
HAL Id: lirmm-01276177
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276177v1

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Bounds Consistencies and Their Application to
Linear Constraints

Christian Bessiere, Anastasia Paparrizou, Kostas Stergiou

To cite this version:
Christian Bessiere, Anastasia Paparrizou, Kostas Stergiou. Strong Bounds Consistencies and Their
Application to Linear Constraints. AAAI Conference on Artificial Intelligence, Jan 2015, Austin, TX,
United States. pp.3717-3724. �lirmm-01276177�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276177v1
https://hal.archives-ouvertes.fr

Strong Bounds Consistencies and Their Application to Linear Constraints∗

Christian Bessiere
CNRS, University of Montpellier

Montpellier, France
bessiere@lirmm.fr

Anastasia Paparrizou
CNRS, University of Montpellier

Montpellier, France
paparrizou@lirmm.fr

Kostas Stergiou
University of Western Macedonia

Kozani, Greece
kstergiou@uowm.gr

Abstract

We propose two local consistencies that extend bounds
consistency (BC) by simultaneously considering com-
binations of constraints as opposed to single constraints.
We prove that these two local consistencies are both
stronger than BC, but are NP-hard to enforce even
when constraints are linear. Hence, we propose two
polynomial-time techniques to enforce approximations
of these two consistencies on linear constraints. One is
a reformulation of the constraints on which we enforce
BC whereas the other is a polynomial time algorithm.
Both achieve stronger pruning than BC. Our experi-
ments show large differences in favor of our approaches.

Introduction
Generalized Arc Consistency (GAC) and Bounds Consis-
tency (BC) are the two local consistencies that are pre-
dominantly used for propagation by finite domain constraint
solvers. Many stronger local consistencies based on GAC
have been proposed, both for binary and non-binary con-
straints, e.g. (Debruyne and Bessière 2001; Bessiere, Ster-
giou, and Walsh 2008). However, similar consistencies that
are based on BC have been comparatively overlooked.

There is a also a considerable body of work dedicated
to the study of propagation methods for linear constraints
(Zhang and Yap 2000; Harvey and Stuckey 2003; Apt and
Zoeteweij 2007; Bordeaux et al. 2011). However, these
works focus almost exclusively on BC propagation. One
exception is (Trick 2003) where the idea of considering
many linear constraints simultaneously to strengthen prop-
agation was investigated in the context of knapsack con-
straints. Another exception is Singleton Bounds Consistency
(SBC), which has been mainly studied on numerical CSPs
(Lhomme 1993).

In this paper we introduce rBC2 and rBCall, two new
strong local consistencies for non-binary constraints that ex-
tend BC. rBC2 is related to the domain filtering consistency
relational Path Inverse Consistency (rPIC) and rBCall is re-
lated to maxRPWC (Bessiere, Stergiou, and Walsh 2008).
The application of rBC2 and rBCall results in the shrinking

∗Funded by the EU project ICON (FP7-284715).
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of domain bounds just like BC, but unlike BC it simulta-
neously considers combinations of constraints as opposed to
single constraints. Naturally, this results in stronger filtering.

We present theoretical results that investigate the prun-
ing power of the new local consistencies. For example, we
show that BC is strictly weaker than rBCall and rBC2, which
are incomparable to SBC, just as GAC is strictly weaker
than maxRPWC and rPIC, which are incomparable to SAC.
These hold even when constraints are linear inequalities
where we know that GAC is equivalent to BC (Zhang and
Yap 2000). However, the stronger pruning of rBC2 and rB-
Call comes at a cost: we prove that rBC2 and rBCall are
NP-hard to enforce even when constraints are linear.

Thereafter, we focus exclusively on linear constraints.
This is the most common class of constraints on which BC
propagators are applied. We propose two polynomial-time
techniques to enforce approximations of rBC2 and rBCall
that are still stronger than BC. The first technique is a refor-
mulation of the constraints which introduces extra variables
to capture intersections (i.e., shared variables) between con-
straints. Then we simply enforce BC on the reformulation.
This is a flexible technique that depending on the extra vari-
ables introduced achieves approximations of varying prun-
ing strength. The drawback, that becomes evident on dense
problems, is its memory requirements. The second technique
is a polynomial time algorithm that operates on the orig-
inal model of the problem. This algorithm exploits inter-
sections between pairs of constraints to approximate rBC2.
Both techniques can be easily crafted in CP solvers to en-
hance their pruning power on linear constraints.

Finally, we make an experimental study on various types
of problems. Results demonstrate that both of our tech-
niques can outperform BC, being exponentially better in
many cases. The reformulation technique is faster on sparse
problems, but the algorithm is the preferred technique on
dense problems with many constraint intersections.

Background
A (finite domain) Constraint Satisfaction Problem (CSP) is
defined as a triplet (X ,D, C) where: X = {x1, . . . , xn}
is a set of n variables, D = {D(x1), . . . , D(xn)} is
a set of domains, one for each variable, with maximum
cardinality d, and C = {c1, . . . , ce} is a set of e con-
straints. Each constraint c is a pair (var(c), rel(c)), where

var(c) = (x1, . . . , xm) is an ordered subset of X called
the scope of c, and rel(c) is a subset of the Cartesian prod-
uct D(x1) × . . . × D(xm) that specifies the allowed com-
binations of values for the variables in var(c). Each tuple
τ ∈ rel(c) is an ordered list of values (v1, . . . , vm) such that
vj ∈ D(xj), j = 1, . . . ,m. Given a tuple τ ∈ rel(c), we de-
note by τ [x] the projection of τ on a variable x ∈ var(c).

An important class of non-binary constraints is the class
of linear arithmetic constraints. Such a constraint c with
var(c) = {x1, ..., xm} is of the form a1x1 + a2x2 + . . . +
amxm3b, where ai, b ∈ Z and 3 ∈ {<,>,≤,≥,=}.

Here we are concerned with domains composed of inte-
gers. For any variable xi, minD(xi) will denote the small-
est value in D(xi) and maxD(xi) the greatest one. These
two values are called the bounds of D(xi). Given two con-
straints ci and cj , if var(ci) ∩ var(cj) 6= ∅ then we say that
the constraints intersect or overlap.

The most commonly used local consistency is General-
ized Arc Consistency (GAC). A tuple τ = (v1, . . . , vm) is
a support on a constraint c, with var(c) = {x1, . . . , xm},
iff τ ∈ rel(c) and for each xi, 1 ≤ i ≤ m, vi ∈ D(xi).
A value vi ∈ D(xi) is GAC iff for every constraint c, s.t.
xi ∈ vars(c), there exists a support on c s.t. τ [xi] = vi. A
variable is GAC iff all values in its domain are GAC.

Bounds consistency (BC) has been proposed in order to
overcome the prohibitive cost of GAC on some non-binary
constraints. A tuple τ = (v1, . . . , vm) is a bound-support
on a constraint c, with var(c) = {x1, . . . , xm}, iff τ sat-
isfies c and for each xi ∈ var(c), minD(xi) ≤ vi ≤
maxD(xi). A CSP is BC iff ∀cj ∈ C and ∀xi ∈ X , where
xi ∈ var(c), there exist bound-supports τmin and τmax on c
s.t. τmin[xi] = minD(xi) and τmax[xi] = maxD(xi) (i.e.
both bounds belong to a bound-support on c).

Strong local consistencies
Several local consistencies stronger than GAC have also
been proposed. Those that only remove values from domains
are particularly interesting because they do not alter the con-
straint (hyper)graph or the relations. Among such consisten-
cies, we find rPIC and maxRPWC, proposed in (Bessiere,
Stergiou, and Walsh 2008), and that have inspired our work.
A CSP is relational Path Inverse Consistent (rPIC) iff for
each pair of overlapping constraints, each value of each vari-
able in the first constraint belongs to a support that can be
extended into a support of the second constraint. A CSP is
max Restricted Pairwise Consistent (maxRPWC) iff for each
constraint, each value of each variable in this constraint be-
longs to a support that can be extended into a support of any
second constraint overlapping the first.

Singleton Bounds Consistency (SBC) (Lecoutre and
Prosser 2006) is a strong local consistency based on BC.
It is an adaptation of 3B Consistency (Lhomme 1993) from
numerical to finite domain CSPs. A CSP is SBC iff ∀xi ∈ X
and ∀vi ∈ {minD(xi),maxD(xi)} the problem derived
from assigning vi to xi (i.e., N |xi = {vi}) is BC.

Following (Debruyne and Bessière 2001) we will call a
local consistency A stronger than B (A � B) iff in any
problem in whichA holds thenB holds, and strictly stronger
(A � B) iffA is stronger and there is at least one problem in

which B holds but A does not. Accordingly, A is incompa-
rable to B (A 6∼ B) iff none is stronger than the other. The
relation � is transitive.

Strong Consistencies on Bounds
We now define two new strong bounds consistencies, which
are relaxed versions of rPIC and maxRPWC.

Definition 1 (rBC2) A CSP is relational BC on pairs
(rBC2) iff for each xi ∈ X and each value vi ∈
{minD(xi),maxD(xi)}, for each cj ∈ C, where xi ∈
var(cj), and for each cl ∈ C, s.t. var(cj) ∩ var(cl) 6= ∅,
there exist bound-supports τ on cj and τ ′ on cl, s. t. τ [xi] =
vi and τ [var(cj) ∩ var(cl)] = τ ′[var(cj) ∩ var(cl)].
Definition 2 (rBCall) A CSP is relational BC on all
(rBCall) iff for each xi ∈ X and for each value vi ∈
{minD(xi),maxD(xi)}, for each cj ∈ C, where xi ∈
var(cj), there exists a bound-support τ on cj s. t. τ [xi] = vi,
and for all cl ∈ C (cl 6= cj), s.t. var(cj)∩var(cl) 6= ∅, there
exists a bound-support τ ′ on cl s.t. τ [var(cj) ∩ var(cl)] =
τ ′[var(cj) ∩ var(cl)].

Comparison of Propagation Strength
We prove the relationships between the aforementioned lo-
cal consistencies. Surprisingly, all consistencies remain dis-
tinct even when we consider linear constraints only. Hence,
Propositions 1 to 5 below hold even in the case of linear
constraints.

Proposition 1 rBCall � rBC2 � BC.

Proof. By definition, rBCall � rBC2 � BC. Strictness is
shown by the following examples.

Consider a problem where D(x1) = {0, . . . , 10},
D(x2) = {0, . . . , 2} and for i > 2 D(xi) = D(x′i) =
{0, 1} and the constraints:

c1 : x1 + x2 + 8x3 − 8x′3 + 9x4 − 9x′4 = 10
c2 : x1 + x2 + 8x5 − 8x′5 + 10x6 − 10x′6 = 10
c3 : x1 + x2 + 9x7 − 9x′7 + 10x8 − 10x′8 = 10

All bounds of all variables are rBC2 whereas value 0 of x1 is
not rBCall because it does not belong to any bound-support
that satisfies all three constraints at the same time. Hence,
rBCall � rBC2.

Now consider a problem with variables x1 and x2, do-
mains D(x1) = {1, 2}, D(x2) = {0, 1}, and constraints
c1 : x1 + x2 ≤ 2 and c2 : x1 − x2 ≥ 1. The problem is BC.
However, value 1 of x2 is not rBC2 because its only bound-
support (1,1) on c1 is not a bound-support on c2. Hence,
rBC2 � BC.

Proposition 2 SBC 6∼ rBC2 and SBC 6∼ rBCall.

Proof. We need an example that is SBC but not rBC2 and an
example that is rBCall but is not SBC. Consider a problem
with four variables, all having domain {0, . . . , 10}, and two
constraints: c1: x1 + x2 + x3 + x4 ≤ 20 and c2: x1 + x2 +
x3 + x4 > 20. rBC2 will immediately detect inconsistency
whereas SBC will not remove any value.

Now consider a problem with five variables, all having
domain {0, 5}, and the constraints: x1 + x2 + x3 ≥ 10,

x1 ≤ x4, x3 ≤ x5 and x4 + x5 ≤ 5. All bounds of all
variables are rBCall but value 0 of x2 is not SBC. Hence,
SBC is incomparable to both rBC2 and rBCall.

We now compare our new consistencies to the related do-
main filtering consistencies.

Proposition 3 maxRPWC � rBCall and rPIC � rBC2.

Proof. By definition maxRPWC � rBCall and rPIC
� rBC2. Strictness is shown by the following example.
Consider a problem with variables x1, . . . , x4, domains
D(x1) = {0, 1, 2}, D(x2) = {0, 1, 3}, D(x3) = {0, 2},
D(x4) = {−2}, and constraints c1 : x1 ≤ x2 − x3 and c2
: x3 − x2 ≥ x4. The problem is rBCall and rBC2. But the
only support for value 2 of x1 on c1 (tuple (2,3,0)) cannot be
extended to c2. Thus, if we apply maxRPWC or rPIC, value
2 of x1 will be deleted.

Proposition 4 rBCall 6∼ GAC and rBC2 6∼ GAC.

Proof. Consider a problem with variables x1, x2, domains
D(x1) = {0, 1, 2}, D(x2) = {0, 2}, and constraint x1 =
x2. This problem is already rBCall and rBC2 whereas GAC
will remove value 1 from x1. Consider the second example
in the proof of Proposition 1. It is already GAC whereas it is
neither rBCall nor rBC2.

Proposition 5 rBCall 6∼ rPIC.

Proof. We need an example that is rPIC but not rBCall and
another example that is rBCall but is not rPIC. For the for-
mer case, recall the first example in Proposition 1. If we
replace the domain of x1 by {0, 8, 9, 10}, then it is rPIC
whereas rBCall still prunes value 0 of x1. For the later, in
the proof of Proposition 4 we have an example where rPIC
is stronger than rBCall.

Figure 1: Summary of relationships.

Complexity of Strong Bounds Consistencies
We now analyse the complexity of enforcing rBC2 and rB-
Call. As shown in (Bessiere 2006), on general constraints,
even the simple BC on binary constraints is NP-hard. So we
concentrate on the case of linear constraints. In this case,
enforcing BC on inequalities ({≤,≥}) is known to be linear
(Zhang and Yap 2000). But as soon as we move to stronger
bounds consistencies or allow equations, enforcing consis-
tency is hard.

Proposition 6 ((Choi et al. 2006)) Enforcing BC on linear
equations is NP-hard.

Proposition 7 Enforcing rBC2 (or rBCall) on linear in-
equalities is NP-hard even when the inequalities have the
same coefficients on the overlapping variables.

Proof. We reduce SUBSETSUM to the problem of en-
forcing rBC2. Consider the SUBSETSUM instance S =
{a1, . . . , an} and integer k. Enforcing rBC2 on the two in-
equalities a1x1+a2x2+ . . .+anxn ≤ k and a1x1+a2x2+
. . .+ anxn ≥ k, with D(xi) = {0, 1} for all i is equivalent
to GAC because domains are binary. Hence, rBC2 will fin-
ish without detecting a wipe out iff there is a solution to the
constraint. Now, if I is a solution to the constraint, the set
{ai | I[xi] = 1, i ∈ 1..n} is a solution to the SUBSETSUM
problem.

Enforcing Strong Bounds Consistencies
We have shown in the previous section that there is no way to
enforce rBC2 and rBCall in polynomial time, unless P=NP.
In this section we propose two polynomial-time techniques
that enforce approximations of rBC2 and rBCall. The first
one is a reformulation with extra variables whereas the sec-
ond approach is a polynomial time algorithm that exploits
intersections between pairs of constraints.

Constraint Reformulation
The first approach is a modelling reformulation of the orig-
inal problem through the introduction of extra variables to
capture common subexpressions among constraints. BC is
enforced on the reformulation. Such a technique has been
introduced in (Araya, Neveu, and Trombettoni 2008) for nu-
merical CSPs. It has also been independently investigated in
Savile Row for finite domain CSPs (Nightingale et al. 2014).

Allowing extra variables opens the door to many refor-
mulation choices. We present two versions, one that mimics
rBC2 whereas the other mimics rBCall. Our first reformula-
tion, called rBC2-Y, approximates rBC2 by introducing an
extra variable Yij each time a pair of constraints ci and cj
share more than one variable with coefficients that are pro-
portional. For instance, consider the two constraints

a1x1 + a2x2 + a3x3 = b1 ka1x1 + ka2x2 + a4x4 = b2

We encapsulate the variables that are common (i.e., x1, x2)
in the extra variable Y and we replace the common subex-
pression with the Y variable in the two constraints. The
problem is rewritten:

Y = a1x1 +a2x2 Y +a3x3 = b1 kY +a4x4 = b2

Our second reformulation, called rBCall-Y, approximates
rBCall by introducing an extra variable Y each time a sub-
set of variables belongs to several (possibly more than two)
constraints with proportional coefficients. Consider the con-
straints x1 + x2 + x3 + x4 ≤ b1, x1 + x2 + x3 + x5 ≤ b2,
x1 + x2 + x4 + x5 ≥ b3. rBC2-Y would reformulate with
three variables Y12, Y13, Y23 representing the pairwise inter-
sections among the three constraints. On top of this, rBCall-
Y adds another extra variable Y123 = x1 + x2 to catch the
subexpression common to all three constraints and rewrites
all three constraints with this extra variable Y123.

The reformulation technique used in Savile Raw is more
elaborated than ours, handling an abstract syntax tree to de-
tect subexpressions. Nevertheless, it is incomparable to ours.

In Savile Raw, once a subexpression is reformulated, all con-
flicting ones1 become unusable. In rBC2-Y we reformulate
all paiwise common subexpressions.

We characterize the amount of pruning that our two re-
formulations can achieve. As expected, the reformulations
achieve stronger pruning than BC. More interestingly, the
second reformulation sometimes prunes more than rBC2.

Proposition 8 rBC2 � BC(rBC2-Y) � BC, rBCall �
BC(rBCall-Y) � BC(rBC2-Y), and BC(rBCall-Y) 6∼ rBC2.

Proof. By construction rBC2 � BC(rBC2-Y) � BC, and
rBCall � BC(rBCall-Y) � BC(rBC2-Y).

Consider the first example in Proposition 2, which is BC.
rBC2-Y introduces an extra variable Y = x1 +x2 +x3 +x4
and the constraints Y ≤ 20 and Y ≥ 21. BC immedi-
ately detects inconsistency on this reformulation. Hence,
BC(rBC2-Y) � BC. Now consider the second example in
Proposition 1, which is BC. rBC2-Y and rBCall-Y do not
change anything to the original formulation and are thus
BC. However, we saw that rBC2, and therefore also rBCall,
prunes value 1 from x2. Thus, rBC2� BC(rBC2-Y) and rB-
Call � BC(rBCall-Y). Consider the first example in Propo-
sition 1, which is already rBC2. rBCall-Y sets Y = x1 + x2
and replaces it in c1, c2, c3, resulting in c′1, c′2, c′3. BC on
c′1 prunes value 0 from Y , on c′2 it prunes 1, and on c′3
it prunes 2. Then, BC on Y = x1 + x2 prunes 0 from
x1. rBC2-Y on the other hand creates three new variables
Y12 = Y13 = Y23 = x1 + x2 for each of the three intersec-
tions between constraints c1, c2 and c3. Then these variables
are replaced in c1, c2, c3, resulting in six new constraints.
BC thereafter is not able to prune anything from the xi vari-
ables. Hence, BC(rBCall-Y) � BC(rBC2-Y). The previous
example, together with the second example in Proposition 1
where rBC2 prunes value 1 from x2 whereas rBCall-Y does
nothing, prove that BC(rBCall-Y) 6∼ rBC2.

The drawback of the reformulation approach is the extra
space required for the new variables and constraints. This
is prohibitive in problems with many constraints and many
intersections between them. For this reason, we now present
an alternative approach that is free from such requirements.

An algorithm approximating rBC2
As opposed to the reformulation approach, the algorithm we
will now present does not explicitly represent the extra vari-
ables and does not introduce extra constraints to the prob-
lem. Instead, each time it revises a pair of intersecting con-
straints, it computes the interval of values for the intersecting
variables “on the fly”.

Following (Zhang and Yap 2000), we associate each vari-
able x with the smallest interval [x] = [lb(x), ub(x)] con-
taining D(xi).

1For instance, x1 + x2 + x3 and x1 + x2 + x4 are conflicting
because once x1+x2+x3+x4 ≤ b1 and x1+x2+x3+x5 ≤ b2 are
reformulated as Y12 = x1+x2+x3, Y12+x4 ≤ b1, Y12+x5 ≤ b2,
the subexpression x1 + x2 + x4 only belongs to the constraint
x1 + x2 + x4 + x5 ≥ b3.

Given [x] = [lb(x), ub(x)] and [y] = [lb(y), ub(y)], we
define the following interval operations:

[x] + [y] = [lb(x) + lb(y), ub(x) + ub(y)],

[x]− a = [lb(x)− a, ub(x)− a],

a[x] =

{
[a · lb(x), a · ub(x)], a > 0
[a · ub(x), a · lb(x)], a < 0

Given a constraint c defined by a1x1 + · · · + anxn3b,
with 3 ∈ {≤,=,≥}, given intervals on all the variables in
var(c), we define Πxi

(c), the interval projection of c on xi:

−1

ai
[a1[x1]+· · ·+ai−1[xi−1]+ai+1[xi+1]+· · ·+an[xn]−b]

We denote by min(xi, c) and max(xi, c) the integer values
dlb(Πxi

(c))e and bub(Πxi
(c))c respectively.

We now define the function Proj(xi, c) that will be used
in the algorithm as:

Proj(xi, c) =

{
[min(xi, c),max(xi, c)], if3′ is =
[−∞,max(xi, c), if3′ is ≤
[min(xi, c),+∞], if3′ is ≥

where 3′ is the same as 3 if ai is positive or 3 is =, and 3′

swaps ≤ to ≥ or ≥ to ≤ in 3, otherwise.
We now extend the definition of the Proj function to sub-

sets of variables. Given a subset S = {xi, . . . , xj} of var(c)
and Y = aixi + . . . + ajxj the part of c that involves vari-
ables in S, we can define the subset version ΠY (c) of the
projection of c on Y as:

[a1[x1] + · · ·+ai−1[xi−1] +aj+1[xj+1] + · · ·+an[xn]− b]

The projection function Proj(Y, c) can be defined in a way
similar to Proj(xi, c).

The algorithm
We now present rBC2-A (from rBC2-Approximation), a

filtering algorithm for linear constraints extending the BC
algorithm in (Zhang and Yap 2000).

rBC2-A uses a propagation queue Q containing the vari-
ables whose domain bounds have been modified since their
last propagation. If rBC2-A is used for preprocessing, Q is
initialized with all variables. During search, only the vari-
able instantiated at a given node is put inQ (lines 1-2). Once
a variable xi is extracted from Q, all constraints cj that in-
clude xi are processed. This involves two phases. First, each
variable xk in var(cj) other than xi, is revised. The revision
of xk is done in two steps. The first one (line 7) performs the
basic BC operation, that is, it narrows the interval [xk] by
intersecting it with Proj(xk, cj). In the second step, rBC2-
A tries to further narrow [xk] by exploiting the intersection
of cj with any other constraint cl by calling procedure in-
terCheck with xk, cj , and cl as arguments (line 9).

Procedure interCheck takes a variable x, a constraint c,
where x is involved, and another constraint c′ that intersects
with c. It seeks the maximal subset S of var(c) ∩ var(c′)
such that S includes more than one variable, it does not in-
clude x, and the coefficients that the variables in this subset
have in c and c′ are proportional (line 18). It creates a tem-
porary variable Y that replaces variables S in c and c′ in the

Algorithm 1: rBC2-A
if Preprocessing then Q← V ;1
else Q← {currently assigned variable};2
while Q 6= ∅ do3

select and remove xi from Q;4
foreach cj ∈ C, s.t. xi ∈ var(cj) do5

foreach xk ∈ var(cj) s.t. xk 6= xi do6
[xk]← [xk] ∩ Proj(xk, cj);7
foreach cl ∈ C, s.t. |var(cj) ∩ var(cl)| > 1 do8

interCheck(xk, cj , cl);9

if D(xk) = ∅ then return FAILURE;10
if D(xk) has been filtered then Q← Q∪ {xk};11

foreach cl ∈ C, s.t. |var(cj) ∩ var(cl)| > 1 do12
foreach xm ∈ var(cl) s.t. xm 6= xi do13

interCheck(xm, cl, cj);14
if D(xm) = ∅ then return FAILURE;15
if D(xm) has been filtered then16
Q← Q ∪ {xm};

return SUCCESS;17

procedure interCheck(x, c, c′);
S ← maximal subset of var(c) ∩ var(c′), s.t. |S| > 118
AND x /∈ S AND the coefficients for S in c and c′ are
proportional;
if S 6= ∅ then19

[Y]←
∑

xt∈S at[xt];20

[Y]← [Y] ∩ Proj(Y, c′);21
[x]← [x] ∩ Proj(x, c[Y]);22

same way as in the reformulation approach and it computes
its interval projection [Y] (line 20). [Y] is narrowed through
constraint c′ (line 21) and then it is used to further narrow
[x] through constraint c where variables in S are replaced
by Y (line 22). Regarding the first condition in line 18, if
the subset S contains only one variable then it cannot trig-
ger any extra pruning on [x] compared to BC. Regarding the
second condition, we require that S does not contain x so
that [Y] is part of Πx(c) and therefore by narrowing it we
can further narrow [x]. Regarding the third condition, the re-
quirement for proportional coefficients (e.g. a1, . . . , an and
k(a1, . . . , an)) is a restriction, but they are not uncommon
in practice. For instance, unit coefficients occur quite often.
The conditions in line 18 need not be evaluated during the

algorithm’s execution. They can easily be precomputed in a
preprocessing step.

Coming back to the description of rBC2-A, the second
phase of processing constraint cj iterates over all constraints
that intersect with cj and for each variable xm involved in
such a constraint cl, interCheck is called (line 14). The rea-
son for performing these calls to interCheck is the following:
Since xi has been filtered, some bound-supports on cj may
have been lost and as a result existing bound-supports in cl
may no longer be extendable to cj . Hence, checking this may
result in extra pruning for the variables involved in cl. How-
ever, experiments have showed that a weaker version of the

algorithm which does not perform the loop in lines 12-16) is
more competitive in cpu times. We call this algorithm rBC2-
wA (from weaker Approximation).

The following example illustrates the algorithm.

Example 1 Consider a problem with variables x1, . . . , x4,
domains D(x1) = {0, . . . , 4}, D(x2) = {0, . . . , 3}, D(x3) =
{0, . . . , 2},D(x4) = {−1}, and constraints c1 : x1 ≤ x2−x3
and c2 : x3 − x2 ≥ x4. The interval representation of the
variable domains is as follows: [x1] = [0, 4], [x2] = [0, 3],
[x3] = [0, 2], [x4] = [−1,−1]. First the interval projection of
c1 on x1 is computed: Πx1(c1) = [[x2] − [x3]] = [−2, 3],
which means that Proj(x1, c1) = [−∞, 3]. [x1] will be
narrowed in line 7. The new interval will be [x1] = [x1]
∩ Proj(x1, c1) = [0, 3]. Now the algorithm will call pro-
cedure interCheck to further narrow [x1] by considering
the intersection of c1 with c2. First a maximal subset of
var(c1)∩var(c2) will be sought. Such a subset exists and it
is S = {x2, x3}. The interval projection of c2 on the associ-
ated interval Y is: ΠY (c2) = [x4] = [−1,−1], which means
that Proj(Y, c2) = [−1,∞] and [Y] is [[0, 2] − [0, 3]] =
[−3, 2]. Therefore in line 21 [Y] will be narrowed to [Y] ∩
Proj(Y, c2) = [−1, 2]. The next step will be to recompute
the interval of x1 using the updated interval for Y . The in-
terval projection of c1 on x1 now is: Πx1

(c1) = [[x2]− [x3]]
= [−Y] = [−2, 1], which means that Proj(x1, c1) =
[−∞, 1]. Hence, in line 22 we get [x1] = [x1] ∩ Proj(x1, c1)
= [0, 3] ∩ [−∞, 1] = [0, 1]. After the processing of x1 has
finished, it will be inserted in Q since its domain has been
filtered. and rBC2-A will move on to revise x2.

Proposition 9 The worst-case time complexity of algorithm
rBC2-A is O(e2n3d).

In practice we expect the algorithm to have lower cost
since usually a constraint neither includes the entire set of
variables nor does it intersect with all other constraints.
Also, a variable rarely belongs to all constraints.

Interestingly, rBC2-A constitutes a polynomial filtering
algorithm for linear equations which achieves stronger fil-
tering than the existing BC algorithm, while being incompa-
rable in terms of filtering, to the exponential GAC algorithm.

Experiments
We evaluated the practical potential of our approaches on
on randomly generated problems and on problems coming
from two applications.

Random Problems
We ran experiments on randomly generated problems. All
instances have 30 variables, domains being the interval
[0..5], and constraints of arity 6 and 9. The constraints are
of the form x1 + ... + xk3b, where 3 ∈ {<,>} (inequal-
ities) or 3 ∈ {=} (equations). The parameter b belongs to
a randomly selected value in [10..20] and [15..30] for ari-
ties 6 and 9 respectively. We defined four classes, ineq-6,
ineq-9, eq-6, and eq-9, where ineq (resp.eq) means that all
constraints are inequalities (resp. equations), and 6 or 9 rep-
resent the fixed arity of all constraints. The number of con-
straints (30 for ineq-6, 25 for ineq-9, 15 for eq-6, and 12

Table 1: Problems of with inequalities (top) and equations (bottom): Mean CPU time in seconds and mean node visits.

Class BC SBC rBC2-wA rBC2-A rBC2-Y rBCall-Y23
ineq-6 time 187.9 25.2 10.3 10.6 6.1 8.8

#nodes 8,791,903 171,214 130,465 69,820 — —
ineq-9 time 82.3 78.8 20.2 23.9 9.8 31.1

#nodes 7,490,045 176,400 38,113 26,454 — —
eq-6 time 271.6 75.5 31.1 21.2 9.8 12.0

#nodes 4,760,257 80,079 1,213,789 529,677 — —
eq-9 time 512.3 469.1 84.0 83.6 40.4 65.7

#nodes 17,605,430 525,504 344,831 168,472 — —

for eq-9) corresponds to the cross-over point (center of the
phase transition), where the instances are the most difficult
to solve. We solved 30 instances per class, with a cutoff limit
of 1800 seconds. We compare BC, SBC, rBC2-wA, rBC2-A,
rBC2-Y and rBCall-Y23. The latter reformulation uses extra
variables to capture common subexpressions between pairs
and between triplets of constraints. The pruning achieved on
it is in between rBC2-Y and rBCall-Y.

Table 1 reports the results in cpu time and in number of
nodes. On problems with inequalities, our proposed tech-
niques are the most efficient in time both on ineq-6 and on
ineq-9, sometimes being more than one order of magnitude
faster than BC. Comparing our techniques, the reformulation
rBC2-Y is the most efficient. The two algorithms display
similar performance. It is notable that as the arity increases
to arity 9, resulting in more intersections, the stronger re-
formulation and the stronger algorithm become worse than
their respective weak versions. This is due to the cost of the
extra variables and constraints that rBCall-Y23 builds and
the extra calls to the interCheck function that slows down the
performance of rBC2-A. Regarding SBC, its performance
deteriorates significantly on problems of arity 9.

On problems with equations, the performance of the var-
ious techniques is similar to that on inequalities. Our tech-
niques are again one order of magnitude faster than BC. SBC
is not competitive at all. Among our techniques, rBC2-Y is
the winning one, rBCall-Y23 is a close second, and the al-
gorithms follow, being around two times slower.

When comparing the number of nodes, we observe that
BC is the one that explores the largest search tree, up to two
orders of magnitude more nodes than our algorithms. SBC is
incomparable to our algorithms, sometimes exploring more
nodes, sometimes less. This is consistent with our theoretical
comparison between rBC2 and SBC. Concerning the refor-
mulation techniques, they use extra variables, which makes
a comparison of the search trees irrelevant. We thus did not
report their number of nodes.

We also explored problems where our reformulation tech-
niques face a space limitation. rBC2-Y (resp. rBCall-Y23)
cannot construct the reformulation when we impose over
220 (resp. 120) and 145 (resp. 60) constraints on problems
with arity 6 and 9 respectively. In contrast, the algorithms
had no problem dealing with such problems and signifi-
cantly outperformed BC.

Finally, we compared rBC2-wA to BC and GAC under a
similar generation model as here, but this time we randomly

created holes in domains. Results, which are not detailed for
space reasons, showed that rBC2-wA was by far more effi-
cient than BC and especially GAC, which reached the cutoff
limit very often.

Web Services
In our second experiment, we compare the different tech-
niques on large real instances from Web Services. Ruiz
Cortés and Martı́n-Dı́az used CP for solving matchmaking
problems in Web Services. Their problems have n = 100
to 1500 variables, domains size from 0 to 255, and con-
straints of arity k = 3 to 20. Results showed that CP solvers
were unable to solve some instances when the size increases
(Ruiz Cortés et al. 2005; Kritikos and Plexousakis 2009). We
reproduced their experiments.

Figure 2 displays the performance of BC, SBC, rBC2-A,
rBC2-wA, and rBC2-Y, as n and k increase. The left (resp.
right) plot presents the results by increasing arity (resp. in-
creasing number of variables). We omit rBCall-Y because
there is no gain compared to rBC2-Y, whereas memory is
exhausted faster.

Figure 2: Web Services: CPU time in sec. (log scale).

We observe that, except on small arity constraints, BC
is always orders of magnitude slower than rBC2-A, rBC2-
wA, and rBC2-Y. SBC is consistently the worst. Comparing
our techniques, we see that when arity increases, the perfor-
mance of rBC2-A deteriorates compared to rBC2-wA. This
is because the satisfiable instances appear to be very easy,
so rBC2-A suffers from many useless calls to function in-
terCheck. On small problems rBC2-Y and rBC2-wA are the
two winners, but when the size increases (arity or number of
variables) rBC2-Y exhausts memory.

Computing Lower Bounds in Planning
As a last experiment, we solve CSPs whose solutions pro-
vide lower bounds to the number of moves in a 15-puzzle.
Using lower bounds as heuristics is often exploited in plan-
ning problems (Korf 1985). The example of 15-puzzle was
presented by Malte Helmert in his ECAI 2014 invited
talk. We define the CSP exactly as Helmert did. Variables
Ui, Di, Li, Ri represent the minimal number of up, down,
left and right moves the tile i must do to reach its final lo-
cation. Constraints express minimal number of moves for
subsets of variables. These constraints are derived from dis-
tances to final location or from conflicting positions between
tiles. A global constraint forces the sum of all the 60 vari-
ables to be less than a given upper bound M . As it is an
optimization problem, the CSP is considered as solved once
we have found M such that M − 1 leads to inconsistency
and M to a solution.

Table 2 gives average CPU times for 20 instances. As in
the two previous experiments, we observe that BC is sig-
nificantly outperformed by our techniques (up to factor 8).
Among our techniques, rBC2-wA is the best, almost twice
faster than rBC2-A. As opposed to the previous experiments,
the reformulations rBC2-Y and rBCall-Y23 are both slower
than the algorithms rBC2-wA and rBC2-A (factor from 1.6
to 3.3). As usual, SBC is by far the worst technique (more
than one order of magnitude slower than rBC2-wA and
rBC2-A).

Table 2: Lower bounds for the 15-puzzle: CPU time in sec.

BC SBC rBC2-wA rBC2-A rBC2-Y rBCall-Y23
39.5 122.5 4.9 7.8 12.4 16.4

Discussion
These experiments show the efficiency of our techniques to
solve CSPs with equations or inequalities that share com-
mon variables. Our techniques significantly outperform ex-
isting alternatives such as BC or SBC. These results also
show the usefulness of the reformulation technique on sparse
problems, and at the same time the practical need for the
proposed algorithm that overcomes the space requirements
of reformulations when the size of the problem increases.

Conclusion
We have proposed rBC2 and rBCall, two new strong local
consistencies that extend BC by taking into account com-
binations of constraints. We gave a theoretical comparison
of the propagation strength of the new consistencies with
respect to existing ones. We have shown that these con-
sistencies are intractable to enforce, even on linear con-
straints. Hence, we proposed two techniques to approxi-
mate rBC2 and rBCall in the case of linear constraints. The
first one is a reformulation with extra variables. The sec-
ond is a polynomial filtering algorithm. Both our two tech-
niques achieve stronger pruning than BC. Experimental re-
sults demonstrated the potential of strong consistencies that
reason on domain bounds.

Acknowledgments
We thank Malte Helmert for the useful input he provided on
heuristics for solving the 15-puzzle.

References
Apt, K., and Zoeteweij, P. 2007. An analysis of arithmetic
constraints on integer intervals. Constraints 12(4):429–468.
Araya, I.; Neveu, B.; and Trombettoni, G. 2008. Exploiting
common subexpressions in numerical csps. In Proceedings
of CP’08, 342–357.
Bessiere, C.; Stergiou, K.; and Walsh, T. 2008. Domain
filtering consistencies for non-binary constraints. Artificial
Intelligence 172(6-7):800–822.
Bessiere, C. 2006. Chapter 3 Constraint Propagation. In
Francesca Rossi, P. v. B., and Walsh, T., eds., Handbook of
Constraint Programming, volume 2 of Foundations of Arti-
ficial Intelligence. Elsevier. 29 – 83.
Bordeaux, L.; Katsirelos, G.; Narodytska, N.; and Vardi, M.
2011. The Ccomplexity of Integer Bound Propagation. JAIR
40:657–676.
Choi, C.; Harvey, W.; Lee, J.; and Stuckey, P. 2006. Finite
Domain Bounds Consistency Revisited. In Proceedings of
the Australian Conference on AI, 49–58.
Debruyne, R., and Bessière, C. 2001. Domain Filtering
Consistencies. JAIR 14:205–230.
Harvey, W., and Stuckey, P. 2003. Improving linear con-
straint propagation by changing constraint representation.
Constraints 8(2):173–207.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artif. Intell. 27(1):97–109.
Kritikos, K., and Plexousakis, D. 2009. Mixed-Integer Pro-
gramming for QoS-Based Web Service Matchmaking. IEEE
T. Services Computing 2(2):122–139.
Lecoutre, C., and Prosser, P. 2006. Maintaining Singleton
Arc Consistency. In 3rd International Workshop on Con-
straint Propagation And Implementation (CPAI’2006), 47–
61.
Lhomme, O. 1993. Consistency techniques for numeric
csps. In Proceedings of IJCAI-93, 232–238.
Nightingale, P.; Akgün, Ö.; Gent, I. P.; Jefferson, C.; and
Miguel, I. 2014. Automatically improving constraint mod-
els in savile row through associative-commutative common
subexpression elimination. In Proceedings of CP’14, 590–
605.
Ruiz Cortés, A.; Martı́n-Dı́az, O.; Durán, A.; and Toro, M.
2005. Improving the Automatic Procurement of Web Ser-
vices Using Constraint Programming. International Journal
of Cooperative Information Systems 14(4):439–468.
Trick, M. 2003. A Dynamic Programming Approach
for Consistency and Propagation for Knapsack Constraints.
Anals OR 118:73–84.
Zhang, Y., and Yap, R. H. C. 2000. Arc consistency on n-ary
monotonic and linear constraints. In Proceedings of CP’00,
470–483.

