
HAL Id: lirmm-01275709
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275709v1

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LC-mine: a framework for frequent subgraph mining
with local consistency techniques

Brahim Douar, Michel Liquière, Chiraz Latiri, Yahya Slimani

To cite this version:
Brahim Douar, Michel Liquière, Chiraz Latiri, Yahya Slimani. LC-mine: a framework for frequent
subgraph mining with local consistency techniques. Knowledge and Information Systems (KAIS),
2015, 44 (1), pp.1-25. �10.1007/s10115-014-0769-4�. �lirmm-01275709�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01275709v1
https://hal.archives-ouvertes.fr

Knowl Inf Syst
DOI 10.1007/s10115-014-0769-4

REGULAR PAPER

LC-mine: a framework for frequent subgraph mining
with local consistency techniques

Brahim Douar · Michel Liquiere ·
Chiraz Latiri · Yahya Slimani

Received: 4 February 2012 / Revised: 14 March 2014 / Accepted: 3 July 2014
© Springer-Verlag London 2014

Abstract Developing algorithms that discover all frequently occurring subgraphs in a large
graph database is computationally extensive, as graph and subgraph isomorphisms play a key
role throughout the computations. Since subgraph isomorphism testing is a hard problem,
fragment miners are exponential in runtime. To alleviate the complexity issue, we propose to
introduce a bias in the projection operator and instead of using the costly subgraph isomor-
phism projection, one can use a polynomial projection having a semantically valid structural
interpretation. In this paper, our purpose is to present LC- mine, a generic and efficient frame-
work to mine frequent subgraphs by the means of local consistency techniques used in the
constraint programming field. Two instances of the framework based on the arc consistency
technique are developed and presented in this paper. The first instance follows a breadth-
first order, while the second is a pattern-growth approach that follows a depth-first search
space exploration strategy. Then, we prove experimentally that we can achieve an impor-
tant performance gain without or with nonsignificant loss of discovered patterns in terms of
quality.

Keywords Relational learning · Graph mining · Projection operator · Graph classification

1 Introduction and motivations

Graphs become increasingly important in modeling complicated structures, such as chemical
compounds, protein structures or even social networks. The aim of the graph mining task

B. Douar · M. Liquiere
LIRMM, Montpellier II University, 161 rue Ada, 34392 Montpellier, France

B. Douar (B) · C. Latiri
LIPAH, Faculty of Sciences of Tunis, Tunis El Manar University, 1060 Tunis, Tunisia
e-mail: b.douar@gmail.com

Y. Slimani
LISI, INSAT, University of Carthage, 1080 Tunis, Tunisia

123

Author's personal copy

B. Douar et al.

is to find interesting graph patterns in a big graph or a collection of graphs. Among the
various kinds of graph patterns, frequent substructures are very useful for characterizing
graph sets, differentiating between different groups of graphs and cluster analysis. In fact,
frequent subgraph mining is an important challenge [3], especially in its most important
applications areas like chemical informatics, bioinformatics or Web analysis to cite but a
few. However, discovering frequent subgraphs is a thriving challenge due to their exponential
number. Indeed, based on the Apriori principle [1], a frequent n-edge graph may contain 2n

frequent subgraphs. In addition to this exponential search space, frequent subgraph miners
face the NP-completeness of the subgraph isomorphism projection which is a kernel operator
in subgraphs counting and matching process [13,16,24,25].

Many frequent subgraph miners have tried to avoid the NP-completeness of subgraph iso-
morphism problem by storing all embeddings in embedding lists which consist of a mapping
of the vertices and edges of a fragment to the corresponding vertices and edges in the graph it
occurs in. It is clear that with this trick, we can avoid excessive subgraph isomorphism tests
when counting fragments support and, therefore, avoid exponential runtime.

However, these approaches face exponential memory consumption instead. So, we can
say that they are only trading time versus storage. This strategy can even cause problem if
not enough memory is available or if the memory throughput is not high enough. The authors
in [24], after an extensive experimental study of different subgraph miners, conclude that
embedding lists do not considerably speed up the search for frequent fragments. Thus, even
though gSpan [25] does not use them, it is almost as competitive as Gaston [16] and Ffsm
[10], at least with not too big fragments.

To alleviate the complexity issue, we propose to introduce a bias in the projection oper-
ator and instead of using the subgraph isomorphism projection, one can use a polynomial
projection having a semantically valid structural interpretation. In this paper, our purpose is
to present LC- mine, a generic and efficient framework to mine frequent subgraphs by the
means of local consistency techniques used in the constraint programming field [20]. Two
instances of the framework are developed and presented in the following. The first instance
follows a breadth-first order to find frequent subgraphs and takes advantage of the well-
known Apriori [1] levelwise strategy. The second is a pattern-growth approach that follows
a depth-first search space exploration strategy and uses powerful pruning techniques in order
to considerably reduce this search space.

This paper is a wide extension of two previous works we carried out [4,5]. The present
work defines a generic framework that generalizes the two instances presented in [4] and
[5]. We have specified this framework after a thorough analysis of the characteristics of the
two approaches. Furthermore, the earlier works have been extended in two ways: First, we
have brought theoretical proofs related to the pruning techniques initially introduced in [5].
Then, we have performed an extensive comparative study of the two proposed approaches
with much larger graph databases. This aims at validating these approaches and assessing
them with regard to the state-of-the-art subgraph mining algorithms.

The remainder of the paper is organized as follows: Section 2 recalls the basic mathematical
foundations for frequent subgraph mining. In Sect. 3, we propose, in a generic way, the
LC- mine framework. Then, in Sects. 4 and 5, we present two efficient instances of our
framework based on the AC-projection definitions. Finally, we experimentally evaluate the
computational efficiency of our proposed instances and study the relevance of the AC-reduced
patterns for the supervised graph classification in Sect. 6. The conclusion is then presented in
Sect. 7.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

Fig. 1 A set of labeled graphs

2 Frequent subgraph mining

Given a database consisting of small graphs, for example, molecular graphs, the problem
of mining frequent subgraphs is to find all subgraphs that are subgraph isomorphic with a
large number of example graphs in the database. In this section, we recall some preliminary
concepts as well as a brief review of literature dedicated to frequent subgraph mining.

2.1 Basic definitions

For the sake of clarity, the rest of this paper will deal with labeled undirected graphs only,
although the concepts and methods can be extended in a straightforward way to directed
labeled graphs.

Definition 2.1 (Labeled Graph) A labeled graph can be represented by a 4-tuple, G =
(V, E, L , l), where:

– V is a set of vertices,
– E ⊆ V × V is a set of edges,
– L is a set of labels,
– l : V ∪ E → L , l is a function assigning labels to the vertices and the edges.

This definition can be generalized to include unlabeled graphs if the label set L is an
empty set.

Definition 2.2 (Induced subgraph) A subgraph S of a graph G is said to be induced if, for
any pair of vertices x and y of S, (x, y) is an edge of S if and only if (x, y) is an edge of G.
In other words, S is an induced subgraph of G if it has all the edges that appear in G over
the same vertex set.

For example, we can see in Fig. 1 that G2 is an induced subgraph of G1 while G3 is not
an induced one.

Definition 2.3 (Isomorphism, Subgraph Isomorphism) Given two graphs G1(V1, E1, L1, l1)
and G2(V2, E2, L2, l2), an isomorphism is a bijective function f : V1 → V2, such that ∀x ∈
V1, l1(x) = l2(f (x)), and ∀(x, y) ∈ E1, (f (x), f (y)) ∈ E2 and l1(x, y) = l2(f (x), f (y)).

A subgraph isomorphism from G1 to G2 is an isomorphism from G1 to a subgraph of G2.

Definition 2.4 (Graph projection) Let G1 and G2 be two graphs. A graph projection is the
mapping which maps each vertex of G1 into one or many vertices of G2. This defines the
generalization order between graphs.

This latter projection can have different names according to the field in which it is defined.
In Table 1, we expose terminology equivalents in these fields.

123

Author's personal copy

B. Douar et al.

Table 1 Two types of graph projection and their equivalents

Graph theory Category theory Universal algebra Logic

Graph homomorphism Morphism Homomorphism θ -subsumption

Subgraph isomorphism Monomorphism Injective homomorphism OI-subsumption

Definition 2.5 (Frequent Subgraph Mining) Given a graph dataset, GS = {Gi | i = 0 . . . n},
and a minimal support (minSup), let

ς(g, G) =
{

1 if there is a projection from g to G

0 otherwise.

σ (g, GS) =
∑

Gi ∈ GS

ς(g, Gi)

σ (g, GS) denotes how frequently g occurs in GS, i.e., the support of g in GS. Frequent
subgraph mining aims at finding every g graph such that σ (g, GS) is greater than or equal
to minSup.

Known frequent subgraph miners are based on this definition and deal with the special case
where the projection operator is a subgraph isomorphism.

2.2 Related work

Algorithms for frequent subgraph mining are based on two pattern discovery paradigms,
namely breadth-first search and depth-first search. Most of these algorithms employ different
ways for candidate generation and support counting. An interesting quantitative comparison
of the most cited subgraph miners is given in [24].

2.2.1 Breadth-first approaches

The algorithm that follows a breadth-first order to find frequent subgraphs takes advantage
of the well-known Apriori [1] levelwise strategy. In the literature, pioneering and most cited
approaches are Agm [11] and Fsg [12].

The particularity of Agm is that it only mines frequent- induced subgraphs in the graph
database, as well as dealing with graphs having self-loops. During the mining process, the
algorithm extends subgraphs by adding one vertex at each level. Experiments, reported in
[11], show that Agm achieves relatively good performances for synthetic dense datasets.
Compared to more recent approaches, and except the fact of self-loops handling, Agm is an
obsolete mining approach with a very poor scalability power [11].

So, a more efficient breadth-first approach named Fsg [12] has been introduced. The latter
algorithm is also based on the same level-by-level expansion exactly as Apriori did but in
the context of labeled graphs. Fsg essentially differs from the Agm approach by adding one
edge at a time (instead of one vertex for Agm) allowing to efficiently generate candidates.

Various optimizations, based partially on labels, vertex degrees and hierarchical structure
of the search space, have been proposed for canonical form computation, candidate generation
and counting. These optimizations have allowed, the Fsg algorithm, to scale to large graphs.
The performance of Fsg was relatively worse for graph database with few vertex and edge

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

labels as its dependency on labels and vertex degrees was strong. This is due to the exponential
complexity of the subgraph isomorphism test that badly influenced the overall performance.

Besides, if we have enough vertex and edge labels, then Fsg will be able to achieve good
performance and to scale linearly with the database size.

In this paper, we are particularly interested in this latter approach. In fact, we propose a
frequent subgraph mining approach based on the Fsg version and using a novel operator for
the support counting process as well as an innovative graph reduction algorithm.

2.2.2 Depth-first approaches

Main depth-first approaches are restricted to finding connected subgraphs and traverse the
search lattice in a vertical way. In this respect, several algorithms were proposed in the
literature. We give, in the following, a brief description of the two most cited ones, namely
the gSpan [25] and Gaston [16] algorithms.

The gSpan algorithm [25] is based on a canonical representation for graphs, called dfs-
code. A dfs-traversal of a graph defines an ordering of the visited edges. The concatenation
of edge representation in that order is the graph’s dfs-code. In order to prevent isomor-
phic subgraphs (duplicates) generation, gSpan computes the canonical (lexicographically
smallest) dfs-code from each refinement using a series of permutations. Refinements with
non-minimal dfs-code can be pruned. The gSpan stores occurrence lists for each subgraph.
Explicit subgraph isomorphism testing has to be done on all graphs in these occurrence lists.

Instead of storing occurrence lists for each subgraph, the Gaston algorithm [16] stores
all embeddings1 to generate only refinements that actually appear and to achieve faster
subgraph isomorphism testing. The main idea behind this algorithm is that there are efficient
ways to enumerate paths and trees. By looking for subgraphs that are paths or trees first,
and by only dealing with general graphs with cycles at the very end, a large fraction of
the work can be done efficiently. Indeed, Gaston will face the NP-completeness of the
subgraph isomorphism problem only in the last phase. Duplicate detection is performed in
two phases: hashing to pre-sort and an explicit graph isomorphism test for final duplicate
detection.

In the following section, we introduce a novel framework named LC- mine. The core idea
behind it is the use of a biased projection operator based on local consistency techniques in
order to avoid the NP-completeness of the subgraph isomorphism and to considerably reduce
the search space.

3 The LC-MINE framework

This framework introduces the use of local consistency techniques in the graph mining
process. Such a framework alleviates the complexity of using the costly subgraph isomor-
phism projection usually used by frequent subgraph miners.

The idea of using constraint programming in a graph matching process is not new [21,26].
What is novel in this framework is that we are only dealing with polynomial local consistency
techniques. There are many different levels of consistency that can be achieved, and these
can be used to ensure the projection with a certain desirable precision. Each instance of the
framework can use its own local consistency technique. In order to do so, some operators

1 An embedding is a mapping of the nodes and edges of a subgraph to the corresponding nodes and edges in
the graph the subgraph occurs in.

123

Author's personal copy

B. Douar et al.

Fig. 2 The LC- mine framework. The left-most leaves of the tree show the implemented instances of the
framework, namely the FGMAC and AC- miner approaches. The upper level expose the used operators
within each approach. Then, the level “Pattern discovery” enumerates the possible search space exploration
paradigms. Finally, the top-most level exhibits the multiple possibilities of local consistency techniques that
we can use within the framework

must be defined as well as a semantic interpretation of frequent graphs derived by using the
chosen local consistency level. An overview of the framework is depicted in Fig. 2.

In the following, we will firstly introduce preliminary concepts concerning the constraint
programming field, followed by a generic presentation of the key operators related to the
LC- mine framework.

3.1 Preliminary concepts

A constraint satisfaction problem (CSP) [20] involves the assignment of values to variables
subject to a set of constraints. A large variety of problems in Artificial Intelligence and
other areas of computer science can be viewed as a special case of the constraint satisfaction
problem. A great deal of research in constraint satisfaction has focused on algorithms which,
given a constraint network as input, automatically find a solution. This is useful in applications
where, once the problem has been formulated as a constraint network, no user interaction
is required. Any constraint satisfaction problem involves variables. Each variable can be
given a value chosen from a set of possible values called its domain. The constraints impose
limitations on the values which may be assigned to a variable or a combination of variables.
Together, variables, domains and constraints form a constraint network.

Definition 3.1 A constraint network is a triplet N = (X, D, C) where:

– X = {x1, ..., xn} is a finite set of variables;
– D is a function that maps each variable x in X to a finite set of values, written D(x),

which it is allowed to take. The set D(x), called the domain of x , is also denoted Dx ;
– C = {C1, ..., Ck} is a finite set of constraints. Each constraint restricts the combination

of values that a set of variables may take simultaneously. A constraint involving only two
variables is called binary.

Within the LC- mine framework, we are only dealing with normalized binary constraint
networks. Such a network must have only binary constraints and must not have two constraints
involving exactly the same variables.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

3.2 The framework operators

In this section, we will present key operators related to the LC- mine framework. These
operators are presented in a generic fashion and must be precisely defined in each one of the
instances within our framework. In the remainder of this paper, we will give a generic name for
each operator. These names will have the string “LC” as prefix, namely LC-projection, LC-
reduction and LC-extension. The prefix references the local consistency technique used, and
the two letters of “LC” will change depending on this technique (i.e., AC for arc consistency,
PC for path consistency and so on).

3.2.1 The projection operator (LC-projection)

This is the kernel operator of our framework. This is intended to have polynomial space/time
complexity. Indeed, this operator is supposed to replace the costly subgraph isomorphism
which suffers from an exponential complexity. It is worth mentioning that, if there is no LC-
projection between two graphs G1 and G2, then there will be neither graph homomorphism;
nor subgraph isomorphism between them.

Given two graphs G1 and G2, the purpose of the LC-projection operator is to derive a
mapping I which associates one or more vertices from G2 to each vertex of G1. The formal
labeling definition is given by the definition below.

Definition 3.2 (Labeling) Let G1(V1, E1, L1, l1) and G2(V2, E2, L2, l2) be two graphs and
2V2 be the set of all subsets of V2. We call a labeling from G1 into G2 a mapping I : V1 →
2V2 |∀x ∈ V1, ∀y ∈ I(x), l1(x) = l2(y).

Thus, for a vertex x ∈ V1, I(x) is a set of vertices of G2 with the same label l1(x). We
can say that I(x) is the set of “possible images” of the vertex x in G2.

The core idea behind using local consistency techniques to replace the subgraph isomor-
phism is the conversion of the projection problem to a CSP materialized by a constraint
network.

The problem of the LC-projection of a graph G1(V1, E1, L1, l1) into a graph G2(V2, E2,

L2, l2) is equivalent to the following constraint satisfaction problem. A variable xi is asso-
ciated with each vertex vi ∈ V1, and each variable having l1(xi) as label takes values on
domain equal to the set: {⋃{v}, v ∈ V2, l2(v) = l1(xi)}.

This problem can be modelized with a constraint network composed of:

– a set of variables X = {
X1, ..., X |V1|

}
;

– a domain for each variable Xi , D(Xi) = {⋃{v}, v ∈ V2, l2(v) = l1(Xi)
}
;

– a set of binary constraints C = {
C1, ..., C|E1|

}
;

Each constraint involves two variables, X (Cmn) = (Xm, Xn) and for each values tuple
(vm, vn), vm ∈ D(Xm) and vn ∈ D(Xn), Cmn is satisfied if and only if there is an edge
(vm, vn) ∈ E2.

Since each vertex in G1 is associated with all vertices having the same label in G2, the
first labeling is trivial but it will be refined by the constraint propagation mechanism.

Example 3.1 Let us suppose that we are using an arc consistency-based LC-projection oper-
ator (cf. AC-projection). Considering the two graphs depicted in Fig. 3, we are trying to find
an AC-projection from graph G1 into G2.

The corresponding constraint network N associated with this projection problem is
depicted in Fig. 4(1). We can see that N is not arc consistent because there are some values

123

Author's personal copy

B. Douar et al.

Fig. 3 Two graphs G1 and G2

Fig. 4 Constraint network N of Example 3.1, before arc consistency (1) and after (2)

(vertices) inconsistent with some neighborhood constraints. Checking constraints C12 and
C23 does not permit to remove any value. But when checking constraint C31, we see that d2

must be removed from D(X1) because it has no neighbor vertex in D(X3). Likewise, f3 also
has to be removed from D(X3) because it has no neighbor vertex in D(X1). Removing d2

from D(X1) and f3 from D(X3) causes in turn, respectively, the removal of e2 from D(X2)

(because of the C12 constraint) and e3 from D(X2) (because of the C23 constraint). At this
level, D(X2) becomes empty and we can conclude that the constraint network N is not arc
consistent. Therefore, there is no AC-projection from G1 into G2. In fact, if we continue the
constraint propagation process, we will finally have a constraint network with no values [cf.
Fig. 4(2)].

However, if we add the edge (d2, f3) to E1, the initial constraint network N will be arc
consistent, and all the values (vertices) will be compatible with all constraints.

3.2.2 The reduction operator (LC-reduction)

Before introducing the reduction operator, it is necessary to present an important property of
the projection operator.

Definition 3.3 (Equivalence) Let G1 and G2 be two graphs, if we have an LC-projection
from G1 into G2, and an LC-projection from G2 into G1, then G1 and G2 will be considered
as equivalent (w.r.t. to the LC-projection).

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

This equivalence relation will bring equivalence classes of graphs. For each equivalence
class, we can search for a specific graph which will be its unique representative. Given a
graph G, the reduction operator is intended to derive a reduced graph G ′ which must be the
minimal graph equivalent to G.

We will give the generic name of “LC-reduced graph” to this minimal-sized graph. It
is worth noting that the definition of the graph size depends on the algorithm used and the
chosen local consistency technique.

3.2.3 The extension operator (LC-extension)

This operator is the core of the pattern-growth approaches within the LC- mine framework.
Given a graph G, the extension operator is intended to extend G by an extra vertex, edge or
path. This extension must be done in such a way that the constraint network N ′ associated
with the extended graph G ′ remains consistent w.r.t. the local consistency technique which
is used.

3.3 Search strategies

All the operators defined within the LC- mine framework allow us to use Apriori-like strategy
based on a breadth-first search space exploration. These operators also favor the use of the
pattern-growth strategy which usually explores the latter in a depth-first manner. In the
following, we will present details about these search strategies.

3.3.1 Apriori-like strategy

Within the LC- mine framework, approaches adopting this search space exploration paradigm
take advantage of the Apriori [1] levelwise strategy. Indeed, based on this strategy, LC- mine
instances discover all frequent subgraphs in ascending order of the size of the graphs based
on the anti-monotonic property of the support threshold. The search for frequent graphs starts
with small graphs and proceeds in a bottom-up manner by generating candidates having an
extra vertex, edge or path. These approaches explore the full isomorphism-wide search space
and extract only LC-reduced frequent subgraphs. In other words, at each level during the
breadth-first exploration, all the candidates have to be generated on a classical (isomorphic)
way. However, during the support calculation phase, the polynomial LC-projection operator
will be used instead of the costly subgraph isomorphism test to verify whether a candidate
subgraph appears on a graph transaction or not. Then, if a given subgraph candidate has
a sufficient support, its reduced version will be added to the output of the algorithm. As
previously said, the reduction will be done using the LC-reduction operator already defined
within the LC- mine framework.

3.3.2 Pattern-growth strategy

In order to allow our framework to scale to bigger graph databases, we propose a depth-first
exploration scheme. This search strategy is made possible thanks to the extension operator
previously defined. In fact, a generic approach for frequent subgraphs discovery within our
framework will start by an empty graph and will try to extend it at each step w.r.t. the support
threshold. An extension can be made if the resulting constraint network associated with the
extended subgraph remains consistent w.r.t. the local consistency technique used. Thus, when
it becomes impossible to further extend the current subgraph, it will be added to the output

123

Author's personal copy

B. Douar et al.

of the approach and will be considered as frequent. The challenge is to efficiently find the
unique set of extensions, rather than stepping past the same subgraph multiple times.

In the remainder of this paper, we propose two instances of the LC- mine framework. The
first instance, named FGMAC [4], follows a breadth-first order to find frequent subgraphs
and uses an Apriori-like [1] search strategy. The second, named AC-miner [5], is a pattern-
growth approach that follows a depth-first search space exploration strategy and uses powerful
pruning techniques in order to considerably reduce this search space. These two instances
are based on the arc consistency technique. Indeed, these approaches use properties of the
AC-projection operator initially introduced in [14].

4 FGMAC: frequent subgraph mining with arc consistency

In this section, we present FGMAC, which is the first instance of our LC- mine framework.
This is an Apriori-like frequent subgraph mining approach based on the AC-projection
operator. Our approach is closely similar to the FSG algorithm [13]. In fact, the essential
innovation related to FGMAC is the support counting part. Instead of subgraph isomorphism,
the AC-projection is used to verify whether a candidate graph appears in a transaction or not.
In the following, we introduce the two operators used within the FGMAC approach, namely
AC-projection and AC-reduction. As explained previously, these operators are crucial for
every Apriori-based instances of our framework.

4.1 The AC-projection operator

The approach suggested in [14] advocates a projection operator based on the arc consistency
algorithm. This projection method has the required properties: polynomiality, local validation,
parallelization, structural interpretation. We note that the name “AC-projection” comes from
the classical AC (arc consistency) used in [2].

4.1.1 Mathematical foundations

In this section, we will present a mathematical formulation of the AC-projection operator.

Definition 4.1 (AC-compatible ��) Let G(V, E, L , l) be a graph V1 ⊆ V, V2 ⊆ V
V1 and V2 are AC-compatible if and only if

1. ∀xk ∈ V1∃yp ∈ V2|(xk, yp) ∈ E
2. ∀yq ∈ V2∃xm ∈ V1|(xm, yq) ∈ E .

We denote V1 �� V2 two AC-compatible vertex sets.

Definition 4.2 (Consistency for one edge) Let G1(V1, E1, L1, l1) and G2(V2, E2, L2, l2) be
two graphs. We say that a labeling I : V1 → 2V2 is consistent with an edge (x, y) ∈ E1, if
and only if I(x) �� I(y).

Definition 4.3 (AC-labeling) Let G1(V1, E1, L1, l1) and G2(V2, E2, L2, l2) be two graphs.
A labeling I : V1 → 2V2 is an AC-labeling if and only if I is consistent with all the edges
e ∈ E1.

Definition 4.4 (AC-projection ⇁) Let G1(V1, E1, L1, l1) and G2(V2, E2, L2, l2) be two
graphs. An AC-labeling I : V1 → 2V2 is an AC-projection if and only if I is maximal. I is
said to be maximal if and only if ∀ AC-labeling I ′ : V1 → 2V2 and ∀x ∈ V1, I ′(x) ⊆ I(x).
We denote it G1 ⇁ G2.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

Fig. 5 An AC-projection
example (G1 ⇁ G2)

Example 4.1 Let G1 and G2 be two graphs. In Fig. 5, we consider the labeling I: I(a0) =
{a6, a14}, I(a1) = {a6}, I(b2) = {b7}, I(c3) = {c8}, I(d4) = {d9}, I(e5) = {e10}.
We verify that I(a0) �� I(d4), I(d4) �� I(c3), I(c3) �� I(b2), I(b2) �� I(e5),

I(e5) �� I(a1), I(a1) �� I(d4), I(b2) �� I(a1). Then I is an AC-projection from G1 into
G2, since I is a maximal labeling which is consistent with all edges of G1.

4.1.2 The AC-projection algorithm outline

In [4], we have introduced an improved AC-projection algorithm for graphs (based on the
AC3 algorithm [15]). The AC-projection algorithm takes two graphs G1 and G2 and tests
whether there is an AC-projection from G1 into G2. Like the AC3 algorithm, the actual AC-
projection algorithm has a worst-case time complexity of O(e × d3) and space complexity
of O(e) where e is the number of arcs and d is the size of the largest domain. In our case,
the size of the largest domain is the size of the largest subset of nodes with the same label.

4.2 The AC-reduction operator

The AC-reduction is a key operator used by the FGMAC algorithm. Given a graph G, the
AC-reduction operator is intended to derive a reduced graph G ′ which must be the minimal
graph equivalent to G.

4.2.1 The AC-equivalence relation

The following definition introduces an equivalence relation between graphs w.r.t. AC-
projection.

Definition 4.5 (AC-equivalent graphs) Two graphs G1 and G2 are AC-equivalent if and only
if both G1 ⇁ G2 and G2 ⇁ G1 are fulfilled.

Two AC-equivalent graphs G1 and G2 are denoted by G1 � G2.

We have an equivalence relation between graphs using the AC-projection. For each equiv-
alence class there is a minimal-sized graph for which we give the name of “AC-reduced
graph.”

4.2.2 The AC-reduction algorithm outline

The AC-reduction algorithm [4] is able to construct the AC-reduced graph considering any
graph G. To do this, the algorithm does an auto AC-projection G ⇁ G and then make the
necessary merges. Thus, this algorithm is very simple and has a polynomial complexity, since
the AC-projection’s complexity is polynomial. We note that, in [4], we have proved that the
AC-reduced graph is minimal.

123

Author's personal copy

B. Douar et al.

4.3 Related work and discussion

New graph matching approaches have recently been proposed [6–8]. These approaches rede-
fine the graph isomorphism problem by relaxing the hard constraints imposed by this type of
exact matching in order to allow dealing with real-world problems. In [8], the authors define
a new type of homomorphism [9] denoted p-hom. Briefly, this homomorphism allows the
matching of one edge from the pattern graph to several edges in the target graph. It intro-
duces a new concept of similarity between vertices. In [7], Fan et al. introduce new classes
of graphs as well as several new algorithms for computing the isomorphism between graphs
of these new classes with cubic complexity. Besides, in [6], authors introduce the notion of
incremental graph matching. This allows, in case of changes occurred in two already paired
graphs, to avoid recalculating the full matching based on the former calculated matching.

The AC-projection operator [14] differs from these redefinitions of graph and subgraph
isomorphism [7,8] regarding the following aspects. First, the AC-projection is not based
on a graph distance measure or a threshold during the matching process. This lessen the
burden of additional parameters specification. Then, the AC-projection operator is granted
with a panoply of attractive properties. These properties enable us, for example, to compute
the minimal graph representative of an equivalence class of graphs as presented in previous
sections.

4.4 The FGMAC algorithm outline

The FGMAC algorithm [4] initially enumerates all the frequent single and double edge
graphs. Then, based on those two sets, it starts the main computational loop. During each
iteration, it first generates candidate subgraphs whose size is greater than the previous frequent
ones by one edge. Next, it counts the frequency for each of these candidates and prunes
subgraphs that do not satisfy the support constraint. Discovered frequent subgraphs fulfill
the downward closure property of the support condition, which enables an efficient pruning
of the lattice of frequent subgraphs.

The FGMAC’s particularity is to output only frequent AC-reduced graphs which is a subset
of the whole frequent isomorphic pattern set. The reader can find a complete description of
the algorithm in [4].

5 AC-miner: a pattern-growth graph mining approach with a polynomial time
projection

In this section, we will present, AC-miner [5], a basic pattern-growth instance of the LC- mine
framework for frequent AC-reduced subgraphs mining. This approach is based on three key
concepts: the AC-extension operator (member of the LC- mine framework), the increasing
forbidden labels inheritance and the decreasing allowed vertices inheritance. These concepts
are presented in the following section.

5.1 The AC-extension operator

The AC-extension is the core operator of the AC-miner algorithm. Given a graph G, the AC-
extension operator is intended to extend G by an extra edge such that the constraint network
N ′ associated with the extended graph G ′ remains arc consistent.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

5.1.1 Mathematical foundations

Definition 5.1 (Graph database) A graph database D is a set of labeled graphs.

Definition 5.2 (Vertex group and most general vertex group) Given a graph database D , a
vertex group Vl is a set of vertices that belong to graphs in D with the same vertice label l.
The most general vertex group V̂l is the maximal vertex group of a given label l.

Definition 5.3 (Vertex group support) Let Vl be a vertex group in a graph database D . The
support of Vl , which is denoted by sup(Vl), is the set of graphs in D such that each graph
contains at least one vertex v ∈ Vl .

We note that we are using a minimal support parameter σ as a bias which limits the search
space.

Definition 5.4 (σ AC-compatible
σ
��) Let Va and Vb be two vertex groups in a graph database

D .
Va is σ AC-compatible with Vb if and only if:

– for all xk ∈ Va , there exists yp ∈ Vb such that xk and yp are neighbors.
– for all yq ∈ Vb, there exists xm ∈ Va such that xm and yq are neighbors.
– |sup(Va)| ≥ σ × |D |.
The σ AC-compatibility between Va and Vb is denoted by Va σ

��Vb.

LetVa and Vb be two vertex groups that are labeled a and b, respectively. The AC-extension
consists in finding the two maximal subsets of Va and Vb that are σ AC-compatible. This can
be formalized in the definition below.

Definition 5.5 (AC-extension
σ�) Let Va and Vb be two non-empty vertex groups of a graph

database D . The AC-extension from Va to Vb consists in deriving the two maximal subsets
Va

child et Vb
child such that:

– Va
child

σ
��Vb

child .
– �Va′

child ⊂ Va, Vb′
child ⊂ Vb with Va′

child ⊃ Va
child or Vb′

child ⊃ Vb
child such that

Va′
child

σ
��Vb′

child .

The possibility of such an AC-extension is denoted by Va σ� Vb, while the impossibility of

such relation is denoted by Va��
σ�Vb.

5.1.2 Increasing forbidden labels inheritance

Proposition 5.1 Let Va and Vb be two non-empty vertex groups of a graph database D . If

Va ��
σ� Vb then ∀Va′ ⊆ Va, we have Va′ ��σ� Vb.

Proof According to Definition 5.5, in order to have Va′ σ� Vb, we must have Va′
child ⊆ Va′

and Vb
child ⊆ Vb such that Va′

child
σ
��Vb

child . But, since Va��
σ�Vb then, according to Definition

5.5, we have:

∀Va
child ⊆ Va and ∀Vb

child ⊆ Vb, we have Va
child ��

σ
�� Vb

child . (1)

As, by transitivity, we have Va′
child ⊆ Va (since Va′

child ⊆ Va′ and Va′ ⊆ Va) then, according
to (1), there is no vertex group Va′

child which is included in Va′ that can be σ AC-compatible

with any other vertex group Vb
child which is included in Vb. Hence, Va′ ��σ� Vb. �

123

Author's personal copy

B. Douar et al.

According to Proposition 5.1, every vertex group V can transmit its forbidden labels list
to every child Vchild ⊂ V . Therefore, the AC-miner algorithm will not try an AC-extension
of V children’s with forbidden labels. The size of this list will increase from child to child.

We have experimentally proved that, using the forbidden labels inheritance, AC-miner
avoids on average up to 20 % of non-useful AC-extensions trials (see Sect. 5.2.1).

5.1.3 Decreasing allowed vertices inheritance

Proposition 5.2 Let Va and Vb be two vertex groups of a graph database D . Let us suppose
that Va σ�Vb and that the two vertex groups Va

child and Vb
child are the maximal subsets of Va

and Vb, respectively, such that Va
child

σ
��Vb

child . For all Vb′
child ⊃ Vb

child , there does not exists

any vertex group Va′
child ⊆ Va

child such that Va′
child

σ
��Vb′

child . This says that the vertex group
Va′

child cannot be σ AC-compatible with any superset of Vb
child .

Proof Let us verify whether there exists a vertex group Va′
child

σ
��Vb′

child with Vb′
child ⊃ Vb

child .

We have Va σ�Vb then, according to Definition 5.5, there is no vertex group Va′′
child ⊃ Va

child

or Vb′′
child ⊃ Vb

child with Va′′
child ⊆ Va and Vb′′

child ⊆ Vb, respectively, such that Va′′
child

σ
��Vb′′

child .

Hence,Va′
child ��

σ
�� Vb′

child . �
According to Proposition 5.2, every vertex group V can transmit its allowed vertices list

to every child Vchild ⊂ V . Therefore, the AC-miner algorithm will only try an AC-extension
of V children’s with a subset of V̂l . The size of this list will decrease from child to child.

With allowed vertices inheritance, AC-miner will not avoid AC-extensions test, but will
speed up this test from child to child as Vl gets smaller. This fact is experimentally proved
in Sect. 5.2.2.

5.2 Experimental evaluation of the AC-extension pruning techniques

In this section, we experimentally evaluate the impact of pruning techniques, which were
previously presented, on the performance of the algorithm AC-miner. First, we proceed to
the evaluation of gains generated by using the technique of forbidden labels inheritance. This
evaluation is about computing the number of extensions performed by AC-miner algorithm
as well as the number of AC-extensions that were avoided due to our pruning technique.
Then, we evaluate the average number of vertices that were handled during AC-extensions
operations. The evaluation concerns both settings where the allowed vertices inheritance
technique is used or not.

5.2.1 The forbidden labels inheritance

To experimentally evaluate the forbidden labels inheritance technique adopted by the AC-
miner algorithm, we computed the number of AC-extensions that were performed or avoided
during the process of frequent subgraphs mining. In our first series of experiments, we set
the minimal support to 50 %. The results of these experiments are shown in Table 2. The first
column of this table lists the graph databases that are used. Then, for each of these graph
databases, we give the number of AC-extensions performed, the number of forbidden AC-
extensions that were avoided and the gain percentage. We note that the gains range between
10 and 33 % with an average of 20 %. This is true for both the large graph database named

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

10 20 30 40 50
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

aids

Performed AC−extensions

Avoided AC−extensions

Minimal support (%)

#A
C

−
ex

te
ns

io
ns

10 20 30 40 50
0

10000

20000

30000

40000

50000

60000
chemical

Performed AC−extensions

Avoided AC−extensions

Minimal support (%)

#A
C

−
ex

te
ns

io
ns

Fig. 6 Comparison of the number of forbidden AC-extensions operations avoided with the number of AC-
extensions operations performed by the AC-miner algorithm using different minimal supports over aids and
chemical datasets

aids and the small graph database named chemical with gains that can reach up to 33 % (i.e.,
one third of the total number of AC-extensions operations) for a minimal support equal to
50 %. The gain is around 10 % for the nci graph databases group.

Comparison of the number of forbidden AC-extensions operations avoided with the num-
ber of AC-extensions operations performed by the AC-miner algorithm using different min-
imal supports over aids and chemical datasets.

Afterward, we concluded our study by a second series of experiments that allow us to
assess the achieved gains with different values of minimal support. To do this, we selected
a large and a small dataset : aids and chemical. In this series of experiments, and for each
dataset, we computed the number of AC-extensions performed during the graph mining
process by varying, at each time, the minimal support between 10 and 50 %. The results are
depicted in Fig. 6. This figure shows two histograms, one for each dataset. Each histogram
shows the proportion of forbidden AC-extensions that were avoided within to AC-extensions
that were performed. The results of this series of experiments show that this pruning method
can achieve a gain with all values of minimal support. This confirms the results obtained in
the previous series of experiments and shows experimentally that, on average, the AC-miner
algorithm allows avoiding 20 % of the total number of useless AC-extensions operations with
the forbidden labels inheritance pruning technique.

5.2.2 The allowed vertices inheritance

Unlike the pruning technique based on forbidden labels inheritance, whose aim is to reduce
the number of AC-extensions that have to be performed during the graph mining process,
the pruning technique based on allowed vertices inheritance allows to reducing the number
of vertices handled during each AC-extension operation. To evaluate the effectiveness of
this technique, we followed the same experimental scheme as that used for the evaluation of
forbidden labels inheritance technique. However, for this series of experiments, our metric
is based not on the number of AC-extensions performed but on the average number of
vertices handled by the AC-extension operations. The results of this series of experiments
are reported in the second part of Table 2. This part presents the average number of allowed
vertices, the average total number of handled vertices per AC-extension operation and the
gain as a percentage. The results show that the average number of allowed vertices is smaller
than the average total number of vertices by a factor of three. Gains reach over 70 % for all
datasets that we considered. This finding is also supported by the second series of experiments

123

Author's personal copy

B. Douar et al.

Table 2 Comparison of the number of forbidden AC-extensions operations avoided with the number of AC-
extensions operations performed by the AC-miner algorithm and comparison of the average number of allowed
vertices with the average total number of vertices handled within one AC-extension operation

Dataset #AC-extensions #Vertices/AC-extension

Performed Avoided Gain (%) Allowed Total Gain (%)

aids 2,499 1,221 32.82 1,817 6,753 73.09

chemical 2,120 1,048 33.08 17 61 71.65

nci1 104,658 11,982 10.27 622 2,379 73.88

nci145 112,430 12,067 9.69 602 2,290 73.73

nci33 97,984 11,216 10.27 526 2,029 74.09

The associated gains are presented in %. The minimal support has been fixed to 50 %

10 20 30 40 50
0

1000
2000
3000
4000
5000
6000
7000
8000

aids

Total vertices/AC−extension
Allowed vertices/AC−extension

Minimal support (%)

#V
er

tic
es

/A
C

−
ex

te
ns

io
n

10 20 30 40 50
0

10

20

30

40

50

60

70
chemical

Total vertices/AC−extension
Allowed vertices/AC−extension

Minimal support (%)

#V
er

tic
es

/A
C

−
ex

te
ns

io
n

Fig. 7 Comparison of the average number of allowed vertices with the average total number of vertices handled
within one AC-extension operation using different minimal supports over aids and chemical datasets

whose results are reported in Fig. 7. In this series of experiments, we have, for each database
graph, varied the minimal support from 10 to 50 % with recording, at each time, the average
number of allowed vertices and the average total number of vertices handled per AC-extension
operation. These results are represented by two graphs: one graph for each dataset. Each graph
shows two curves: the first translates the evolution of the total number of vertices that are
handled by the AC-extension operation, while the second shows the evolution of the average
number of the allowed vertices that are handled by the AC-extension. This is done for each
minimal support value that is considered in these settings.

These results confirm our observations reported in Table 2 and allow us to experimentally
prove that our pruning technique based on allowed vertices inheritance achieves a significant
gain of more than 70 %. This achievement takes place regardless of the value of minimal
support adopted or the dataset considered.

5.3 The AC-miner algorithm outline

The AC-miner algorithm [5] starts by adding to each vertex label in a graph database D its
associated most general vertex group Vl in a list. This list contains the remaining vertex group
to be extended. Then, the algorithm tries to extend each vertex group till it has no further
possible extension. So, we can say that the resulting frequent patterns are said to be closed.2

2 A frequent graph pattern is said to be closed, if there is no super frequent graph pattern with the same
support.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

Table 3 Datasets statistics

Dataset Graphs Vertex/Graph Edge/Graph Labels Classes

avg max avg max vertex edge

nci1 11,272 27 113 29 119 54 3 2

nci33 9,201 27 113 29 119 52 3 2

nci41 8,404 28 113 30 119 34 3 2

nci47 11,165 27 111 29 119 53 3 2

nci81 13,017 27 111 29 119 56 3 2

nci109 11,351 27 111 29 119 54 3 2

nci145 10,719 27 110 29 116 53 3 2

nci330 12,506 23 120 24 132 57 3 2

aids 42,285 26 222 28 247 62 4 3

dd 1,178 284 5,748 716 14,267 82 1 2

The reader can find a complete description of the AC-miner algorithm as well as a running
example in [5].

6 Experiments and comparative study

In order to prove the usefulness of the LC- mine framework for frequent subgraph mining,
we present in the following an experimental study of the two previously described instances,
namely the FGMAC and AC-miner algorithms. We insist that the set of frequent AC-reduced
graphs discovered by these approaches is not exhaustive w.r.t. isomorphic patterns. So, in
the following, we present a quantitative study of our instances performance followed by a
qualitative evaluation of the AC-reduced patterns which consists in a computation of their
discriminative power within a supervised graph classification process.

6.1 Datasets

In order to evaluate the computational and the qualitative aspects of the FGMAC and AC-
miner instances, as well as the AC-projection operator, we carried out classification experi-
ments on 10 real-world datasets group widely cited in the literature (cf. Table 3):

– The anti-cancer screen datasets (nci) consist in eight datasets collected from the PubChem
Web site as in [22].

– The AIDS antiviral screen data (aids) contain the activity test information of 42,285 chem-
ical compounds. Each chemical compound is labeled as either active, moderately active
or inactive with respect to the HIV virus.

– The Dobson and Doig molecule dataset (dd) contain 1,178 proteins. Each protein is labeled
as either enzyme or non-enzyme. These proteins are represented by larger and more densely
connected graphs than the other datasets.

123

Author's personal copy

B. Douar et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

AIDS dataset

FSG
FGMAC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI145 dataset

FSG
FGMAC

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI330 dataset

FSG
FGMAC

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

AIDS dataset

gSpan
AC−miner

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI145 dataset

gSpan
AC−miner

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI330 dataset

gSpan
AC−miner

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

AIDS dataset

FGMAC
AC−miner

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI145 dataset

FGMAC
AC−miner

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

NCI330 dataset

FGMAC
AC−miner

Fig. 8 Runtime comparison of FGMAC versus FSG (line 1), AC-miner versus gSpan (line 2) and FGMAC
vs AC-miner (line 3), with the three datasets AIDS, NCI145 and NCI330 (columns)

6.2 Performance point of view

In order to have an idea about the very interesting computational power of each one of
the two developed instances, we compare their performances with a state-of-the-art mining
pattern-growth algorithm named gSpan [25] as well as the popular Apriori-like algorithm
named FSG [13]. These approaches are placed among the most efficient graph miners in
their respective categories [13,24]. In this subsection, we present a quantitative study of the
computational performance of the FGMAC algorithm compared to FSG, AC-miner compared
to gSpan and, finally, FGMAC compared to AC-miner.

The key parameter of the graph mining algorithms is the minimal support used to discover
the frequent substructures. To evaluate the performance of our framework instances with
regard to this parameter, we performed a set of experiments in which we varied the minimal
support from 10 to 90 % in 10 % increments.

Results depicted in Fig. 8 clearly show that, AC- miner and FGMAC, respectively, out-
perform gSpan and FSG regarding the runtime for all minimal supports selected and validate
the theoretical results about the polynomiality of the AC-projection operator compared to
the exponential complexity of the subgraph isomorphism adopted by gSpan and FSG.

However, looking at Fig. 9, we can see that for the dd dataset, FGMAC has similar runtime
with FSG for every minimal support. After thorough analysis of these results, we can conclude
that, with dense datasets having too much labels (82 labels for the dd dataset) subgraph
isomorphism becomes relatively more efficient (because of the increased number of vertex
invariants [13,19] that considerably reduce backtracks). Consequently, the performance of
the AC-projection will be almost the same as the subgraph isomorphism. Therefore, frequent

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90

 R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

DD dataset

FSG
FGMAC

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

DD dataset

gSpan
AC−miner

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90

R
un

 ti
m

e
(in

 s
)

Minimal Support (%)

DD dataset

FGMAC
AC−miner

Fig. 9 Runtime comparison of FGMAC versus FSG (left), AC-miner versus gSpan (center) and FGMAC vs
AC-miner (right) with the dd dataset

subgraph mining time for classical approaches will be reduced. Nevertheless, AC-miner is a
bit faster than gSpan on the same dataset, because of its reduced search space compared to
the large isomorphism-wide gSpan’s one.

When comparing AC-miner and FGMAC results over the dd datasets (cf. Fig. 9), we can
see that AC-miner is by far more efficient with this kind of dense datasets. For example, we
can see that, for the 10 % minimal support, AC-miner is a thousand times efficient as FGMAC.
This is principally due to the costly candidate generation phase adopted by FGMAC which
faces combinatorial problem and generates millions of false-positive candidates. This is not
the case of AC-miner, which explores the search space in a depth-first manner and without
candidate generation. We can conclude that AC-miner scales well for big dense datasets
compared to FGMAC.

In the following section, we present a study in a qualitative point of view of frequent
AC-reduced patterns.

6.3 Qualitative point of view: graph classification

Graph classification is a supervised learning problem in which the goal is to categorize an
entire graph as a positive or negative instance of a concept. We are particularly interested
in feature mining on graphs as it uses frequent graph patterns in the classification process.
Feature mining on graphs is usually performed to find all frequent or informative substructures
in the graph instances. These substructures are used for transforming the graph data into data
which is represented by a single table, and then traditional classifiers are used for classifying
the instances.

In this paper, the aim of using graph classification is the evaluation of the quality and
discriminative power of frequent AC-reduced subgraph patterns and its comparison with
isomorphic frequent subgraphs.

Using accuracy to judge a classifier would be incorrect as the size of the positive class is
significantly smaller than the negative class. To get a better understanding of the classifier
performance for different cost settings, we obtain the ROC curve [17] for each classifier. ROC
curve plots the false-positive rate (X-axis) versus the true-positive rate (Y-axis) of a classifier;
it displays the performance of the classifier regardless of class distribution or error cost. Two
classifiers are evaluated by comparing the area under their respective ROC curves, a larger
area under ROC curve indicating better performance. The area under the ROC curve will be
referred to by the parameter AUC. In the following experimentations, it is worth mentioning
that we are not comparing different classifiers but different feature sets (i.e., isomorphic and
AC-reduced) using only one classifier.

We carried out classification experiments on five biological activity datasets and measured
the AUC classification value using the known decision trees classifier, namely C4.5 [18]. The

123

Author's personal copy

B. Douar et al.

Fig. 10 Graph classification process

classification methods are described in more detail in the following subsections, along with
the associated results.

6.3.1 Methods

We evaluated the classification AUC using four different feature sets. The first two sets of
features (isomorphic, closed isomorphic), respectively, consist of all frequent isomorphic
subgraphs and all closed frequent isomorphic ones. Those subgraphs are mined using the
FSG software [13] with different minimal supports. Each chemical compound is represented
by a binary vector with a length equal to the number of mined subgraphs. Each subgraph is
mapped to a specific vector index, and if a chemical compound contains a subgraph, then the
bit at the corresponding index is set to one, otherwise it is set to zero.

The third and fourth feature sets (AC-reduced, closed AC-reduced), respectively, contain
the FGMAC’s output consisting of only AC-reduced frequent subgraphs and the AC- miner’s
output which consists of only closed AC-reduced frequent subgraphs. We have used the
method described above with the only difference of using the AC-projection instead of the
subgraph isomorphism as the projection operator.

The graph classification preprocessing over an example is depicted in Fig. 10. The final
matrix (the context) will be used by the C4.5 [18] decision tree algorithm.

6.3.2 Results

All classifications have been done with the Weka data-mining software package [23], and
we have reported results of the prediction AUC value over the 10 cross-validation trials. In
the following, we are analyzing the AC-reduced patterns from quantitative and qualitative
points of view.

(Patterns count) Results presented in Fig. 11 show that for all datasets, we have very few
AC-reduced frequent patterns compared to the isomorphic ones. On average, we have 35 %
fewer patterns. This ratio is bigger for lower supports and can reach 60 % for the AIDS dataset
with a minimal support of 10 %. These experimental results highlight the fact that the search
space for extracting AC-reduced patterns is smaller than the one for classical isomorphic
subgraphs. Thus, having an algorithm which looks for all AC-reduced frequent subgraphs
would benefit from the polynomiality of the projection operation as well as a smaller search
space (i.e. fewer AC-projection tests).

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

Table 4 Comparison of the classification AUC value of different feature sets for all the ten datasets with a
minimal support of 50 %

Datasets Isomorphic AC-reduced Closed Isomorphic Closed AC-reduced

AUC Std AUC Std AUC Std AUC Std

aids 0.688 0.012 0.683 0.012 0.618 0.019 0.618 0.019

dd 0.815 0.048 0.815 0.052 0.812 0.043 0.814 0.044

nci109 0.752 0.017 0.743 0.014 0.723 0.020 0.712 0.022

nci145 0.755 0.016 0.745 0.017 0.716 0.021 0.707 0.021

nci1 0.758 0.020 0.747 0.020 0.718 0.017 0.711 0.013

nci330 0.734 0.022 0.736 0.023 0.700 0.020 0.685 0.019

nci33 0.755 0.025 0.746 0.026 0.723 0.022 0.713 0.022

nci41 0.743 0.023 0.737 0.023 0.717 0.031 0.712 0.031

nci47 0.751 0.017 0.735 0.016 0.725 0.021 0.710 0.020

nci81 0.735 0.017 0.728 0.015 0.702 0.014 0.691 0.009

 0

 100

 200

 300

 400

 500

10 20 30 40 50

F
re

qu
en

t s
ub

gr
ap

hs

Minimal support (%)

AIDS dataset

Isomorphic
AC−reduced

Closed_Isomorphic
Closed_AC−reduced

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10 20 30 40 50

F
re

qu
en

t s
ub

gr
ap

hs

Minimal support (%)

NCI145 dataset

Isomorphic
AC−reduced

Closed_Isomorphic
Closed_AC−reduced

Fig. 11 Comparison of the number of patterns of different feature set for the AIDS and NCI145 datasets

(Classification relevance) When we see that the number of frequent subgraph pat-
terns has drastically decreased after the AC-reduction process, we are surely curious
to know about the relevance of these few patterns for supervised graph classification.
That is why we have conducted experiments to evaluate the accuracy of classification.
These experiments use (closed) AC-reduced and (closed) isomorphic patterns to compare
them.

As shown in Fig. 12, when comparing frequent isomorphic patterns to frequent AC-
reduced ones and closed frequent isomorphic patterns to closed frequent AC-reduced ones,
we can see that, the AUC value is almost the same for all minimal support and all datasets.
Table 4 confirms our claim that, despite the fact that frequent AC-reduced patterns are clearly
fewer than isomorphic ones, their quality and discriminative power remain almost the same.

Taking a more in-depth look at the results, we notice that, for some datasets and minimal
support values, we have even better AUC for AC-reduced and closed AC-reduced feature
sets. This is eventually due to the better generalization power of the AC-reduction process,
which helped supervised classifiers avoid the over-fitting learning problem.

Finally, comparing AC-reduced and closed AC-reduced feature sets, we can see that fre-
quent AC-reduced patterns can characterize graphs better than closed ones. This is due to the

123

Author's personal copy

B. Douar et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 20 30 40 50 60 70 80 90

A
U

C

Minimal Support (%)

AIDS dataset

Isomorphic
AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 20 30 40 50 60 70 80 90

A
U

C

Minimal Support (%)

NCI145 dataset

Isomorphic
AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 20 30 40 50 60 70 80 90

A
U

C

Minimal Support (%)

NCI330 dataset

Isomorphic
AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

AIDS dataset

Closed Isomorphic
Closed AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

NCI145 dataset

Closed Isomorphic
Closed AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

NCI330 dataset

Closed Isomorphic
Closed AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

AIDS dataset

 AC−reduced
Closed AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

NCI145 dataset

 AC−reduced
Closed AC−reduced

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 15 20 25 30 35 40 45 50 55 60

A
U

C

Minimal Support (%)

NCI330 dataset

 AC−reduced
Closed AC−reduced

Fig. 12 Comparison of the classification AUC value of different feature sets for AIDS, NCI145 and NCI330
datasets

clearly insufficient number of closed AC-reduced patterns especially for high minimal sup-
ports (cf. Fig. 11). Such a reduced number of features does not permit to correctly characterize
graphs in the learning process. However, it is possible to change the AC-miner algorithm to
derive all frequent AC-reduced patterns and not only closed ones with no coding overhead.
Therefore, we will have a very efficient mining approach with a more exhaustive frequent
patterns output.

7 Conclusion

In this paper, we proposed a generic and efficient framework for frequent subgraph mining
with local consistency techniques, namely LC- mine. The core idea behind our framework
is the introduction of a bias in the graph projection operator. Our approach can be easily
adapted to any level of local consistencies (arc consistency, path consistency, etc.). We propose
two arc consistency-based instances of the LC- mine framework. The first instance, named
FGMAC, follows a breadth-first order to find frequent subgraphs and uses an Apriori-like
search strategy. The second, named AC-miner, is a pattern-growth approach that follows a
depth-first search space exploration strategy and uses powerful pruning techniques in order
to considerably reduce the search space. We evaluated their performance in terms of the
required computation time and the discovered frequent patterns quality for some real-world
datasets. The computational efficiency of our approaches was confirmed, and our framework
instances outperform state-of-the-art approaches. It is worth mentioning that the number of
discovered frequent AC-reduced subgraphs is clearly smaller than isomorphic ones but they
have a very comparable quality and discriminative power.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

References

1. Agrawal R, Skirant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th
international conference on very large databases. Santiago, Chile, pp 478–499

2. Bessière C, Régin JC (1996) Mac and combined heuristics: two reasons to forsake fc (and cbj?) on hard
problems. In ‘CP’, pp 61–75

3. Cook JD, Holder LB (2006) Mining graph data. Wiley, London
4. Douar B, Liquiere M, Latiri C, Slimani Y (2011a), FGMAC: Frequent subgraph mining with Arc Con-

sistency. In: Proceedings of the IEEE symposium on computational intelligence and data mining, CIDM
2011, part of the IEEE symposium series on computational intelligence. IEEE Computer Society, Paris,
pp 112–119

5. Douar B, Liquiere M, Latiri C, Slimani Y (2011b) Graph-based relational learning with a polynomial time
projection algorithm. In: Proceedings of the 21st international conference on inductive logic programming,
ILP 2011, vol 7207 of LNAI. Springer, Windsor Great Park, pp 96–112

6. Fan W, Li J, Luo J, Tan Z, Wang X, Wu Y (2011) Incremental graph pattern matching. In: Proceedings of
the 2011 international conference on Management of data, SIGMOD ’11. ACM, New York, pp 925–936

7. Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y (2010) Graph pattern matching: from intractable to polynomial
time. Proc. VLDB Endow. 3(1–2):264–275

8. Fan W, Li J, Ma S, Wang H, Wu Y (2010) Graph homomorphism revisited for graph matching. Proc.
VLDB Endow. 3(1–2):1161–1172

9. Hell P, Nesetril J (2004) Graphs and homomorphism, vol 28. Oxford University Press, Oxford
10. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism.

In: Proceedings of the 3rd IEEE international conference on data mining, ICDM ’03, IEEE computer
society, Washington p 549

11. Inokuchi A, Washio T, Motoda H (2003) Complete mining of frequent patterns from graphs: mining graph
data. Mach. Learn. 50(3):321–354

12. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Cercone N, Lin TY, Wu X (eds)
International conference on data mining, IEEE computer society, pp 313–320

13. Kuramochi M, Karypis G (2004) An efficient algorithm for discovering frequent subgraphs. IEEE Trans
Knowl Data Eng 16:1038–1051

14. Liquiere M. (2007) Arc consistency projection: a new generalization relation for graphs. In: ICCS,
pp 333–346

15. Mackworth AK (1977) Consistency in networks of relations. Artif. Intell. 8(1):99–118
16. Nijssen S, Kok JN (2004) The gaston tool for frequent subgraph mining. In: International workshop on

graph-based tools (Grabats). Electronic notes in theoretical computer science, pp 77–87
17. Provost FJ, Fawcett T (2001) Robust classification for imprecise environments. Mach. Learn. 42(3):203–

231
18. Quinlan JR (1993) C4.5: programs for machine learning, 1st edn. Morgan Kaufmann, Burlington
19. Read RC, Corneil DG (1977) The graph isomorphism disease. J. Graph Theory 1(1):339–363
20. Rossi F, van Beek P, Walsh T (eds) (2006) Handbook of constraint programming. Elsevier, Amsterdam
21. Solnon C (2010) Alldifferent-based filtering for subgraph isomorphism. Artif. Intell. 174:850–864
22. Thoma M, Cheng H, Gretton A, Han J, Kriegel HP, Smola A, Song L, Yu PS, Yan X, Borgwardt KM (2010)

Discriminative frequent subgraph mining with optimality guarantees. Stat. Anal. Data Min. 3(5):302–318
23. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, second edition

(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann, San Francisco
24. Wörlein M, Meinl T, Fischer I, Philippsen M (2005) A quantitative comparison of the subgraph miners

mofa, gspan, ffsm, and gaston. In: European conference on machine learning and principles and practice
of knowledge discovery in databases, vol 3721 of LNCS, Springer, Berlin pp 392–403

25. Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: International conference on
data mining, IEEE computer society, pp 721–724

26. Zampelli S, Deville Y, Solnon C (2010) Solving subgraph isomorphism problems with constraint pro-
gramming. J Constraints 15:327–353

123

Author's personal copy

B. Douar et al.

Brahim Douar received a Computer Science Ph.D. from the Univer-
sity of Montpellier II and the University of Tunis El Manar in 2012.
He also received B.S. and M.S. degrees in Computer Science from the
Tunis Higher Institute of Management, in 2005 and 2007, respectively.
Actually, he is a researcher in the LIPAH research Lab at the Faculty of
sciences of Tunis. His research interests include business intelligence,
relational learning, graph mining and social network analysis.

Michel Liquiere is a Senior Lecturer in Computer Science at the
LIRMM (University Montepllier II and IUT Beziers), Since 1990, his
research interest focuses on developing novel algorithms in machine
learning, formal concept analysis and graph mining.

Chiraz Latiri is Professor in Computer Science at Manouba Univer-
sity (Tunisia). She is a head of the Text mining team within the LIPAH
research Lab at the Faculty of sciences of Tunis. His research focuses
on mining of large multilingual document collections for information
access (mainly mining interesting patterns form text and information
retrieval) and is at the intersection of three main research domains:
text mining, information retrieval and machine translation. She particu-
larly interested in modeling and mining large textual collections and in
proposing new approaches that take into account the properties of such
collections such as multilingualism. She is also interested in extracting
and modeling text corpora from social networks.

123

Author's personal copy

LC-mine: a framework for frequent subgraph mining

Yahya Slimani studied at the Computer Science Institute of Algers
(Algeria) from 1968 to 1973. He received the B.Sc. (Eng.), Dr Eng and
PhD degrees from the Computer Science Institute of Algers (Algeria),
University of Lille (French) and University of Oran (Algeria), in 1973,
1986 and 1993, respectively. He is currently Full Professor at the High
Institute of Art and Multimedia of University of Manouba (Tunisia).
His research activities concern knowledge extraction, data mining, par-
allelism, distributed systems, Grid and Cloud computing. Pr. Slimani
has published more than 120 papers from 1986 to 2013. He is a distin-
guished editorial board member and reviewer for many scientific jour-
nals and international conferences.

123

Author's personal copy

View publication statsView publication stats

https://www.researchgate.net/publication/264420846

	LC-mine: a framework for frequent subgraph mining with local consistency techniques
	Abstract
	1 Introduction and motivations
	2 Frequent subgraph mining
	2.1 Basic definitions
	2.2 Related work
	2.2.1 Breadth-first approaches
	2.2.2 Depth-first approaches

	3 The LC-mine framework
	3.1 Preliminary concepts
	3.2 The framework operators
	3.2.1 The projection operator (LC-projection)
	3.2.2 The reduction operator (LC-reduction)
	3.2.3 The extension operator (LC-extension)

	3.3 Search strategies
	3.3.1 Apriori-like strategy
	3.3.2 Pattern-growth strategy

	4 FGMAC: frequent subgraph mining with arc consistency
	4.1 The AC-projection operator
	4.1.1 Mathematical foundations
	4.1.2 The AC-projection algorithm outline

	4.2 The AC-reduction operator
	4.2.1 The AC-equivalence relation
	4.2.2 The AC-reduction algorithm outline

	4.3 Related work and discussion
	4.4 The FGMAC algorithm outline

	5 AC-miner: a pattern-growth graph mining approach with a polynomial time projection
	5.1 The AC-extension operator
	5.1.1 Mathematical foundations
	5.1.2 Increasing forbidden labels inheritance
	5.1.3 Decreasing allowed vertices inheritance

	5.2 Experimental evaluation of the AC-extension pruning techniques
	5.2.1 The forbidden labels inheritance
	5.2.2 The allowed vertices inheritance

	5.3 The AC-miner algorithm outline

	6 Experiments and comparative study
	6.1 Datasets
	6.2 Performance point of view
	6.3 Qualitative point of view: graph classification
	6.3.1 Methods
	6.3.2 Results

	7 Conclusion
	References

