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The aim of the frequent subgraph mining task is to find frequently occurring subgraphs in
a large graph database. However, this task is a thriving challenge, as graph and subgraph
isomorphisms play a key role throughout the computations. Since subgraph isomorphism
testing is a hard problem, subgraph miners are exponential in runtime. To alleviate
the complexity issue, we propose to introduce a bias in the projection operator and
instead of using the costly subgraph isomorphism projection, one can use a polynomial
projection having a semantically-valid structural interpretation. This paper presents a
new projection operator for graphs named AC-projection, which exhibits nice theoretical
complexity properties. We study the size of the search space as well as some practical
properties of the projection operator. We also introduce a novel breadth-first algorithm

for frequent AC-reduced subgraphs mining. Then, we prove experimentally that we can
achieve an important performance gain (polynomial complexity projection) without or
with non-significant loss of discovered patterns in terms of quality.

Keywords: Graph mining; Projection operators; Graph classification.

1. Introduction and Motivation

Given an increasing and urgent need to analyze large amount of structured data

such as chemical compounds, proteins structures, XML documents, to cite but a
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few, graph mining has become a compelling issue in the data mining field 3. Indeed,

discovering frequent subgraphs, i.e., discovering subgraphs which occur frequently

enough over the entire set of graphs, is a thriving challenge due to their exponen-

tial number. Indeed, based on the Apriori principle 1, a frequent n-edge graph

may contain 2n frequent subgraphs. This raises a serious problem related to the

exponential search space as well as the counting of complete sub-patterns while the

kernel of frequent subgraph mining is subgraph isomorphism test. The latter has

been proved to be NP-complete 5. To alleviate the complexity issue, some heuristics

based on an incomplete search or some limitations on the class of subgraphs must

be introduced.

In this paper, we study an innovative projection operator meant to replace the

costly subgraph isomorphism. In the second section, we provide a brief literature

review of the subgraph mining field. Then, we present the AC-projection operator

initially introduced in 12, as well as its very interesting properties. We propose an

efficient graph mining algorithm using the AC-projection operator. Finally, we study

the relevance of the AC-reduced patterns for the supervised graph classification.

Notice that, this paper is a wide extension of a previous work we carried out 4.

2. Frequent Subgraph Mining

Given a database consisting of small graphs, for example, molecular graphs, the

problem of mining frequent subgraphs is to find all subgraphs that are subgraph

isomorphic with a large number of example graphs in the database. In this section,

we recall some preliminary concepts as well as a brief review of literature dedicated

to frequent subgraph mining.

2.1. Basic definitions

Definition 2.1. (Labeled Graph) A labeled graph can be represented by a 4-tuple,

G = (V,A, L, l), where

• V is a set of vertices,

• A ⊆ V × V is a set of edges,

• L is a set of labels,

• l : V ∪A→ L, l is a function assigning labels to the vertices and the edges.

Definition 2.2. (Induced subgraph) A subgraph S of a graph G is said to be

induced if, for any pair of vertices x and y of S, (x, y) is an edge of S if and only if

(x, y) is an edge of G. In other words, S is an induced subgraph of G if it has all

the edges that appear in G over the same vertex set.

For example, we can see in Figure 1 that G2 is an induced subgraph of G1 while

G3 is not an induced one.
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Fig. 1. A set of labeled graphs

Definition 2.3. (Isomorphism, Subgraph Isomorphism) Given two graphs G1 and

G2, an isomorphism is a bijective function f : V (G1)→ V (G2), such that

∀x ∈ V (G1), l(x) = l(f(x)), and

∀(x, y) ∈ A(G1), (f(x), f(y)) ∈ A(G2) and l(x, y) = l(f(x), f(y)).

A subgraph isomorphism from G1 to G2 is an isomorphism from G1 to a subgraph

of G2.

Definition 2.4. (Graph projection) For two graphs, G1(V1, A1) and G2(V2, A2),

we call graph projection, the mapping which maps each vertex of G1 into one or

many vertices of G2. This defines the generalization order between our graphs.

In this paper, we present a new projection operator (AC-projection) having a

polynomial complexity and good properties. It is worth to mention that, given two

graphs G1 and G2, if there is no AC-projection between G1 and G2, then there

will not be a graph homomorphism between them, then there will also not be a

subgraph isomorphism.

Definition 2.5. (Frequent Subgraph Mining) Given a graph dataset, GS={Gi| i =

0 . . . n}, and a minimal support (minSup), let

ς(g,G) =

{

1 if there is a projection from g to G

0 otherwise.

σ (g,GS) =
∑

Gi ∈ GS

ς(g,Gi)

σ (g,GS) denotes the occurrence frequency of g in GS, i.e., the support of g in

GS. Frequent subgraph mining aims at finding every graph g such that σ (g,GS)

is greater than or equal to minSup. We note that the value of the support based

on AC-projection is an upper bound of the original graph isomorphism. In fact, if
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there is no AC-projection between two graphs G1 and G2, then there will be neither

graph homomorphism; nor subgraph isomorphism between them.

Known frequent subgraphs miners are based on this definition and deal with the

special case where the projection operator is a subgraph isomorphism.

2.2. Related Work

Algorithms for frequent subgraph mining are based on two patterns discovery

paradigms, namely breadth-first search and depth-first search. Most of these al-

gorithms employ different ways for candidate generation and support counting. An

interesting quantitative comparison of the most cited subgraph miners is given in
18.

2.2.1. Breadth-first Approaches

Algorithms, that follow a breadth-first order to find frequent subgraphs, take ad-

vantage of the well-known Apriori 1 levelwise strategy. In the literature, pioneer

and most cited approaches are Agm 9 and Fsg 10.

The particularity of Agm is that it only mines frequent induced subgraphs in the

graph database, as well as dealing with graphs having self-loops. During the min-

ing process, the algorithm extends subgraphs by adding one vertex at each level.

Experiments, reported in 9, show that Agm achieves relatively good performances

for synthetic dense datasets. Compared to more recent approaches, with the ex-

ception of handling self-loops, Agm is an obsolete mining approach with very poor

scalability power.

Thus, a more efficient breadth-first approach named Fsg 10 has been introduced.

The latter algorithm is also based on the same level-by-level expansion exactly as did

Apriori but in the context of labeled graphs. Fsg essentially differs from the Agm

approach by adding one edge at a time (instead of one vertex for Agm) allowing to

efficiently generate the candidates.

Various optimizations, partially based on labels, vertex degrees and hierarchical

structure of the search space, have been proposed for canonical form computation,

candidate generation and counting. These optimizations have allowed it to scale

to large graphs. The result of the strong dependency of Fsg to labels and vertex

degrees etc., makes the performance of Fsg to be relatively worse for graph database

with few vertex and edge labels. This is due to the exponential complexity of the

subgraph isomorphism test that badly influenced the overall performance.

Besides, if we have sufficiently vertex and edge labels, then Fsg will be able to

achieve good performance and to scale linearly with the database size.

In this paper, we are particularly interested in this approach. In fact, we propose

a frequent subgraph mining approach based on the Fsg version and using a novel

operator for the support counting process as well as an innovative graph reduction

algorithm.
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2.2.2. Depth-first Approaches

Main depth-first approaches are restricted to find connected subgraphs and traverse

the search lattice in a vertical way. In this respect, several algorithms were proposed

in the literature. We give in the following a brief description of the two most cited

ones, namely gSpan 19 and Gaston 14 algorithms.

The gSpan algorithm 19 is based on a canonical representation for graphs, called

dfs-code. A dfs-traversal of a graph defines an order in which the edges are visited.

The concatenation of edge representation in that order is the graph’s dfs-code. In

order to prevent isomorphic subgraphs (duplicates) generation, gSpan computes

the canonical (lexicographically smallest) dfs-code from each refinement using a

series of permutations. Refinements with non-minimal dfs-code can be pruned. The

gSpan stores appearance lists for each subgraphs. Explicit subgraph isomorphism

testing has to be done on all graphs in these appearance lists.

Instead of storing appearance lists for each subgraphs, the Gaston algorithm
14 stores all embeddings a to generate only refinements that actually appear and to

achieve faster subgraph isomorphism testing. The main idea behind this algorithm is

that there are efficient ways to enumerate paths and trees. By looking for subgraphs

that are paths or trees first, and by only dealing with general graphs with cycles at

the very end, a large fraction of the work can be done efficiently.

Indeed, Gaston will face the NP-completeness of the subgraph isomorphism

problem only in the last phase. Duplicate detection is performed in two phases:

hashing to pre-sort and an explicit graph isomorphism test for final duplicate de-

tection.

2.3. Critical Discussion

Developing algorithms that discover all frequently occurring subgraphs in a large

graph database is computationally extensive, since graph and subgraph isomor-

phisms play a key role throughout the computations. Since subgraph isomorphism

testing is a hard problem, fragment miners are exponential in runtime. Many fre-

quent subgraphs miners have tried to avoid the NP-completeness of subgraph iso-

morphism problem by storing all embeddings in embedding lists which consist of a

mapping of the vertices and edges of a fragment to the corresponding vertices and

edges in the graph it occurs in. It is clear that with this trick we can avoid exces-

sive subgraph isomorphism tests when counting fragments support and, therefore,

avoid exponential runtime. However, these approaches face exponential memory

consumption instead. So,we can say that they are only trading time versus storage.

This strategy can even cause problem if not enough memory is available or if the

memory throughput is not high enough. The authors in 18, after an extensive exper-

imental study of different subgraph miners, conclude that embedding lists do not

aAn embedding is a mapping of the nodes and edges of a subgraph to the corresponding nodes
and edges in the graph it occurs in.
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considerably speed up the search for frequent fragments. Thus, even though gSpan

19 does not use them, it is almost as competitive as Gaston 14 and Ffsm 8, at

least with not too big fragments.

To alleviate the complexity issue, we propose to introduce a bias in the projection

operator and instead of using the subgraph-isomorphism projection, one can use a

polynomial projection having a semantically-valid structural interpretation.

In 12, the author introduced an interesting projection operator named AC-

projection which seems to have good properties and ensure polynomial time and

memory consumption. The forthcoming sections present this operator with its many

interesting properties and show an optimized algorithm for computing it.

3. The AC-projection Operator

The projection problem (including conceptual graph projection, homomorphism,

injective morphism, Θ-subsumption and OI-subsumption) is crucial to the efficiency

of relational learning systems. The approach suggested in 12 advocates a projection

operator based on the arc consistency algorithm. This projection method has the

required properties: polynomiality, local validation, parallelization and structural

interpretation. We note that the name “AC-projection” comes from the classical

AC (arc consistency) used in 2.

3.1. AC-projection And Arc Consistency

We first state the formal definitions related to AC-projection and arc consistency

and used in the remainder of the paper.

Definition 3.1. (Labeling) Let G1 and G2 be two graphs. We call a labeling from

G1 into G2 a mapping I : V (G1)→ 2V (G2)|∀x ∈ V (G1), ∀y ∈ I(x), l(x) = l(y).

Thus, for a vertex x ∈ V (G1).I(x) is a set of vertices of G2 with the same label

l(x). We can say that I(x) is the set of “possible images” of the vertex x in G2.

This first labeling is trivial but can be refined using the neighborhood relations

between vertices.

Definition 3.2. (AC-compatible y ) Let G be a graph V1 ⊆ V (G), V2 ⊆ V (G)

V1 is AC-compatible with V2 iff

(1) ∀xk ∈ V1∃yp ∈ V2|(xk, yp) ∈ A(G)

(2) ∀yq ∈ V2∃xm ∈ V1|(xm, yq) ∈ A(G).

We denote it V1 y V2

In the definition above we give a direct relation between two sets of vertices V1

and V2. So, for each vertex xk of V1 there is at least one vertex yp of V2 which is a

neighbor of xk and, for each vertices yq of V2, there is at least one vertex xm of V1

which is a neighbor of yq.
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Definition 3.3. (Consistency for one arc) Let G1 and G2 be two graphs. We say

that a labeling I : V (G1) → 2V (G2) is consistent with an arc (x, y) ∈ A(G1), iff

I(x) y I(y).

Definition 3.4. (AC-labeling) Let G1 and G2 be two graphs. A labeling I from

G1 into G2 is an AC-labeling iff I is consistent with all the arcs e ∈ A(G1).

Definition 3.5. (AC-projection ⇁ ) Let G1 and G2 be two graphs. An AC-labeling

I : V (G1)→ 2V (G2) is an AC-projection iff ∀ AC-labeling I ′ : V (G1)→ 2V (G2) and

∀x ∈ V (G1), I ′(x) ⊆ I(x). We denote it G1 ⇁ G2

Fig. 2. An AC-projection example (G1 ⇁ G2)

As depicted in Figure 2, considering the labeling I: I(a0) = {a6, a14}, I(a1) =

{a6}, I(b2) = {b7}, I(c3) = {c8}, I(d4) = {d9}, I(e5) = {e10}. We verify that

I(a0) y I(d4), I(d4) y I(c3), I(c3) y I(b2), I(b2) y I(e5), I(e5) y I(a1),

I(a1) y I(d4), I(b2) y I(a1). Then I is an AC-projection from G1 into G2, since

I is a labeling consistent with all arcs of G1 and this labeling is maximal.

3.2. AC-projection: Improved Algorithm

We introduce an improved AC-projection algorithm for graphs (based on the AC3

algorithm 13). The AC-projection algorithm takes two graphs G1 and G2 and tests

whether there is an AC-projection from G1 into G2 (cf. Algorithm 1). It begins by

the creation of a first rough labeling I and reduces, for each vertex x, the given

lists I(x) to consistent lists using the function ReviseArc. The consistency check

fails if some I(x) becomes empty, otherwise the consistency check succeeds and the

algorithm gives the labeling I which is an AC projection G1 ⇁ G2. Like the AC3

algorithm, the actual AC-projection algorithm has a worst-case time complexity of

O(e× d3) and space complexity of O(e) where e is the number of arcs and d is the

size of the largest domain. In our case, the size of the largest domain is the size of

the largest subset of nodes with the same label.
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Algorithm 1: AC-projection

Input : Two graphs G1 and G2

Output: An AC-projection I from G1 into G2 if there is, otherwise an

empty set

1 foreach x ∈ V (G1) do

2 I(x)={y ∈ V (G2)|l(x) = l(y)}

3 S ← A(G1);

4 P ← ∅;

5 while S 6= ∅ do

6 Choose an arc (x, y) from S;

7 I ′:=ReviseArc ((x, y), I, G2);

8 if (I ′(x) = ∅) or (I ′(y) = ∅) then

9 return ∅;

10 if I(x) 6= I ′(x) then

11 R← {(x′, y′) ∈ P |x′ = x or y′ = x};

12 S ← S ∪R;

13 P ← P rR;

14 if I(y) 6= I ′(y) then

15 R← {(x′, y′) ∈ P |x′ = y or y′ = y};

16 S ← S ∪R;

17 P ← P rR;

18 S ← S r {x, y};

19 P ← P ∪ {x, y};

20 I ← I ′;

21 return I;

Function ReviseArc
Input : A graph G2, A labeling I from G1 into G2, An arc (x, y) ∈ V (G1)

Output: A new labeling I ′ from G1 into G2

1 I ′ ← I;

2 I ′(x)← I(x) r {x′ ∈ V (G2)|∄ y′ ∈ I(y) with (x′, y′) ∈ A(G2)};

3 I ′(y)← I(y) r {y′ ∈ V (G2)|∄ x′ ∈ I(x) with (x′, y′) ∈ A(G2)};

4 return I ′;

3.3. AC-projection And Reduction

The following definition introduces an equivalence relation between graphs w.r.t.

AC-projection.
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Fig. 3. Two AC-equivalent graphs (G1 ⇌ G2)

Definition 3.6. (AC-equivalent graphs)

Two graphs G1 and G2 are AC-equivalent iff both G1 ⇁ G2 and G2 ⇁ G1 are

fulfilled.

We denote it G1 ⇌ G2.

For example in Figure 3 we have:

• G1 ⇁ G2 with the labeling I : I(a0) = {a6, a11, a12}, I(a1) = {a6, a12},

I(b2)={b7, b13}, I(c3) = {c9, c15}, I(d4) = {d16, d10}, I(e5) = {e8, e14}

• G2 ⇁ G1 with the labeling I ′ : I ′(a11) = {a0, a1}, I ′(a6|a12) = {a1},

I ′(b7|b13) = {b2}, I ′(c9|c15) = {c3}, I ′(d16|d10) = {c4}, I ′(e8|e14) = {e5}

We have an equivalence relation between graphs using the AC-projection. In this

paragraph we study the properties of this operation and search for a reduced element

in an equivalence class of graphs. This element will be the unique representative of

this equivalence class, and for which we give then the name of “AC-reduced graph”.

The Figure 4 shows a set of graphs belonging to the same equivalence class as well

as the AC-reduced one in the extreme right.

Fig. 4. AC-equivalent graphs and the associated AC-reduced one (extreme right)

3.3.1. Auto AC-projection And AC-reduction

We examine the auto AC-projection operation (G ⇁ G), which we will use to

find the minimal graph of an equivalence class of graphs and we will prove in the

following that the obtained graph is minimal.
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Proposition 3.7. Given an AC-projection I : G ⇁ G′, x′ ∈ I(x) iff for each tree

T (VT , AT ), (with VT is the set of vertices of T , and AT its set of arcs) and each

t ∈ VT we have:

If there is a morphism from T to G which associates t to x then there is a

morphism from T to G′ which associates t to x′. 6

Proposition 3.8. (Order relation on I)

For an AC-projection I : G ⇁ G, if xi ∈ I(x) then I(xi) ⊆ I(x)

Proof. If we have xi ∈ I(x), it means that for all trees T having a morphism in G

and which associates t to x, then there is a morphism from t in G which associates

t to xi (cf. Proposition 3.7). We call T (x,t) this set of trees.

Let us see now if we can have xj ∈ I(xi) and xj /∈ I(x).

For xj ∈ I(xi), according to Proposition 4.3, we see that all trees from T (x,t)

associates to t the vertex xi. Since xj ∈ I(xi), it will be the same for it, so xj ∈ I(x).

We conclude that we can not have xj /∈ I(x) since xj ∈ I(xi), so: I(xi) ⊆

I(x).

Proposition 3.9. Given a graph G and an AC-projection I : G ⇁ G and given a

vertex x ∈ V (G) with |I(x)| > 1.

If we have xi ∈ I(x), the graph G′ formed by the merging of x and xi is AC-

equivalent to G.

Proof. To prove that G ⇋ G′ we have to prove that G ⇁ G′ and G′ ⇁ G.

Since G′ ⇁ G by construction we have only to prove that G ⇁ G′:

We construct this AC-projection by replacing x with xi in the auto AC-

projection G ⇁ G. Since I(xi) ⊆ I(x), so there is really an AC-projection. We

conclude that G ⇁ G′.

Now, we are interested in finding the smallest element of the equivalence class

of graphs. For two AC-equivalent graphs G and G′, we will consider that G < G′

iff |V (G)| < |V (G′)|.

Proposition 3.10. (Minimality)

A graph G is minimal in the equivalence class iff for the AC-projection I : G ⇁

G, ∀x ∈ V (G), I(x) = {x}.

Proof. According to Proposition 4.3, it is clear that if there was a vertex x such

that |I(x)| > 1, then we will be able to do another reduction.

Now, the question is: can a graph G′ = G \ x be AC-equivalent to G ?

If this is true, then we must have an AC-projection from G to G′. It would say that

x in G has another image x′ in G′. So, x′ must be in I(x) which is contradictory to

the initial hypothesis.
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Algorithm 2: AC-reduce

Input : A graph G

Output: G′ =AC-reduced G

1 G′ ← G;

2 I ←AC-projection (G,G);

3 Q← V (G);

4 Sort Q such as x comes before y if |I(x)| < |I(y)|;

5 foreach v in Q do

6 foreach i in I(v) do

7 if (i 6= v) then

8 N(v)← N(v) ∪N(i); //if v and i are neighbors, then we would

have a reflexive arc

9 Q← Qr i;

10 V (G′)← V (G′)r i;

11 return G′;

3.3.2. AC-reduce Algorithm

The AC-reduce algorithm (cf. Algorithm 2) is based on the properties given on the

section above, these properties allow to construct the AC-reduced graph considering

any graph G. To do this, we simply have to do an auto AC-projection G ⇁ G

and then make the necessary merges. So this algorithm is very simple and have a

polynomial complexity, since the AC-projection’s complexity is polynomial.

4. Search space with AC-projection

In this section, we examine the size of the search space using the AC-projection.

We present some properties of the AC-projection. While using these properties we

can find an upper bound of the search space. We present this result for one labeled

graph G and can be easily extended for n graphs (one for each example). In this

case, G is the disjoint union of the graphs describing the examples.

Notation: For a labeled graph G:(V,E,L) we note Pl(V), the power set of vertices,

in V, with label l ∈ L.

Definition 4.1. (AC-graph ) For a labeled graph G:(V,E,L) and a set P of element

∈
⋃

Pl(V) with l ∈ L.

We construct a graph G’:(V’,E’,L’) with:

- a vertex v for each element in P. We note p(v) ∈ P the associated element.

- The label of a vertex v in the label of the element in p(v)

- (V1,V2) ∈ V’ iff p(V1)yp(V2)

G’ is an AC-graph of G.



March 9, 2014 17:57 WSPC/INSTRUCTION FILE ijait

12 B. Douar et al.

So, an AC-graph is built from a list of set of vertices from a graph G.

Now, we look at some links between the AC-graph and the AC-projection.

Proposition 4.2. For each AC-projection between two graphs G’, G there is an

associated AC-graph.

Proof. Since an AC-projection I, gives, for each vertex of x of G’, a set of vertex of

G. The AC-graph built from an AC-projection is the one build from the set of I(x),

x ∈ V’.

Proposition 4.3. For each AC-graph G’ of a graph G we have G’ ⇁ G.

Proof. The labeling I with, for each V ∈ G’, I(V) = p(V) is an AC-labeling from

G’ into G by construction.

Now for a graph G we can define a specific AC-graph built from the power set

of vertices of G.

Definition 4.4. (Max-AC-graph ) For a graph G:(V,E,L) the Max-AC-graph of G

is the AC-graph built from the set P of all element ∈
⋃

Pl(V) with label l ∈ L. We

denote this graph Max-AC-graph(G).

All subgraphs of Max-AC-graph(G) have an AC-projection into G. Since the

Max-AC-graph is the biggest AC-graph, it will represent the search space. The

complexity of the construction of the Max-AC-graph is O(2n
2

) where n is the num-

ber of vertices in G. This complexity is high but for many structural descriptions

(graph with homorphism projection) the size of the search space is bigger by an

order of magnitude.

5. BFGMAC: Breadth-first Frequent subGraph Mining with Arc

Consistency

In this section, we present BFGMAC, a modified version of the FSG algorithm 10

based on the AC-projection operator. In fact, in this version we have changed the

support counting part. Instead of subgraph isomorphism, the AC-projection is used

to verify whether a candidate graph appears in a transaction or not.

5.1. The Algorithm

The BFGMAC algorithm initially enumerates all the frequent single and double

edge graphs. Then, based on those two sets, it starts the main computational loop.

During each iteration it first generates candidate subgraphs whose size is greater

than the previous frequent ones by one edge (cf. Algorithm 3, line 5). Next, it counts

the frequency for each of these candidates, and prunes subgraphs that do no satisfy

the support constraint (cf. Algorithm 3, lines 6-11). Discovered frequent subgraphs
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Distinct labels Edges / Transaction Vertices / Transaction

Datasets Transactions Edge Vertices Average Max Average Max

HIA 86 3 8 24 44 22 40

PTC-FM 349 3 19 26 108 25 109

PTC-FR 351 3 20 27 108 26 109

PTC-MM 336 3 21 25 108 25 109

PTC-MR 344 3 19 26 108 26 109

fulfill the downward closure property of the support condition, which allows us to

effectively prune the lattice of frequent subgraphs.

The B
FGMAC’s particularity is to output only frequent AC-reduced graphs

(Algorithm 3, line 11) which is a subset of the whole frequent isomorphic pattern

set.

In the following, we present the key steps of the BFGMAC main process.

5.1.1. Candidate Generation

This step is ensured by the fsg-gen function (cf. Algorithm 3, line 5) used in the

FSG algorithm. This function uses a precise joining operator (fsg-join), which

generates (k + 1)− edges subgraphs by joining two frequent k − edges subgraphs.

In order to consider two such frequent k − edges subgraph as eligible for joining

they must contain the same (k − 1) − edges subgraph named core. The complete

description of these functions as well as their detailed algorithms are given in 11.

5.1.2. Support Computation

The key operator leading this step is the AC-projection previously described. In

fact, to check whether a pattern appears in a transaction, BFGMAC computes

in polynomial time if there is an AC-projection of the pattern in each one of the

transactions. In order to optimize this support computation phase, the algorithm

associates to each graph g of size k the set E(g) of transactions such as for each

graph G ∈ E(g), g ⇁ G. Having the graph g1∪g2 representing the union of the two

graphs g1 and g2, the intersection of the two sets E(g1) ∩E(g2) is then calculated.

As E(g1∪g2) ⊆ E(g1)∩E(g2), it is possible to eliminate the graph g1∪g2 if the

transaction’s count E(g1)∩E(g2) is sufficiently low to make g1 ∪ g2 infrequent. On

the other hand, the existence of a subgraph which has an AC-projection in g1 ∪ g2
can be only looked for in transactions E(g1) ∩ E(g2).

5.1.3. Frequents AC-reduction

This step is essential at the end of each iteration of the main loop of the algorithm.

It is intended to avoid the extraction of non AC-reduced frequent graphs, which

describe representative elements of graphs equivalence classes w.r.t. AC-equivalence.
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HIA

PTC-FM

Fig. 5. Runtime comparison of BFGMAC versus FSG with the two datasets HIA and PTC-FM

This process is based on the AC-reduce function described previously. We note

that this step takes advantage of the polynomial complexity of the AC-reduction

algorithm.

Fig. 6. Graph classification process
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Algorithm 3: BFGMAC

Input : A graph dataset D, Minimal support σ

Output: The set F of frequent subgraphs

1 F 1 ←detect frequent (1-edge)-subgraphs in D;

2 F 2 ←detect frequent (2-edges)-subgraphs in D;

3 k← 3;

4 while F k−1 6= ∅ do

5 Ck ← fsg-gen (F k−1)

6 foreach candidate gk ∈ Ck do

7 gk.count← 0;

8 foreach transaction t ∈ D do

9 if gk ⇁ t then

10 gk.count← gk.count+ 1;

11 F k ← {AC-reduce(gk ∈ Ck)|gk.count ≥ σ|D|};

12 k ← k + 1;

13 return F ;

6. Experiments and Comparative Study

In order to prove the usefulness of the AC-projection for graph mining, we present

in the following an experimental study of the BFGMAC algorithm. We insist that

the set of frequent AC-reduced graphs found by BFGMAC is not exhaustive w.r.t.

isomorphic patterns. In fact, the set of frequent subgraphs found by the means of

the AC-projection is a subset of the classical frequent isomorphic subgraphs. In the

following, we present a quantitative study of the BFGMAC performance followed by

a qualitative evaluation of the AC-reduced patterns which consists in a computation

of their discriminative power within a supervised graph classification process.

6.1. Datasets

We carried out performance and classification experiments on five biological activity

datasets widely cited in the literature. These datasets can be divided in two groups:

• The Predictive Toxicology Challenge (PTC) 7 that contains a set of chemical

compounds classified according to their toxicity in male rats (PTC-MR), female

rats (PTC-FR), male mice (PTC-MM), and female mice (PTC-FM).

• The Human Intestinal Absorption (HIA) 16 that contains chemical compounds

classified by intestinal absorption activity.
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6.2. Performance Point Of View

In this subsection we present a quantitative study of the computational perfor-

mance of BFGMAC compared to FSG. Results depicted in Figure 5 clearly show

that BFGMAC outperform FSG in the runtime point of view for all minimal sup-

ports selected and confirm the theoretical results about the polynomiality of the

AC-projection operator compared to the exponential complexity of the subgraph

isomorphism adopted by FSG.

In the following, we present a qualitative-oriented study of frequent AC-reduced

patterns.

6.3. Qualitative Point Of View: Graph Classification

Graph classification is a supervised learning problem in which the goal is to cat-

egorize an entire graph as a positive or negative instance of a concept. We are

particularly interested by feature mining on graphs as it uses frequent graph pat-

terns in the classification process. Feature mining on graphs is usually performed

to find all frequent or informative substructures in the graph instances. These sub-

structures are used for transforming the graph data into data represented as a single

table, and then traditional classifiers are used for classifying the instances.

The goal of using graph classification in this paper is the evaluation of the

quality and discriminative power of frequent AC-reduced subgraph patterns, and to

compare it with isomorphic frequent subgraphs.

We carried out classification experiments on five biological activity datasets,

and measured classifier prediction accuracy using the known decision trees classi-

fier named C4.5 15. The classification methods are described in more detail in the

following subsections, along with the associated results.

6.3.1. Methods

We evaluated the classification accuracy using two different feature sets. The first

set of features (Frequent) consists of all frequent isomorphic subgraphs. Those sub-

graphs are mined using the Fsg software 10 with different minimal supports. Each

chemical compound is represented by a binary vector whose length is equal to the

number of mined subgraphs. Each subgraph is mapped to a specific vector index,

and if a chemical compound contains a subgraph then the bit at the corresponding

index is set to one, otherwise it is set to zero.

The second feature set (Closed) is simply a subset of the first set. In fact, it

consists of only closed frequent subgraphs. Those subgraphs are also mined using

Fsg with the special parameter (-x) to hold only closed frequent subgraphs.

The third feature set (AC-reduced) contains the BFGMAC’s output which con-

sists of only AC-reduced frequent subgraphs. We have represented each chemical

compound by a binary vector whose length is equal to the number of AC-reduced

mined subgraphs. Each AC-reduced subgraph is mapped to a specific vector index,
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HIA (Frequent) PTC-FM (Frequent)

HIA (Closed) PTC-FM (Closed)

Fig. 7. Comparison of the number of patterns of different feature set for PTC-FM and HIA
datasets

and if there is an AC-projection from the AC-reduced subgraph to the chemical

compound then the bit at the corresponding index is set to one, otherwise it is set

to zero.

Finally, the fourth feature set (Closed AC-reduced) is similar to the third one,

the difference is that we only consider closed AC-reduced frequent subgraphs with

a special parameter passed to BFGMAC.

The graph classification preprocessing over an example is depicted by Figure 6.

The final matrix (the context) will be used by the C4.515 decision tree algorithm.

6.3.2. Results

All classifications have been done with the Weka data-mining software package 17,

and we have reported results of the prediction accuracy over the 10 cross-validation

trials. In the following, we analyze the AC-reduced patterns from quantitative and

qualitative points of view.



March 9, 2014 17:57 WSPC/INSTRUCTION FILE ijait

18 B. Douar et al.

All datasets (Frequent) HIA (Frequent) PTC-FM (Frequent)

All datasets (Closed) HIA (Closed) PTC-FM (Closed)

Fig. 8. Comparison of the classification accuracy (PCC) of different feature sets for All
datasets(Average), PTC-FM and HIA datasets

Patterns Count According to results shown in Figure 7, we see that for all

datasets we have very few AC-reduced frequent patterns compared to the isomor-

phic ones. We have on average 35 patterns. This ratio is bigger for lower supports

and can reach up to 70 experimental results highlight the fact that the search space

for extracting AC-reduced patterns is smaller than the one for classical isomorphic

subgraphs. Thus, having an algorithm which looks for all AC-reduced frequent sub-

graphs would benefit for the polynomiality of the projection operation as well as a

smaller search space (i.e. fewer AC-projection tests).

Classification Relevance When we see that the number of frequent subgraph

patterns has drastically decreased after the AC-reduction process, we surely wonder

about the relevance of these few patterns for supervised graph classification. That’s

why we have conducted classification’s accuracy experiments using AC-reduced and

isomorphic patterns to compare them.

As shown in Figure 8, we see that for the all datasets and all classifiers average,

the percentage of correctly classified (PCC) instances is almost the same for all

minimal supports, as well as for the other datasets individually.

Taking a more in-depth look to the results, we see that, for some datasets and

minimal support values, we even have better PCC for AC-reduced feature set. This

is due to the better generalization power of the AC-reduction process, which helped

supervised classifiers avoid over-fitting learning problem.
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7. Conclusions And Future Work

In this paper, we have studied the use of a new polynomial projection operator

named AC-Projection initially introduced in 12 and based on a key technique of

constraint programming namely Arc Consistency (AC). We have shown that using

the AC-projection and its properties has permitted us to have less patterns than all

frequent or closed subgraphs but with a very comparable quality and discriminative

power. AC-projection is intended to replace the use of the exponential subgraph iso-

morphism, as well as reducing the search space when seeking for frequent subgraphs.

Currently, we are studying a depth-first frequent subgraph mining approach based

on the AC-projection operator. Given a graph dataset, this novel approach will be

able to look for all frequent AC-reduced patterns with a reduced search space.
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