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Abstract—During the last decade several constraint acqui-
sition systems have been proposed for assisting non-expert
users in building constraint programming models. GENACQ
is an algorithm based on generalization queries that can be
plugged into many constraint acquisition systems. However,
generalization queries require the aggregation of variables into
types which is not always a simple task for non-expert users.
In this paper, we propose a new algorithm that is able to
learn types during the constraint acquisition process. The idea
is to infer potential types by analyzing the structure of the
current constraint network and to use the extracted types to
ask generalization queries. Our approach gives good results
although no knowledge on the types is provided.

Keywords-Constraint Acquisition, Generalization Queries,
Graph Community Detection

I. INTRODUCTION

Constraint programming (CP) is a paradigm that allows
effective solving of combinatorial problems in many areas,
such as planning and scheduling. However, modeling a
combinatorial problem using constraints requires significant
expertise in CP [10].

To alleviate this issue, several constraint acquisition sys-
tems have been introduced [4], [6], [1], [13], [5], [15].
Recently, an active learner system named QUACQ for Quick
Acquisition [3] has been proposed. QUACQ iteratively gener-
ates membership queries and asks the user to classify them.
When the answer of the user is yes for a given membership
query, QUACQ reduces the search space by removing all
violated constraints by the positive example. In the case of
a negative answer, QUACQ focuses onto a constraint in a
number of queries logarithmic in the size of the example.
This key component allows QUACQ to converge on the
target network in a polynomial number of queries. However,
even with that good theoretical bound, QUACQ can require
too many queries to be put in practice. For instance, the user
has to classify more than 9000 queries using QUACQ to get
the complete Sudoku puzzle model.

To make constraint acquisition systems more efficient
in practice, an opportunistic kind of query that uses the
structure of the problem has been introduced in [2] with
the GENACQ algorithm. This kind of query, named “gen-
eralization query”, is based on an aggregation of variables

into types. The user provides the variable types and based on
these types, generalization queries ask the user whether or
not a learned constraint can be generalized to other scopes of
variables of the same type as those on the learned constraint.
By using such queries over existing constraint acquisition
systems, the number of queries needed to converge on the
target constraint network can be significantly reduced.

Nevertheless, the aggregation of variables into types may
not always be a straightforward task for the user espe-
cially when the problem under consideration has a hidden
structure. In this paper, we propose to learn the potential
types during the constraints acquisition process. The idea
is to analyze the structure of the partial constraint network
learned so far in order to detect potential types and to build
generalization queries.

Indeed, when one looks more closely at the constraint
network of a given problem, the variables of the same
type are often tightly connected with similar constraints
whereas the variables of different types are connected in
a weaker way. To illustrate this point, let us consider the
well known Lewis Carroll’s Zebra problem. The constraint
network of this problem is usually formulated using 25
variables, partitioned into 5 types of 5 variables each. The
types are color, nationality, drink, cigaret and pet. There is a
clique of 6= constraints on all pairs of variables of the same
type and 14 additional constraints, among which 3 are unary,
given in the description of the problem. Figure 1 shows the
constraint network of the Zebra problem. In this example, it
is clear that types have dense internal links but there are only
a lower density of external links between different types.

The idea of detecting tightly connected sub-graphs arose
in the study of networks such as social networks [16] and
biochemical networks [12]. An important characteristic that
commonly occurs in such networks is community structure.
Informally, a network or a graph is said to have community
structure, if the nodes of the network can be easily grouped
into (potentially overlapping) sets of nodes such that the
groups have more internal edges than outgoing edges. Each
such group is called a community.

Given the similarity between the structure of a type and
that of a community, we propose in this paper to detect



Figure 1. The constraint graph of the Zebra problem.

potential types by finding communities in the constraint
network during the constraint acquisition process. Several
methods for community finding have been proposed in the
literature. We have considered three different techniques
in this paper. The first one is based on the concept of
modularity [14] which provides information on the strength
of division of a network into communities. Networks with
high modularity have dense connections between the nodes
within communities but sparse connections between nodes
in different communities. The second technique exploits the
notion of edge betweenness [11], which is a measure that
assigns a score to each edge. The edges that lie “between”
many pairs of nodes have high scores which enables their
easier identification. Removing these edges will leave behind
just the communities themselves. The third technique is
more straightforward. It is based on the assumption that
the variables of the same type will tend to form quasi-
cliques during the constraint acquisition process. That is, this
technique finds sub-graphs with an edge density exceeding
a threshold parameter.

In this paper we propose an algorithm, named
MINE&ASK, that makes use of the extracted potential types
to ask the user to classify generalization queries. We plugged
MINE&ASK into the QUACQ constraint acquisition system,
to obtain the boosted version M-QUACQ algorithm. We
experimentally evaluate the benefit of our technique on
several benchmark problems. The results show that M-
QUACQ improves the basic QUACQ algorithm in terms of
number of queries although no knowledge on the types is
provided.

The outline of this paper is as follows. Section II gives the
necessary definitions to understand the technical presenta-
tion. The algorithm MINE&ASK is presented in Section III.
We illustrate the idea behind our approach with an example
in section IV. Section V gives more details on the techniques
used to extract potential types. The experimental results we
obtained when comparing MINE&ASK with the different

techniques to the basic QUACQ are given in section VI.
Section VII concludes the paper.

II. BACKGROUND

The constraint acquisition process can be viewed as an
interplay between the user who knows the problem and
the learner that aims at solving the problem. The common
knowledge shared between the user and the learner is a
vocabulary. This vocabulary is represented by a (finite) set
of variables X and domains D = {D(x1), . . . , D(xn)} over
Z. A constraint (var(c), r) represents a relation rel(c) on
a subset of variables var(c) ⊆ X (called the scope of
c) that specifies which assignments of var(c) are allowed.
The arity of the relation r, denoted by |r|, is the number
of variables involved by r. Combinatorial problems are
represented with constraint networks. A constraint network
is a set C of constraints on the vocabulary (X,D). An
example e is a (partial/complete) assignment on a set of
variables var(e) ⊆ X . e is rejected by a constraint c (i.e.,
e 6|= c) iff var(c) ⊆ var(e) and the projection e[var(c)] of
e on var(c) is not in c. A complete assignment e of X is
a solution of C iff for all c ∈ C, c does not reject e. We
denote by sol(C) the set of solutions of C.

In addition to the vocabulary, the learner owns a language
Γ of relations from which it can build constraints on
specified sets of variables. A constraint basis is a set B
of constraints built from the constraint language Γ on the
vocabulary (X,D). Formally speaking, B = {c | (var(c) ⊆
X) ∧ (rel(c) ∈ Γ)}.

In terms of machine learning, a concept is a Boolean
function over DX = Πxi∈XD(xi), that is, a map that
assigns to each example e ∈ DX a value in {0, 1}. We
call target concept the concept fT that returns 1 for e if
and only if e is a solution of the problem the user has
in mind. In a constraint programming context, the target
concept is represented by a target network denoted by CT .
A query Ask(e), with var(e) ⊆ X , is a classification
question asked to the user, where e is an assignment in
Dvar(e) = Πxi∈var(e)D(xi). A set of constraints C accepts
an assignment e if and only if there does not exist any
constraint c ∈ C rejecting e. The answer to Ask(e) is yes
if and only if CT accepts e.

A type T is a subset of variables that have a common
property. A variable x is of type T iff x ∈ T . We denote by
var a tuple of variables of the same type with the constraint
that each variable appears only once in this tuple. A relation
r holds on a type T if and only if (var, r) ∈ CT for all var ∈
T |r| where T |r| is the Cartesian power of T . A generalization
query AskGen(T, r) is a classification question asked to the
user. AskGen(T, r) is answered yes by the user if and only
if r holds on T .



III. MINE&ASK ALGORITHM

In this section we present the MINE&ASK algorithm. The
idea behind this algorithm is to mine the partial graph of the
current constraint network in order to get potential types and
then ask the user to classify generalization queries.

A. Description of MINE&ASK

Algorithm 1: MINE&ASK

Input: C: a set of constraints, r: a relation, mine ∈
{modularity,betweenness, γ-clique}:
a mine strategy, GQmax: the maximum number
of generalization queries

Output: L: a set of learned constraints
L← ∅; #GQ← 01

X ′ ←
⋃
var(c) s.t. c ∈ C ∧ rel(c) = r2

GC ← G(X ′, E), E = {{x, y} | x, y ∈ var(c) ∧ x 6=3

y ∧ c ∈ C ∧ rel(c) = r}
Table← {Y |4

Y ∈ component(GC) ∧ ¬isClique(GC(Y ))}
while Table 6= ∅ ∧#GQ ≤ GQmax do5

pick Y in Table6

generalized← false7

if ( 6 ∃(Y ′, r′) ∈ NegativeQ | Y ′ ⊆ Y ∧ r ⊆ r′)∧8

(6 ∃var ∈ Y |r| | (var, r) 6∈ B) then
if Sol(CL ∪ {(var, r) | var ∈ Y |r|}) 6=9

∅ and AskGen(Y, r) = Y es then
L← L ∪ {(var, r) | var ∈ Y |r|}10

generalized← true11

else NegativeQ← NegativeQ ∪ {(Y, r)}12

#GQ+ +13

if ¬generalized then14

Table← Table ∪mine(G(Y ))15

return L;16

The algorithm MINE&ASK takes as argument the set of
constraints C learned so far, a relation r, the operator mine
that corresponds to the strategy used for extracting potential
types and the maximum number of generalization queries
GQmax that we are allowed to ask. The algorithm uses a
global data structure NegativeQ, which is a set of pairs
(Y, r) for which we know that r does not hold. MINE&ASK
also uses the local data structure Table which contains all
potential types that are candidates for generalization.

MINE&ASK starts by initializing L to the empty set and
the number of generalization queries #GQ to zero (line 1).
The set L will contain the output of MINE&ASK, that is all
learned constraints. In line 3, we build the constraint graph
G(X ′, E), noted GC and restricted to the relation r. This
step is important because it helps to reveal the structure of
the network. To illustrate what this means, let us consider
the example given in Figure 2(a). This problem consists of

12 variables and 66 binary constraints which means that the
constraint network of this problem is a complete graph (i.e.
clique). Two relations are used in the constraints namely
6= and ≥. Although the constraint network is a clique, no
learned constraint can be generalized to the other scopes in
this clique as the links connecting the variables of the clique
come from different relations. On the contrary, as shown in
Figure 2(b), when we focus on the only 6= relation, useful
types can be easily detected.

Figure 2. A constraint network with a hidden structure

Afterwards, we put in Table all connected components of
G whilst excluding the already formed cliques (line 4). At
each iteration, MINE&ASK picks a potential type Y from
this table (line 6) and asks a generalization query on (Y, r)
(line 9) if the answer cannot be deduced. That is, the answer
to an AskGen(Y, r) is negative if the user already classifies
as negative a query on a sub-type of Y (line 8). A negative
answer can also be deduced in the case of the unsatisfiability
of the resulting network where in such case the answer
cannot be positive (line 9). Such satisfiability tests allow us
to avoid asking unnecessary queries. For instance, trying to
generalize a non-commutative relation to a clique, or asking
if a clique of difference applies on a set of 4 variables with
the same domain of size 3.

Now, if the answer of the user to AskGen(Y, r) is yes,
this means that r holds on the type Y . Thus, we add all
inferred constraints on Y to the set L (line 10). In the case
of a negative answer, we add (Y, r) to NegativeQ with
intent to avoid asking redundant queries afterwards. When
no generalization happened on (Y, r) (line 15), this means
that Y is not a type on which r can be generalized. Here,
we call the operator mine to extract potential types from the
subgraph G(Y ). The resulting potential types are added to
Table to be taken into account later. The main loop (line 5)
terminates when all potential types in Table are processed,
or when the number of generalization queries exceeds a
given threshold GQmax.

B. M-QUACQ Algorithm

MINE&ASK is a generic technique that can be plugged
into any constraint acquisition system. In this section



we present M-QUACQ (Algorithm 2) where we plugged
MINE&ASK into the QUACQ system [3].

M-QUACQ initializes the constraint network CL to the
empty set (line 1). When CL is unsatisfiable (line 3), the
space of possible networks collapses because there does
not exist any subset of the given basis B that is able to
correctly classify the examples already asked to the user.
In line 4, M-QUACQ computes a complete assignment e
satisfying CL and violating at least one constraint from
B. If such an example does not exist (line 5), then all
constraints in B are implied by CL, and the algorithm
has converged. Otherwise, we propose the example e to
the user, who will answer by yes or no (line 6). If the
answer is yes, we can remove from B the set κB(e) of
all constraints in B that reject e (line 7). If the answer is
no, we are sure that e violates at least one constraint of the
target network CT . We then call the function FindScope
to discover the scope of one of these violated constraints.
Here, FindScope acts in a dichotomous manner and asks
a number of queries logarithmic in the size of the example.
Afterwards, FindC will select which constraint with the
given scope is violated by e (line 9). If no constraint is
returned (line 10), this is a condition for collapsing as we
could not find in B a constraint rejecting one of the negative
examples. Otherwise, we know that the constraint c returned
by FindC belongs to the target network CT , then we add it
to the learned network CL (line 11). Note that FindScope
and FindC functions are used exactly as they appear in
[3]. Afterwards, we call MINE&ASK to mine the learned
constraint network CL in order to extract potential types
and to ask generalization queries. M-QUACQ updates CL
by adding all learned constraints (line 12).

IV. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate on an example the idea of
extracting potential types during the constraint acquisition
process. Let us consider the example given in Figure 3. The
part (a) of Figure 3 shows the constraint network of the
problem that the user has in mind. This problem consists
in 15 variables and 39 binary constraints. Two relations
are used, noted r1 and r2 in Figure 3. The part (b) of
Figure 3 shows the constraint network learned, at a given
point, using QUACQ system. Suppose that the last constraint
learned using QUACQ was ((x1, x2), r1). Now, we want
to extract potential types on which the relation r1 can be
generalized. To this end, MINE&ASK restricts the constraint
network to the constraints that use r1 (part (c) in Figure
3). Suppose now that MINE&ASK algorithm finds three
potential types T1 = {x1, . . . x5}, T2 = {x6, . . . x10} and
T3 = {x11, . . . x15}. According to what the user has in mind
(part (a) of Figure 3), a generalization query on T3 will be
classified as negative whereas the ones on T1 and T2 will
be classified as positive. Nine constraints will be, in one

Algorithm 2: M-QUACQ = QUACQ + MINE&ASK

Input: mine ∈
{modularity,betweenness, γ-clique}:
a mine strategy, GQmax: the maximum number
of generalization queries

Output: CL: a set of learned constraints
CL ← ∅ ;1

while true do2

if sol(CL) = ∅ then return”collapse”3

choose e in DX accepted by CL and rejected by B4

if e = nil then return “convergence on CL”5

if Ask(e) = yes then6

B ← B \ κB(e);7

else8

c← FindC(e,FindScope(e,∅, X, false));9

if c = nil then return “collapse” else10

CL ← CL ∪ {c};11

CL ← CL ∪12

MINE&ASK(CL,mine, rel(c), GQmax);

return CL;13

shot, added to the current constraint network (see part (d)
of Figure 3).

Figure 3. Illustrative Example

V. EXTRACTION OF POTENTIAL TYPES

MINE&ASK extracts variable types by finding communi-
ties in the current graph of learned constraints. The way in
which the operator mine finds communities at line 15 of
Algorithm 1 is described in this section.



A. Optimizing modularity

One of the most effective approaches for detecting com-
munities in networks is based on the optimization of the
measure known as modularity [14]. Given a partition of
vertices of a network into disjoint communities, modularity
reflects the concentration of edges within communities com-
pared with random distribution of links between all nodes
regardless of communities.

More formally, let G = (X,E) be a graph, with X =
{x1, . . . , xn} the set of vertices and let A be the adjacency
matrix of G. That is, Aij = 1 if there exists an edge
between vertices xi and xj and Aij = 0 otherwise. Suppose
the vertices are divided into communities such that vertex
xi belongs to community c(xi) and let deg(xi) denotes
the degree of xi. Then the modularity Q is given by the
following formula:

Q =
∑
i,j

[
Aij

2m −
deg(xi)×deg(xj)

4m2

]
δ(c(xi), c(xj))

where m is the total number of edges in the network,
and δ(c(xi), c(xj)) = 1 if xi and xj belong to the same
community (i.e., c(xi) = c(xj)) and 0 otherwise.

High values of the modularity correspond to good parti-
tions of a network into communities [14]. Hence one should
be able to find such good partitions by searching through
the possible candidates for ones with high modularity. Un-
fortunately, finding the global maximum modularity over all
possible divisions is NP-hard, but reasonably good solutions
can be found with approximate optimization techniques. In
this paper, we have used the algorithm introduced in [8]
and implemented in the igraph software package [9]. This
algorithm uses a greedy optimization where, starting with
a partition where each vertex is the unique member of a
community, it repeatedly joins together the two communities
whose fusion produces the largest increase in Q.

B. Edge betweenness centrality

Recently, the concept of edge betweenness was introduced
[11] as a measure that provides information on edges central-
ity in networks. This measure can be implemented in several
ways but the most common way is the one based on shortest
paths. Formally speaking, let xi and xj be two nodes in
the network. Let σij denotes the number of shortest paths
between nodes xi and xj and σij(e) denotes the number
of shortest paths between xi and xj which go through the
edge e. The Betweenness centrality of e, denoted by B(e),
is defined as follows:

B(e) =
∑
ij
σij(e)
σij

If two communities are joined by only a few inter-
community edges, then all paths through the network from
vertices of one community to vertices of the other must pass
through one of those few edges. Thus, the edge betweenness
scores for inter-community edges are expected to be larger

than the ones for intra-community edges. The betweeness
based algorithm to find community structure is used as
it appears in [11]. The idea behind this algorithm is to
iteratively calculate the betweenness score for each edge and
to remove the one with the highest score. That is, removing
edges with high betweenness scores allows us to isolate the
communities. This algorithm is also available in the igraph
software package [9].

C. Quasi-cliques detection

Mining the constraint network for dense subgraphs may
be a possible way for discovering communities. Cliques are
the densest form of subgraphs. A graph is a clique if there is
an edge between every pair of the vertices. This requirement
is not desirable in our case because the idea is to anticipate
the formation of complete cliques in order to be able to infer
some constraints. Therefore, instead of mining cliques, our
goal is to extract γ − cliques (i.e. quasi-cliques), which are
sub-graphs with an edge density exceeding a given threshold
parameter γ ∈ [0, 1].

Definition 1: (γ − clique) Let G = (X,E) be a graph
with X the set of vertices, E the set of edges, and a
parameter γ ∈ [0, 1]. A γ − clique is a subset of vertices
K ⊆ X such that the induced subgraph G(K) is a connected
component and |E ∩K ×K| ≥ γ q(q−1)2 , with q = |K|.

Algorithm 3: FindQCliques (G,A,B,K, γ)

if A = ∅ then1

report K as a quasi-clique;2

while A 6= ∅ do3

choose x ∈ A;4

K ′ ← K ∪ {x};5

A′ ← {y | y ∈ X \K ′ ∧K ′ ∪ {y} is a γ − clique};6

A′ ← A′ \A′ ∩B;7

FindQCliques(G,A′, B,K ′, γ) ;8

A← A \ {x};9

B ← B ∪ {x};10

We propose an incomplete recursive algorithm (Algo-
rithm 3) for finding γ − cliques in an undirected graph
G. This algorithm is an adaptation of the basic form of
the well-known Bron-Kerbosch’s algorithm [7] for finding
maximal cliques in a graph. Algorithm 3 is based on the
recursive function FindQCliques that takes as arguments
an undirected graph G, a set A of candidates, a set B of
vertices to exclude from consideration to avoid generating
the same quasi-clique several times, the quasi-clique K
being constructed and a parameter γ ∈]0, 1[ which specifies
the minimum edge density of quasi-cliques. The recursion
is initiated by setting B and K to be the empty set and
A to be the vertex set of the graph. Each time a new
element is added to the current quasi-clique (line 5 ), we



calculate a new set A′ of candidates. A vertex y is an
element of A′ if and only if when it is added to the current
quasi-clique we obtain a new quasi-clique (line 6). This
condition is not a necessary condition to lead to a new quasi-
clique. Consequently, Algorithm 3 is incomplete. When the
candidate set becomes empty (line 1), a new quasi-clique
is reported and a backtrack to the last choice is performed.
Then, the last choice is added to the set B to exclude it from
consideration in future quasi-cliques.

VI. EXPERIMENTATIONS

We performed some experiments to evaluate the impact
of using MINE&ASK in constraint acquisition. We imple-
mented MINE&ASK and plugged it in QUACQ system,
leading to the M-QUACQ version. We first present the
benchmark problems we used for our experiments. Then,
we report the results of acquiring these problems with the
basic version of QUACQ [3], our version M-QUACQ and
G-QUACQ version. The G-QUACQ version includes the
generalization process with GENACQ algorithm and the user
provides all variable types [2]. The experiments evaluate also
the different ways in which our approach extracts potential
types, namely the modularity, the betweenness and
the γ-clique. Our tests were conducted on an Intel Core
i5-3320M CPU @ 2.60GHz × 4 with 4 Gb of RAM.

A. Benchmark Problems

Zebra problem. The Lewis Carroll Zebra problem is for-
mulated using 5 types of 5 variables each, with 5 cliques
of 6= constraints and 14 additional constraints given in the
description of the problem. We fed QUACQ, G-QUACQ
and M-QUACQ with a basis B of 4450 unary and binary
constraints taken from a language with 24 basic arithmetic
and distance constraints.
Latin Square. The Latin square problem consists of an n×n
table in which each element occurs once in every row and
column. For this problem, we use 36 variables with domains
of size 6 and 180 binary 6= constraints on rows and columns.
Rows and columns are the types of variables (10 types). We
fed QUACQ, G-QUACQ and M-QUACQ with a basis B of
1260 constraints based on the language Γ = {=, 6=}.
Purdey. Like Zebra, this problem has a single solution. Four
families have stopped by Purdey’s general store, each to
buy a different item and paying differently. Under a set of
additional constraints given in the description, the problem
is how can we match family with the item they bought and
how they paid for it. The target network of Purdey has 12
variables with domains of size 4 and 30 binary constraints.
Here we have three types of variables, which are family,
bought and paid, each of them contains four variables. We
fed QUACQ, G-QUACQ and M-QUACQ with a basis B of
396 constraints based on the language Γ = {=, 6=}.
PlaceNumPuzzle. The PlaceNumPuzzle problem is to place
numbers 1 through N on nodes of a given graph such that

each number appears exactly once and no connected nodes
have consecutive numbers. For this problem, we use 25
variables with domains of size 25 and 64 binary constraints.
The problem has three types which are the cliques of the
graph. We fed QUACQ, G-QUACQ and M-QUACQ with a
basis B of 1260 binary constraints taken from a language
of 4 arithmetic and distance constraints.
Murder. Someone was murdered last night, and you are
summoned to investigate the murder. The objects found on
the spot that do not belong to the victim include: a pistol, an
umbrella, a cigarette, a diary, and a threatening letter. There
are also witnesses who testify that someone had argued with
the victim, someone left the house, someone rang the victim,
and some walked past the house several times about the
time the murder occurred. The suspects are: Miss Linda
Ablaze, Mr. Tom Burner, Ms. Lana Curious, Mrs. Suzie
Dulles, and Mr. Jack Evilson. Each suspect has a different
motive for the murder, including: being harassed, abandoned,
sacked, promotion and hate. Other clues are given below.
Under a set of additional clues given in the description,
the problem is who was the Murderer? And what was the
motive, the evidence-object, and the activity associated with
each suspect. The target network of Murder has 20 variables
with domains of size 5 and 53 binary constraints. Here we
have four types of variables, which are suspect, motive,
object, and activity, each of them contains five variables.
We fed QUACQ, G-QUACQ and M-QUACQ with a basis B
of 380 constraints based on the language Γ = {=, 6=}.
Sudoku. The Sudoku model is expressed using 81 variables
with domains of size 9, and 810 6= binary constraints on
rows, columns and squares. In this problem, the types are
the 9 rows, 9 columns and 9 squares, of 9 variables each.
We fed QUACQ, G-QUACQ and M-QUACQ with a basis B
of 6480 binary constraints from the language Γ = {=, 6=}.

B. Results

For all our experiments we report, the total number
#Ask of standard queries asked by the basic QUACQ, the
total number #AskGen of generalization queries, and the
numbers #no and #yes of negative and positive general-
ization queries, where #AskGen = #no+#yes. The time
overhead of using M-QUACQ rather than QUACQ is not
reported since computing a generalization query takes a few
milliseconds.

First of all, it should be noted that the parameter γ
specifying the minimum edge density of quasi-cliques may
have an influence on the performance of M-QUACQ. Indeed,
the lower γ, the greater the number of extracted quasi-
cliques. This means that the probability that extracted types
do not correspond to real types increases when γ is small and
therefore, the number of negative answers to generalization
queries may become important. This phenomenon can be
more or less controlled by adjusting the value of γ. That



being said, the value of γ was fixed to 0.8 after a few
preliminary tests.

Now, with the results reported in table I, we aim at
comparing the performance of the basic QUACQ, G-QUACQ
where the types are provided by the user and the three
versions of M-QUACQ where types are learned during the
acquisition process.

Not surprisingly, we notice that M-QUACQ is always
better than QUACQ but still less efficient than G-QUACQ.
Furthermore, the number of queries (#Ask + #AskGen)
that were asked using M-QUACQ is often closer to the
number of queries asked using G-QUACQ. For instance,
to learn the PlaceNumPuzzle QUACQ needs 3746 queries.
Providing the types to G-QUACQ reduced the number of
queries to 390. Now, using our approach, M-QUACQ needed
only 662 queries although no knowledge on types was
provided.

In addition, Table I reports the performance of the
three versions of M-QUACQ. What is noticeable about the
three different ways for extracting potential types is that
modularity clearly outperforms the two other techniques
and improves significantly the performance of M-QUACQ
on all considered problems. Indeed, the combination of M-
QUACQ with modularity leads to tremendous savings in
the number of queries compared to QUACQ: 627+35 (-82%)
instead of 3746 on PlaceNumPuzzle, 272+12 (-41%) instead
of 483 on Murder, 410+14 (-39%) instead of 694 on Zebra,
140+8 (-28%) instead of 205 on Purdey, 7963+57 (-28%)
instead of 9593 on Sudoku.

We also notice that the betweenness outperforms the
γ-clique on all problems except for the Latin Square.
This can be explained by the fact that the types overlap (rows
and columns) in Latin Square and that γ-clique is likely
more able to detect overlapping types than betweenness.

In conclusion we can say that when modularity is
used to extract the types, the algorithm M-QUACQ per-
forms very well and is very close to G-QUACQ although
no knowledge on types is provided. Furthermore, since
modularity was introduced to find communities in very
large networks, we think that the performance of M-QUACQ
with modularity can be more significant when the size of
the problem increases. For instance, Figure 4 shows the gain
of M-QUACQ with modularity compared to QUACQ on
the Latin Square when fed with an increasing number of
variables. It is clear in this figure that the gain significantly
increases with the size of the problem.

VII. CONCLUSION

We have proposed MINE&ASK, a generalization based
algorithm that is able to mine partial graphs of con-
straint networks and to generalize, on potential types,
constraints learned by any constraint acquisition system.
MINE&ASK acts when no knowledge is provided on the
variable types. We have detailed and tested three techniques

Table I
M-QUACQ WITH MODULARITY , BETWEENNESS AND γ-CLIQUE ON

PLACENUMPUZZLE, MURDER, ZEBRA, PURDEY AND SUDOKU.

QUACQ G-QUACQ M-QUACQ
Strategies #Ask #Ask #AskGen #Ask #AskGen #no #yes

Latin Square
modularity

2058 129 68
987 61 26 35

betweenness 1674 22 5 17
γ-clique 1172 35 1 34

PlaceNumPuzzle
modularity

3746 351 39
627 35 4 31

betweenness 655 33 2 31
γ-clique 688 33 2 31

Murder
modularity

483 230 55
272 12 2 10

betweenness 272 12 2 10
γ-clique 342 13 3 10

Zebra
modularity

694 257 67
410 14 0 14

betweenness 410 14 0 14
γ-clique 410 14 0 14

Purdey
modularity

205 93 39
140 8 0 8

betweenness 140 8 0 8
γ-clique 140 8 0 8

Sudoku
modularity

9593 260 166
7963 57 20 37

betweenness 8960 50 18 32
γ-clique 9461 117 104 13
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Figure 4. The gain of M-QUACQ on Latin Square when the number of
variables increases.

to extract potential types, namely the modularity, the
betweenness and the γ-clique techniques. We have
plugged our MINE&ASK into the QUACQ constraint ac-
quisition system, leading to the M-QUACQ algorithm. We
have experimentally evaluated the benefit of our approach
on several benchmark problems. The results show that M-
QUACQ significantly improves the basic QUACQ algorithm
and they are quite close to the results when variable types
are provided.
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