense
cover and sometimes as harvested parcels. For the AC2 class (crops with moderate/sparse
cover and high greenness values) the omission errors are clearly related to the way the
reference mapwas constructed. Usually, each AC2 polygon in the reference map groups a set
of very small and adjacent agricultural parcels separated by narrow, but very greenness,
borders. However this level of generalization was not attained in the image segmentation
step. Instead, it generated many small objects isolating such reduced strips of greenness
vegetation from the core of the parcels. As a consequence, these objects were mainly
classified as AC3 (core of the parcels) or AC1 (borders). Finally, the AC5 class, which represents
crop fields with very high reflectance values (floating row covers and bare soils), was mainly
classified as built-up and associated areas (AA2). This confusion is frequent in optical remote
sensing as some of the materials used in civil construction can present spectral signatures
close to those of bare soils and floating row covers.

5. Conclusion

In this letter, we presented a new ATL framework that efficiently deals with object-based
image classification. While standard classification techniques employ inductive learning,
ATL exploits training and test sets together actively choosing new examples that can
improve the final classification. The proposed approach was experimented over the
Lower Aude Valley study area using a RapidEye satellite image. A reference land cover
map was elaborated over the whole study area and permitted a detailed assessment of
the performance of the ATL framework. The proposed approach outperformed the
competitors over two data sets considering a reasonable amount of training data. As
future work we would investigate more sophisticated AL techniques leveraging spatial
autocorrelation. To overpass some limitations related to the generalization of the
experimental findings we plan to extend our work over other study sites.

Note

1. http://www.cs.waikato.ac.nz/ml/weka/

Disclosure statement

No potential conflict of interest was reported by the authors.

366 F. N. GÜTTLER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ité
 d

e 
St

ra
sb

ou
rg

, S
C

D
 ]

, [
Fa

bi
o 

G
ut

tle
r]

 a
t 0

0:
58

 0
9 

Fe
br

ua
ry

 2
01

6 

http://www.cs.waikato.ac.nz/ml/weka/


Funding

This work was supported by the French National Research Agency in the framework of the
program ‘Investissements d’Avenir’ [GEOSUD project, ANR-10-EQPX-20].

ORCID

Fabio N. Güttler http://orcid.org/0000-0003-2285-4122

References

Chen, P.-F., N. Tremblay, J.-H. Wang, P. Vigneault, W.-J. Huang, and B.-G. Li. 2010. “New Index for
Crop Canopy Fresh Biomass Estimation.” Spectroscopy and Spectral Analysis 30 (2): 512–517.

Demir, B., and L. Bruzzone. 2015. “A Novel Active Learning Method in Relevance Feedback for
Content-Based Remote Sensing Image Retrieval.” IEEE Transactions on Geoscience and Remote
Sensing 53 (5): 2323–2334. doi:10.1109/TGRS.2014.2358804.

Demir, B., L. Minello, and L. Bruzzone. 2014. “An Effective Strategy to Reduce the Labeling Cost in
the Definition of Training Sets by Active Learning.” IEEE Geoscience and Remote Sensing Letters
11 (1): 79–83. doi:10.1109/LGRS.2013.2246539.

Fu, Y., X. Zhu, and B. Li. 2013. “A Survey on Instance Selection for Active Learning.” Knowledge and
Information Systems 35 (2): 249–283. doi:10.1007/s10115-012-0507-8.

Gitelson, A., and M. N. Merzlyak. 1994. “Spectral Reflectance Changes Associated with Autumn
Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and
Relation to Chlorophyll Estimation.” Journal of Plant Physiology 143 (3): 286–292. doi:10.1016/
S0176-1617(11)81633-0.

Gómez-Chova, L., J. Muñoz-Marí, V. Laparra, J. Malo-López, and G. Camps-Valls. 2011. “A Review of
Kernel Methods in Remote Sensing Data Analysis.” In Optical Remote Sensing, 171–206. Berlin:
Springer. doi:10.1007/978-3-642-14212-3_10.

Joachims, T. 1999. “Transductive Inference for Text Classification using Support Vector Machines.”
In Proceedings of the Sixteenth International Conference on Machine Learning (ICML-1999), Bled,
June 27–30, 200–209. Morgan Kaufmann Publishers Inc.

Joachims, T. 2003. “Transductive Learning via Spectral Graph Partitioning.” In Proceedings of the
Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC, August
21–24, 290–297. Palo Alto, CA: AAAI Press.

Jordan, C. F. 1969. “Derivation of Leaf-Area Index from Quality of Light on the Forest Floor.”
Ecology 50 (4): 663–666. doi:10.2307/1936256.

Klemenjak, S., B. Waske, S. Valero, and J. Chanussot. 2012. “Unsupervised River Detection in
Rapideye Data.” In IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
6860–6863. doi:10.1109/IGARSS.2012.6352587.

Kross, A., H. McNairn, D. Lapen, M. Sunohara, and C. Champagne. 2015. “Assessment of Rapideye
Vegetation Indices for Estimation of Leaf Area Index and Biomass in Corn and Soybean Crops.”
International Journal of Applied Earth Observation and Geoinformation 34: 235–248. doi:10.1016/j.
jag.2014.08.002.

Liu, W., and S.-F. Chang. 2009. “RobustMulti-Class Transductive Learningwith Graphs.” In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 381–388. doi:10.1109/CVPR.2009.5206871.

Rouse, J. W., Jr., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. “Monitoring Vegetation Systems in
the Great Plains with ERTS.” NASA Special Publication 351: 309.

Sun, Z., C. Wang, D. Li, and J. Li. 2014. “Semisupervised Classification for Hyperspectral Imagery
with Transductive Multiple-Kernel Learning.” IEEE Geoscience and Remote Sensing Letters 11 (11):
1991–1995. doi:10.1109/LGRS.2014.2316141.

Troya-Galvis, A., P. Gancarski, N. Passat, and L. Berti-Equille. 2015. “Unsupervised Quantification of
Under- and Over-Segmentation for Object-Based Remote Sensing Image Analysis.” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 8 (5): 1936–1945.
doi:10.1109/JSTARS.2015.2424457.

Vapnik, V. 1998. Statistical Learning Theory. New York: Wiley.

REMOTE SENSING LETTERS 367

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ité
 d

e 
St

ra
sb

ou
rg

, S
C

D
 ]

, [
Fa

bi
o 

G
ut

tle
r]

 a
t 0

0:
58

 0
9 

Fe
br

ua
ry

 2
01

6 

http://orcid.org/0000-0003-2285-4122
http://dx.doi.org/10.1109/TGRS.2014.2358804
http://dx.doi.org/10.1109/LGRS.2013.2246539
http://dx.doi.org/10.1007/s10115-012-0507-8
http://dx.doi.org/10.1016/S0176-1617(11)81633-0
http://dx.doi.org/10.1016/S0176-1617(11)81633-0
http://dx.doi.org/10.1007/978-3-642-14212-3_10
http://dx.doi.org/10.2307/1936256
http://dx.doi.org/10.1109/IGARSS.2012.6352587
http://dx.doi.org/10.1016/j.jag.2014.08.002
http://dx.doi.org/10.1016/j.jag.2014.08.002
http://dx.doi.org/10.1109/CVPR.2009.5206871
http://dx.doi.org/10.1109/LGRS.2014.2316141
http://dx.doi.org/10.1109/JSTARS.2015.2424457

	Abstract
	1.  Introduction
	2.  Study area and data set description
	2.1.  Study area
	2.2.  Data set preparation

	3.  Methodology
	3.1.  Transductive setting
	3.2.  Label propagation algorithm
	3.3.  Active transductive learning
	3.4.  Experimental setting

	4.  Results and discussion
	4.1.  Per class analysis of ATL performance

	5.  Conclusion
	Note
	Disclosure statement
	Funding
	ORCID
	References



