
HAL Id: lirmm-01276188
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276188

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Acquisition
Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, Barry O’Sullivan

To cite this version:
Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, Barry O’Sullivan. Constraint Acquisition. Arti-
ficial Intelligence, 2017, 244, pp.315-342. �10.1016/j.artint.2015.08.001�. �lirmm-01276188�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276188
https://hal.archives-ouvertes.fr


Constraint Acquisition∗

Christian Bessiere
University of Montpellier, France

Frédéric Koriche
University of Artois, France

Nadjib Lazaar
University of Montpellier, France

Barry O’Sullivan
University College Cork, Ireland

Abstract
Constraint programming is used to model and solve complex combina-

torial problems. The modeling task requires some expertise in constraint
programming. This requirement is a bottleneck to the broader uptake of
constraint technology. Several approaches have been proposed to assist
the non-expert user in the modelling task. This paper presents the basic
architecture for acquiring constraint networks from examples classified by
the user. The theoretical questions raised by constraint acquisition are
stated and their complexity is given. We then propose Conacq, a sys-
tem that uses a concise representation of the learner’s version space into a
clausal formula. Based on this logical representation, our architecture uses
strategies for eliciting constraint networks in both the passive acquisition
context, where the learner is only provided a pool of examples, and the
active acquisition context, where the learner is allowed to ask membership
queries to the user. The computational properties of our strategies are
analyzed and their practical effectiveness is experimentally evaluated.

1 Introduction
Over the last forty years, considerable progress has been made in the field of
Constraint Programming (CP), providing a powerful paradigm for solving com-
binatorial problems. Applications in many areas, such as resource allocation,
scheduling, planning and design have been reported in the literature [2, 15, 32].
∗This paper is based on material published in [5, 7, 8, 9]. It additionally formalizes the

several problems addressed in these papers and proves several important complexity results
that remained open.

1



Informally, the basic idea underlying constraint programming is to model a com-
binatorial problem as a constraint network, i.e. using a set of variables, a set
of domain values and a collection of constraints. Each constraint specifies a
restriction on some set of variables. For example, a constraint such as x1 ≤ x2
states that the value on x1 must be less or equal than the value on x2. A solution
of the constraint network is an assignment of variables to domain values that
satisfies every constraint in the network. The Constraint Satisfaction Problem
(CSP) is hence the problem of finding a solution for a given constraint network.

However, the construction of constraint networks still remains limited to
specialists in the field. Actually, it has long been recognized that modeling a
combinatorial problem in the constraint formalism requires significant expertise
in constraint programming [19, 20, 34]. Such a level of knowledge precludes
novices from being able to use constraint networks without the help of an expert.
Consequently, this has a negative effect on the uptake of constraint technology
in the real-world by non-experts.

To alleviate this issue, we propose to acquire a constraint network from a set
of examples. This approach is exemplified by the following scenario. Suppose
that a human user would like to build a constraint network in order to solve a
series of repetitive tasks. Usually, the tasks are instances of the same combina-
torial problem and only differ in the set of domains associated with variables.
For example, in a time-tabling problem, it could be the problem of assigning a
teacher and a time slot to every courses given to all classes, regardless of the
actual time-slots at which teachers are available for the current semester. In
practice, the user has already solved several instances of the problem without
the help of a solver and knows how to classify an example as a solution or a
non-solution to it. Based on these considerations, the overall aim of constraint
acquisition is to induce from examples a general constraint network that ad-
equately represents the target problem. This approach allows us to use the
learned network with different initial domains in order to solve further tasks
supplied by the user.

In a nutshell, the constraint acquisition process can be regarded as an inter-
play between the user and the learner. The user has in mind a target problem
but does not know how this problem can be modeled as an efficient constraint
network. Yet, the user has at her disposal a set of solutions (positive examples)
and non-solutions (negative examples) of the problem. For its part, the learner
has at its disposal a set of variables on which the examples are defined and
constraint language. The overall goal of the learner is to induce a constraint
network that uses combinations of constraints defined from the language and
that is consistent with the solutions and non-solutions provided by the user.

There are two constraint acquisition approaches that naturally emerge from
this vision. In passive constraint acquisition, the learner cannot ask queries
of the user. In this setting, the key goal of the learner is to inform the user
about the state of its “version space”, that is, the set of networks that are
consistent with the pool of examples. For example, the learner can be required
to determine whether its version space has converged in order to inform the
user that no more examples are required to capture the target problem. By

2



contrast, in active constraint acquisition, the learner can choose an example
and ask whether it is a solution, or not, of the target problem. As a helpful
teacher, the user supplies the correct response. In this setting, the goal of the
learner is to find a short sequence of membership queries that rapidly converges
towards the target problem.

What we call user in this paper is not necessarily a human user. For in-
stance, in [29], the learner tries to acquire a constraint network representing the
sequences of elementary operations that constitute a valid action for a robot.
The classification of actions as positive or negative depends on the success or
failure of the action on the robot simulator. The simulator can be ran as much
as we want to produce examples. However, in standard constraint acquisition,
classifying examples requires an answer from a human user. Hence, we should
seek to minimise the size of the training set required to acquire a target problem.

In this paper we formally define the main constraint acquisition problems
related to passive and active acquisition. Several important complexity results
are provided. We show for instance that it is polynomial to decide if the version
space still contains networks consistent with the examples. Testing conver-
gence is, however, coNP-complete. We also show that in the context of active
constraint acquisition, constraint networks are not learnable in general with a
polynomial number of membership queries. In order to solve the different prob-
lems that arise from constraint acquisition, we develop a constraint acquisition
architecture, named Conacq, which is based on a compact and efficient rep-
resentation of version spaces into clausal formulas. This basic component is
equipped with different methods, inspired from SAT techniques, used to han-
dle consistency, convergence and identification problems in passive and active
constraint acquisition. The complexity of our methods is analyzed.

The necessary background in constraint programming and concept learn-
ing is introduced in Section 2. Section 3 gives a specification of the different
constraint acquisition problems examined in this study and analyses their com-
plexity. In Section 4, we present a technique for representing version spaces and
we describe Conacq.1, a passive acquisition algorithm using that representa-
tion. Section 5 shows how to use background knowledge to improve the learning
process. Active acquisition is presented in Section 6 together with an algorithm
to generate good queries, that is, queries that allow to learn the target problem
with as few queries as possible. Experiments are reported in Section 7. Finally,
we compare our framework with related work in Section 8, and conclude this
work in Section 9.

2 Background
In this section, we introduce some useful notions in constraint programming and
concept learning.

3



2.1 Vocabulary and Constraint Networks
In the field of constraint programming, combinatorial problems are represented
as constraint networks. We consider here a single domain for all the variables
in our networks. This really is a notational convenience as the actual domain of
a variable can be restricted by the constraint relations. It is possible to think
of our unified domain as the union of all of the actual problem domains.

We first define what we call a vocabulary. Intuitively, a vocabulary specifies
the space of all complete assignments of the variables from their domain.

Definition 1 (Vocabulary). A vocabulary is a pair 〈X,D〉 such that X is a
finite set {x1, · · · , xn} of variables, and D is a finite subset of Z called the
domain.

We will assume that the learner starts from a prefixed vocabulary; the vari-
ables and the domain are known to the learner, and its goal is merely to acquire
a set of constraints over this vocabulary. This justifies our slightly non-standard
definition of constraint network.

Definition 2 (Constraint Network). A constraint network over a given vocab-
ulary 〈X,D〉 is a finite set C of constraints. Each constraint c in C is a pair
〈var(c), rel(c)〉, where var(c) is a sequence of variables of X, called the con-
straint scope of c, and rel(c) is a relation over D|var(c)|, called the constraint
relation of c. For each constraint c, the tuples of rel(c) indicate the allowed
combinations of simultaneous value assignments for the variables in var(c). The
arity of a constraint c is given by the size |var(c)| of its scope.

For the sake of clarity, we will often take examples using binary constraints,
that is, constraints with a scope involving two variables. With a slight abuse
of notation, we use cij to refer to the binary relation that specifies which pairs
of values are allowed for the sequence 〈xi, xj〉. For example, ≤12 denotes the
constraint specified on 〈x1, x2〉 with relation “less than or equal to”.

The complement of a constraint c is the constraint denoted c such that
var(c) = var(c) and rel(c) = D|var(c)| \ rel(c). In other words, c and c describe
complementary relations defined on the same scope. For example, >12 is the
complement of ≤12.

Given a vocabulary 〈X,D〉, an assignment is a vector x = 〈x1, · · · , xn〉 in
D|X|. An assignment x maps to each variable xi ∈ X a corresponding domain
value xi ∈ D. An assignment x satisfies a constraint c if the projection of x onto
the scope var(c) is a member of rel(c). An assignment x violates a constraint c,
or equivalently, the constraint c rejects x, if x does not satisfy c. An assignment
x satisfies a constraint network C if x satisfies every constraint c in C. Such
an assignment is called a solution of C. A non-solution of C is an assignment
that violates at least one constraint from C.

The set of all solutions of a constraint network C is denoted sol(C). C is
satisfiable if sol(C) 6= ∅, and unsatisfiable otherwise. If sol(C) ⊆ sol(C ′) for
two constraint networks C and C ′, then we say that C entails C ′. Finally, if
sol(C) = sol(C ′), then we say that C and C ′ are equivalent.

4



2.2 Constraint Language and Bias
Borrowing from [14], a constraint language is a set of relations that restricts the
type of constraints that are allowed when modeling a network.

Definition 3 (Constraint Language). A constraint language is a set Γ =
{r1, · · · , rt} of t relations over some subset of Z.

In this study, we shall concentrate on constraint languages of fixed arity; for
such languages, the arity of any relation occurring in a constraint language Γ is
bounded by a constant k. Based on this assumption, global constraints will not
be considered in this paper. Recall that global constraints, such as alldifferent,
are relations defined for any (unbounded) arity. Though our framework does not
prevent their use, the fact that a single global constraint leads to an exponential
number of possible constraints, one for each subset ofX for a vocabulary 〈X,D〉,
makes most learning tasks analysed in this paper non-polynomial.

Definition 4 (Extension). Given a prefixed vocabulary 〈X,D〉, the extension
of Γ on 〈X,D〉 is the set BΓ of all constraints c for which var(c) is a tuple of
variables of X, and there exists a relation ri in Γ such that rel(c) = ri∩D|var(c)|.

We are now ready to define the bias1 for the acquisition problem, that is,
the set of all possible constraints that are candidate for being in the constraint
network to be learned.

Definition 5 (Bias). Given a prefixed vocabulary 〈X,D〉, the bias for the learn-
ing task is a set B ⊆ BΓ.

The bias B can be equal to the extension BΓ of Γ on the vocabulary. But it
can also be a strict subset if we have some initial information on the problem to
be elicited. With these notions in hand, any constraint network C defined over
Γ is simply a subset of BΓ. Note that the extension of a constraint language
of bounded arity k is always polynomial in the input dimension. Indeed, the
size of BΓ is bounded by nkt in the general case, and by n2t in the setting of
binary constraint networks. By contrast, if Γ was containing global constraints,
the size of BΓ would no longer be polynomial. A single global constraint gives
rise to 2n possible constraints in BΓ.

Example 1. Consider the binary constraint language Γ = {≤, 6=,≥} over Z.
Given the vocabulary defined by X = {x1, x2, x3} and D = {1, 2, 3, 4}, we
observe that the constraint network C = {≤12,≥12,≤23, 6=23} is indeed a subset
of the extension BΓ = {≤12, 6=12,≥12,≤13, 6=13,≥13,≤23, 6=23,≥23}. ♦

2.3 Concept Learning
In inductive learning, it is generally assumed that learning algorithms operate
over some concept class which captures the space of concepts that the learner

1This is called the declarative bias in [31].

5



can potentially generate over all possible sets of examples. In the setting of
constraint acquisition, the concept class is defined according to a bias B, which
specifies the constraints that are allowed for modeling the target constraint
network.

Given a prefixed vocabulary 〈X,D〉, a concept is a Boolean function over
D|X|, that is, a map that assigns to each assignment x a value in {0, 1}. Given
two concepts f and g, and a set A of assignments, we shall write f ⊆ g if
f−1(1) ⊆ g−1(1), and f ⊆ A if f−1(1) ⊆ A. A representation of a concept
f is a constraint network C for which f−1(1) = sol(C). A concept f is said
to be representable by a bias B if there is a subset C of B such that C is
a representation of f . We denote by fC a concept represented by a set of
constraints C. The concept class of B, denoted CB, is the set of all concepts
that are representable by B. For instance, the concept class CB defined over
the bias B = B≤,6=,≥ is the set of all Boolean functions that are representable
by inequality and disequality constraints.

An example is a pair e = 〈x(e), y(e)〉 where x(e) is an assignment and y(e) is
a value in {0, 1}. If y(e) = 1, e is called a positive example and, if y(e) = 0, e is
called a negative example. A training set is a set E = {e1, · · · , em} of examples.
A concept f is consistent with an example e if f(x(e)) = y(e). By extension,
a concept f is consistent with a training set E if f is consistent with every
example in E.

Example 2. Given again the vocabulary defined by X = {x1, x2, x3} and
D = {1, 2, 3, 4} and the bias B = B≤,6=,≥, let us examine the concepts f1 and f2
represented by the networks C1 = {=12, <23} and C2 = {=12,≤23}, respectively.
Here, =12 is an abbreviation of {≤12,≥12} and <23 is an abbreviation of {≤23
, 6=23}. Notice that f1, f2 ∈ CB. Suppose that we are given the training set E
specified in the following table.

x1 x2 x3 y
e1 2 2 4 1
e2 1 3 3 0
e3 1 1 1 0

We can easily verify that f1 is consistent with E whereas f2 is inconsistent with
E because e3 is not consistent with f2. ♦

Based on these notions, we are now in position to introduce the useful notion
of version space, adapted from [27] and [24].

Definition 6 (Version Space/Collapsing/Convergence). Given a bias B and a
training set E, the version space of E with respect to B, denoted CB(E), is the
set of all concepts in CB that are consistent with E. We say that the version
space of E has collapsed if CB(E) = ∅. We say that the version space of E has
converged if |CB(E)| = 1, i.e. CB(E) is reduced to a singleton.

Borrowing the terminology of [18, 22], any version space is a “convex poset”,
which basically means that for any subset F = {f1, f2, · · · , fp} of concepts in

6



CB such that f1 ⊆ f2 ⊆ · · · ⊆ fp, if the extreme elements f1, fp are members
of CB(E), then the whole chain F must be included in CB(E). This in turn
means that any finite version space can be characterized by its minimal and
maximal elements, with respect to set inclusion.

Definition 7 (Maximally Specific/General). Given a bias B and a training
set E, a concept f ∈ CB(E) is maximally specific (resp. maximally general)
if there is no f ′ ∈ CB(E) such that f ′ ⊂ f (resp. f ⊂ f ′). A constraint
network C ⊆ B is maximally specific (resp. maximally general) in CB(E), if
C is a representation of a maximally specific (resp. maximally general) concept
f ∈ CB(E).

Example 3. Consider again Example 2. The network C1 = {=12, <23} is
maximally specific in CB(E). Any other constraint from B either is implied
by C1 or rejects the positive example e1 from E. The network C2 = {6=23}
is maximally general in CB(E). We cannot remove any constraint from C2
and still reject all negative examples. The network C3 = {≥12, 6=13} is also a
maximally general constraint network of CB(E). ♦

3 Constraint Acquisition
In this section, we introduce several constraint acquisition problems that arise
from the conjunction of concept learning and constraint programming. We
provide the complexity of each of these problems.

3.1 Interaction Between User and Learner
The problem of acquiring a constraint network from examples can be viewed as
an interactive process between two protagonists: the human user and a virtual
learner. The user has in mind a target problem but does not know how to
represent this problem into a constraint network. An interaction between the
learner and the user is performed to acquire a network representing the target
problem.

There are two natural forms of interaction which emerge from the paradigm
of constraint learning. In passive acquisition, the user provides classified exam-
ples and the learner is passive because it has no control on the series of supplied
examples. By contrast, in active acquisition, the learner is active because it can
guide the exploration of its version space by asking queries to the user.

In machine learning, Angluin [1] defines several types of queries. An equiv-
alence query requests the user to decide whether a given concept is equivalent
to the target, and in case of negative answer, to provide an example showing
the discrepancy between the given concept and the target. A membership query
requests the user to classify a given example as positive or negative. In the
setting of constraint acquisition, asking a user equivalence queries is unreason-
able, especially because our starting assumption is that the user is not able to
articulate the constraints of the target network directly. (Equivalence queries

7



will be useful to characterize complexity of learning.) Membership queries are,
however, a reasonable interaction process where the user is just asked to be able
to recognize elements of her target concept.

3.2 Problems Related to Constraint Acquisition
The basic problem related to passive acquisition is to find whether the version
space of the examples supplied by the user has collapsed, or not. If the version
space has not collapsed, the learner is naturally required to provide a concept
consistent with the examples.

Definition 8 (Consistency Problem). Given a bias B and a training set E,
the consistency problem is to determine whether CB(E) 6= ∅. If the answer is
“yes”, then a representation C of some concept in CB(E) must be returned.

In the consistency problem, the learner only picks a concept in its version
space and returns a representation of it to the user. A more informative task is
to determine whether the version space has converged, or not. If this is indeed
the case, the user knows that she has an exact characterization of her target
problem, and hence, she does not need to supply more examples to the learner.

Definition 9 (Convergence Problem). Given a bias B and a training set E,
the convergence problem is to determine whether CB(E) has converged. If the
answer is “yes”, then a representation C of the target concept in CB(E) must
be returned.

Recall that in passive acquisition, the learner cannot control the dynamics
of its version space. By contrast, in active acquisition, the learner is allowed
to present queries to the user. Depending on the type TQ of query, the user is
not requested the same information. With the equivalence query EQ(C), the
learner asks the user whether the network C is equivalent to its target problem
or not. If not, the user must return a counter-example to the learner that is,
a solution of C that is not solution of her target problem, or a solution of her
target problem that is not solution of C. With the membership query MQ(x),
the learner asks the user what is the label of x. The user answers 1 if x is a
solution of the target problem, and 0 otherwise. Starting from a bias, an initial
training set, and a type TQ of query (among membership query and equivalence
query), the goal is to find a polynomial sequence of queries leading to a network
representing the target problem.

Definition 10 (Identification Problem/Learnability). Given a bias B, a train-
ing set E on a vocabulary 〈X,D〉, and a type TQ ∈ {membership, equivalence}
of queries, the identification problem for a target concept f representable by Γ is
to find a sequence 〈q1, · · · , qm〉 of queries of type TQ leading to the detection of
a constraint network C representing f . If the length m of the sequence is poly-
nomial in the number |B| of constraints in the bias, we say that f is learnable
by queries of type TQ.

8



3.3 Complexity of Constraint Acquisition
We now give the complexity of the constraint acquisition problems defined in
the previous subsection.

Theorem 1. The consistency problem can be solved in polynomial time.

Proof. Given a bias B and a training set E, we compute the set C of constraints
from B that are not violated by any positive example in E. This is done by
traversing all positive examples from E and removing from B all constraints
violated by such an example. We then check whether there exists a negative
example in E satisfying C. This is done by traversing the negative examples
and performing |C| constraint checks for each of them. If a negative example
satisfying C is found, we return “collapse”, otherwise we return “yes” and C as
a witness.

One might be tempted to believe that a version space has converged precisely
when there is exactly one constraint network representing the version space. The
convergence problem would then be tractable. It would be sufficient to compute
the maximal subset C of B satisfying all positive examples, to check that it
rejects all negative examples, and to prove that for every c ∈ C, there exists a
negative example solution of C \ {c}. However, in most constraint languages,
constraint relations are interdependent, as illustrated in the following example.

Example 4. As in Example 2, consider the vocabulary X = {x1, x2, x3} and
D = {1, 2, 3, 4} and the bias B = B≤,6=,≥. The target network is C = {≤12,≤13
,≤23}. Suppose we are given the training set E specified in the following table.

x1 x2 x3 y
e1 1 2 3 1
e2 4 4 4 1
e3 1 2 1 0
e4 3 1 3 0

At the beginning B = {≤12, 6=12,≥12,≤13, 6=13,≥13,≤23, 6=23,≥23}. After pro-
cessing example e1 we know that constraints ≥12,≥13, and ≥23 cannot belong
to the target network C because they are violated by e1, which is positive.
After processing e2 similarly the remaining possible constraints in the bias B
are: ≤12,≤13, and ≤23. By processing e3 we know that the constraint ≤23 is
in the target network as it is the only one rejecting e3. Similarly, ≤12 is in the
target network as it is the only one rejecting e4. Hence, there exists two con-
straint networks consistent with the training data E, namely C = {≤12,≤23}
and C ′ = {≤12,≤13,≤23}. However, the version space CB(E) contains a single
concept and thus has converged because C and C ′ have the same solutions. ♦

On this example we see that any concept may have multiple representations
because of the interdependency of constraints (i.e., the constraint ≤13 is redun-
dant with ≤12 and ≤23). Consequently, even if the learner’s version space has

9



converged, it may still have more than one representative network. As shown
by the following result, the convergence problem is much harder than the con-
sistency problem.

Theorem 2. The convergence problem is coNP-complete.

Proof. First, observe that the problem is in coNP. A polynomial certificate is
composed of the vocabulary 〈X,D〉, the bias B, the set E of examples, and op-
tionally two networks C1 and C2 and an assignment x over D|X|. The certificate
is valid if and only if the version space CB(E) is either empty or includes the
two concepts f1 and f2, associated with C1 and C2, and the assignment x be-
longs to f1 \f2. By Theorem 1, checking whether CB(E) = ∅ takes polynomial
time. Checking whether f1, f2 ∈ CB(E) also takes polynomial time. For each
positive example e+ in E we just need to check whether e+ belongs to sol(C1)
and to sol(C2), which is done by checking whether e+ satisfies all constraints
in C1 and all constraints in C2. For each negative example e− in E we need to
check whether e− belongs neither to sol(C1) nor to sol(C2), which is done by
checking whether there exists a constraint in C1 and a constraint in C2 rejecting
e−. Finally, checking whether f1(x) = 1 and f2(x) = 0 can be done by testing
whether x satisfies all constraints in C1 and x violates at least one constraint
in C2.

We now prove that the convergence problem is complete for coNP. Recall that
3-Col is the problem of deciding if a graph (N,U) is 3-colorable, where |N | = n.
Let 〈X,D〉 be the vocabulary formed by the variables X = {x1, . . . , xn}, where
xi represents the node i in N , and the domain D = {0, 1, r, g, b}, where r, g
and b are the colors. The bias is B = BΓ, with Γ = {r6=, r01, r4}, where
r6= is the binary relation D2 \ {(r, r), (g, g), (b, b)}, r01 is the binary relation
(D × {0}) ∪ ({0} × D) ∪ {(1, 1)}, and r4 is the quaternary relation formed by
the set {0, r, g, b}4 ∪ {0, 1}4 from which we remove all 4-tuples containing two
0s and two different colors, all 4-tuples containing no 1s and exactly one 0, and
the tuple (1, 1, 1, 1).

Any constraint network C over B is composed of binary constraints c6=(xi, xj)
such that rel(c6=) = r6=, and/or binary constraints c01(xi, xj) such that rel(c01) =
r01, and/or quaternary constraints c4(xi, xj , xk, xl), such that rel(c4) = r4.

We now build the training set E as follows:

• for every 4-tuple i, j, k, l in {1, · · · , n}, let e−ijkl be the negative example,
where x(e−ijkl) is the n-tuple containing 1 in positions i, j, k, l, and 0s
everywhere else,

• for every pair {i, j} ∈ U with i < j, let e−ij be the negative example where
x(e−ij) is the n-tuple containing only 0s except in positions i and j where
it contains b,

• for every pair {i, j} /∈ U with i < j, let e+
ij be the positive example where

x(e+
ij) is again the n-tuple containing only 0s except in positions i and j

where it contains b.

10



Note that c4(xi, xj , xk, xl) is the only constraint that rejects the example
e−ijkl. We are thus guaranteed that all c4 for any quadruple of variables belong
to all representations of consistent concepts. Moreover, for each pair {i, j} ∈ U ,
c01(xi, xj) and c6=(xi, xj) are the only constraints that reject the example e−ij .
So we know that any representation of a consistent concept contains either
c0(xi, xj) or c6=(xi, xj). Finally, because of e+

ij we know that any representation
of a concept in the version space excludes c0(xi, xj) and c 6=(xi, xj) for each
pair {i, j} /∈ U . Hence, the constraint network S containing all constraints c4
in B, and the constraints c6=(xi, xj) and c01(xi, xj) for all pairs {i, j} ∈ U , is
guaranteed to be the maximally specific network of E with respect to Γ.

Based on these considerations, the version space has not converged if and
only if there exists a constraint network C such that fC is in the version space
and sol(S) ⊂ sol(C).

Let x be a member of sol(C) \ sol(S). Suppose that x contains a 1. We
know that all c4 constraints belong to C. So, x contains only 0s and 1s. Yet,
because r6= and r01 accept all tuples in {0, 1}2, x would necessarily be solution
of S, a contradiction. So x contains only 0s and colors. Obviously, x must
contain less that n−1 0s because any tuple with a number of 0s greater than or
equal to n− 1 is a solution of S. Suppose that x contains n− 2 0s, and colors
at positions i and j. Then xi and xj must have the same color in x because
otherwise any c4 involving xi and xj would be violated. If the pair {i, j} is not
in U , then x is already a solution of S because it satisfies the same constraints
as e+

ij . So, {i, j} must be an edge in U , but since C rejects any negative example
e−ij , either c01(xi, xj) or c6=(xi, xj) belongs to C. In any case, this implies that
xi and xj cannot take the same colors, a contradiction. So x must have at least
three entries i, j, k taking colors. But if there is a 0 at an arbitrary position l of
x, the c4 involving xi, xj , xk and the variable xl taking 0 rejects the tuple. As
a result, x contains only colors. Since all c01 are violated by x, it follows that
all c 6=(xi, xj) with {i, j} ∈ U are satisfied by x, and hence, x is a 3-coloring of
(N,U).

Conversely, any 3-coloring x of (N,U) is not a solution of S but is a solution
of any network C containing all c4 and all c6=(xi, xj) for {i, j} ∈ U . Clearly, the
concept of C is consistent with E. So, if (N,U) is 3-colorable, the version space
has not converged.

To summarize, the version space has converged if and only if the problem
of coloring (N,U) with three colors has no solution. Our construction contains
O(n4) constraints and O(n4) examples, and hence, it is polynomial in the size
of (N,U). Therefore, the convergence problem is coNP-complete.

Theorem 3. Given any bias B and any target concept f representable by B, f
is learnable by equivalence queries.

Proof. The following algorithm guarantees that we find a network representing
the target concept with a polynomial number of equivalence queries. Remember
that EQ(C) returns an assignment in (f ∪ sol(C)) \ (f ∩ sol(C)).

11



1 C ← B
2 e← EQ(C)
3 while e 6= true do
4 for c ∈ C | x(e) 6|= c do C ← C \ {c}
5 e← EQ(C)
6 return C

Soundness. The algorithm is sound because it returns C only when EQ(C) has
returned true, which means that C is a representation of the target concept f .
Termination in polynomial number of queries. Let Cf be any network represent-
ing f over Γ, that is, sol(Cf ) = f−1(1). The property "Cf ⊆ C" is true when we
start the loop in Line 3 because Cf ⊆ B = C. Hence, if the first call to EQ(C)
does not return true, it necessarily returns an example e such that y(e) = 1 and
x(e) ∈ f−1(1) \ sol(C). Constraints removed from C in Line 4 reject e and thus
do not belong to Cf , so "Cf ⊆ C" remains true. The next example e′ returned
by EQ(C) will again be such that y(e′) = 1 and x(e′) ∈ f−1(1) \ sol(C), and
"Cf ⊆ C" is an invariant of the loop. In addition, there is at least one constraint
in C rejecting e in Line 4 otherwise EQ(C) would have returned true. Therefore
C strictly decreases in size each time we go through the loop and the algorithm
terminates in O(|B|) number of equivalence queries.

Theorem 4. There exist biases B with fixed arity constraints, training sets E,
and target concepts f representable by B that are not learnable by membership
queries, even if E contains a positive example.

Proof. Let Γ be the language containing only two binary constraints, given by
c1 = {(0, 0), (1, 1), (2, 2)} and c2 = {(0, 1), (1, 0), (2, 2)}. Let B be the bias
with 2n variables, domain {0, 1, 2}, and language Γ, and let CB be the class
of concepts representable by this bias. Let G be the subset of CB composed
of all concepts representable by networks composed of n constraints from Γ,
one constraint for each pair (xi, xn+i) of variables. Every network representing
a concept in G can be associated with a vector t of length n constructed by
setting t[i] to 0 if c1(xi, xn+i) and t[i] to 1 if c2(xi, xn+i). Thus there is a
bijection between G and {0, 1}n and G is isomorphic to {0, 1}n. As a result, the
size of G is 2n. Suppose that the positive example defined over the assignment
(2, 2, · · · , 2) has already been given by the user. This does not eliminate any
concept from G. Given any assignment x ∈ {0, 1, 2}2n, a membership query
answered 0 will eliminate at most one concept from G (when x ∈ {0, 1}2n).
Therefore, whatever the strategy of generation of the queries, there exists a
target concept f in G requiring at least 2n − 1 queries for identifying it.

12



4 The Passive Conacq Algorithm
We are now in position to present the Conacq architecture. In this section, we
concentrate on passive constraint acquisition, where the learner is presented a
pool of examples and must determine the state of its version space. We provide
a compact representation of version spaces, next we analyse the complexity
of some common operations on versions spaces in this representation, and we
finally describe the Conacq.1 algorithm.

4.1 Representing Version Spaces
The basic building block of our learning architecture is a clausal representation
of version spaces for constraint biases. Given a prefixed vocabulary 〈X,D〉 and
a bias B, the version space CB(E) of a training set E is encoded into a clausal
theory T , where each model of T is a representation of some concept in CB(E).
The size of T is linear in the number of examples, and its structure allows us to
check satisfiability in polynomial time.

Formally, any constraint c ∈ B is associated with a Boolean atom, denoted
a(c). As usual, a positive literal is an atom a(c), and a negative literal is the
negation ¬a(c) of an atom. A clause α is a disjunction of literals; α is a Horn
clause (resp. dual Horn clause) if it includes at most one positive (resp. nega-
tive) literal, and α is a unit clause if it includes exactly one (positive or negative)
literal. A clausal theory T is a conjunction of clauses, and a Horn theory (resp.
dual Horn theory) is a conjunction of Horn (resp. dual Horn) clauses. The size
|T | of a clausal theory T is given by the sum of the sizes of its clauses, where the
size of a clause is the number of its literals. Given a clause α in T , constraints(α)
is the set {ci | a(ci) ∈ α}.

Any Boolean assignment I in {0, 1}|B| is called an interpretation, and we
write I[a(c)] to denote the (Boolean) value of the atom a(c) under I. An inter-
pretation I is a model of a clausal theory T if T is true in I according to the
standard propositional semantics. The set of models of T is denoted models(T ).
A clausal theory T is satisfiable if models(T ) 6= ∅, and unsatisfiable otherwise.
Given two clausal theories T and T ′, we say that T entails T ′, and write T |= T ′,
if models(T ) ⊆ models(T ′).

The transformation ϕ assigns to each interpretation I over {0, 1}|B| a cor-
responding constraint network ϕ(I) in CB defined by the set of all constraints
c ∈ B such that I[a(c)] = 1. Clearly, ϕ is bijective. In the following ϕ−1(C)
denotes the characteristic model of C obtained by setting each atom a(c) from
B to 1 if c ∈ C and to 0 otherwise. Given a set C of constraint networks, ϕ−1(C)
denotes the set of characteristic models of the networks in C.

It is important to keep in mind that the negative literal ¬a(c) does not
represent the complement c of the constraint c. Instead, ¬a(c) denotes the
absence of c in the network. Thus, ¬a(c) captures a weaker form of negation
than c. For instance, given two variables xi and xj , the constraint ≤ij is >12,
but the literal ¬a(≤12) simply specifies the absence of ≤12 in the network.

13



Definition 11 (Clausal Representation). Given a bias B and a training set E,
the clausal representation of CB(E) is the dual Horn formula defined by:

T =
∧

e∈E,y(e)=1

 ∧
c∈κ(x(e))

¬a(c)

 ∧ ∧
e∈E,y(e)=0

 ∨
c∈κ(x(e))

a(c)


where κ(x) is the set of constraints c in B such that x violates c.

Clearly, the clausal encoding of a version space can be performed incremen-
tally: on each incoming example e, encode e as a set of clauses using κ(x(e)).
If e is positive, we must discard from the version space all concepts that reject
x(e). This is done by expanding the theory with a unit clause ¬a(c) for each
constraint c in κ(x(e)). Dually, if e is negative, we must discard from the version
space all concepts that accept x(e). This is done by expanding the theory with
the clause consisting of all literals a(c) in κ(x(e)). The resulting theory T is
indeed a dual Horn formula because each clause contains at most one negative
literal.

Example 5. We wish to acquire a constraint network specified over the vari-
ables {x1, x2, x3, x4}, the domain {1, 2, 3, 4}, and the bias B = B≤,6=,≥. Suppose
that the target network contains only one constraint, namely x1 6= x4. The fol-
lowing table illustrates how the clausal theory T is expanded after processing
each example of some training set E.

x(e) y(e) Clauses added to T
〈1, 2, 3, 4〉 1 ¬a(≥12) ∧ ¬a(≥13) ∧ ¬a(≥14) ∧ ¬a(≥23) ∧ ¬a(≥24) ∧ ¬a(≥34)
〈4, 3, 2, 1〉 1 ¬a(≤12) ∧ ¬a(≤13) ∧ ¬a(≤14) ∧ ¬a(≤23) ∧ ¬a(≤24) ∧ ¬a(≤34)
〈1, 1, 1, 1〉 0 a(6=12) ∨ a( 6=13) ∨ a( 6=14) ∨ a( 6=23) ∨ a( 6=24) ∨ a(6=34)
〈1, 2, 2, 1〉 0 a(≥12) ∨ a(≥13) ∨ a(6=14) ∨ a(6=23) ∨ a(≤24) ∨ a(≤34)

The fourth clause can be reduced to a( 6=14)∨a( 6=23) using unit propagation over
T , and hence the third clause can be removed from T because it is subsumed
by the reduced fourth clause. Thus, models of T are all interpretations that set
a( 6=14) or a(6=23) to true and that falsify all a(≤ij) and all a(≥ij). ♦

The next theorem establishes a one-to-one correspondence between the rep-
resentations of concepts in the version space and the models of the clausal
theory.

Theorem 5. Let 〈X,D〉 be a prefixed vocabulary, B a bias, and E a training
set. Let T be the clausal representation of CB(E). Then,

I ∈ models(T ) if and only if fϕ(I) ∈ CB(E)

Proof. Consider a representation C = ϕ(I) such that I ∈ models(T ) but fC 6∈
CB(E). We show that this leads to a contradiction. Obviously, fC must be
inconsistent with at least one example e in the training set. If e is positive
then fC(x(e)) = 0, which implies that x(e) 6∈ sol(C). So, there is at least

14



one constraint in C that is included in κ(x(e)). It follows that I violates the
clause set

∧
c∈κ(x(e)) ¬a(c), and hence, I cannot be a model of T . Dually, if e

is negative then fC(x(e)) = 1, which implies that x(e) ∈ sol(C). So, there is
no constraint in C that belongs to κ(x(e)). It follows that I violates the clause∨
c∈κ(x(e)) a(c), and hence, I cannot be a model of T .
Consider now a representation C = ϕ(I) such that fC ∈ CB(E) but I 6∈

models(T ). Again, we show that this leads to a contradiction. If I 6∈ models(T ),
then there is at least one example e in E such that I falsifies the set of clauses
generated from e. If e is positive then I must violate the conjunction

∧
c∈κ(x(e)) ¬a(c).

So C must include at least one member of κ(x(e)), which implies that at least
one constraint in C is violated by x(e). Therefore, x(e) 6∈ sol(C), and hence, fC
cannot be consistent with e. Dually, if e is negative then I must violate the dis-
junction

∨
c∈κ(x(e)) a(c). So C must exclude all constraints c in κ(x(e)), which

implies that no constraint in C is violated by x(e). Therefore, x(e) ∈ sol(C),
and hence, fC cannot be consistent with e.

4.2 Operations on the Clausal Representation of Version
Spaces

The key interest of the clausal encoding of version spaces is to exploit the algo-
rithmic properties of dual Horn theories.

To this point, recall that unit propagation is the process of applying unit
resolution (a resolution step in which at least one resolvant is a unit clause) on a
clausal theory T until no further unit resolution steps can be carried out, or until
the empty clause is obtained. If T is Horn or dual Horn, then unit propagation
is enough for deciding the satisfiability of T in linear (O(|T |)) time, by either
returning a model I of T , or deriving the empty clause [17]. Interestingly, the
“unit implicates” of Horn theories and dual Horn theories can also be computed
efficiently. For a clausal formula T , let unit+(T ) (resp. unit−(T )) be the set
of positive (resp. negative) literals ` such that T |= `, and let unit(T ) =
unit+(T )∪ unit−(T ). A clausal theory T is reduced (under unit propagation) if
there is no clause in T that properly contains a unit clause in unit(T ), or that
contains the complementary literal of a unit clause in unit(T ).

As shown in [13] (Chapter 5.3), if T is Horn or dual Horn, then it can be
reduced in linear time, using unit propagation. Furthermore, the set unit+(T )
can be computed in linear time if T is a Horn theory, and the set unit−(T ) can
be computed in linear time if T is a dual Horn theory.

With these notions in hand, we shall consider in the following a prefixed
vocabulary 〈X,D〉, a bias B, and a training set E. Based on Definition 11,
the size of the dual Horn theory T encoding CB(E) is given by

∑
e |κ(x(e))|.

Since |κ(x(e))| contains at most |B| constraints, it follows that |T | is bounded
by |E| · |B|.

We first show that the consistency problem is solvable in linear time.

Proposition 1. The consistency problem can be solved in O(|E| · |B|) time.

15



Proof. By Theorem 5, we know that if T includes at least one model I then
CB(E) covers the concept fϕ(I). Conversely, if CB(E) covers at least one con-
cept f , then T includes all models I for which f = sol(ϕ(I)). It follows that T
is satisfiable if and only if CB(E) is not empty. Since the satisfiability of T can
be decided in O(|T |) time, the result follows.

In the update operation, we need to compute a new representation of the
version space formed by the addition of a new example to the training set.

Proposition 2. The update operation takes O(|B|) time.

Proof. Adding a new example e means expanding T with the encoding of e. The
cost of this expansion is dominated by the construction of κ(x(e)). Checking
whether a constraint is satisfied or violated by an example e is in O(1). Thus,
the number of such checks is bounded by |B|, which concludes.

Consider a pair of training sets E1 and E2. The intersection operation
requires computing a representation of the version space CB(E1) ∩ CB(E2).
This operation is interesting when we acquire a network from examples supplied
by multiple users.

Proposition 3. The intersection operation takes O((|E1|+ |E2|) · |B|) time.

Proof. Let T1 and T2 be the representations of the version spaces CB(E1) and
CB(E2), respectively. The representation of the version space CB(E1)∩CB(E2)
is simply obtained by T1 ∧ T2, which cost is in the sum of the sizes of the two
theories, that is, O((|E1|+ |E2|) · |B|).

Given a pair of training sets E1 and E2, we may wish to determine whether
CB(E1) is a subset of CB(E2), or whether CB(E1) is equal to CB(E2).

Proposition 4. The subset and equality tests take O(|E1| · |E2| · |B|2) time.

Proof. Let T1 and T2 be the clausal theories of CB(E1) and CB(E2), respec-
tively. If CB(E1) ⊆ CB(E2) then we must have models(T1) ⊆ models(T2)
because otherwise there would be a model I in models(T1) \models(T2), imply-
ing by Theorem 5 that fϕ(I) ∈ CB(E1) but fϕ(I) 6∈ CB(E2), a contradiction.
Conversely, if models(T1) ⊆ models(T2) then we must have CB(E1) ⊆ CB(E2)
because otherwise there would exist a concept f in CB(E1) \ CB(E2) imply-
ing, again by Theorem 5, that for every representation C of f , ϕ−1(C) is a
model of T1, but not a model of T2, a contradiction. Thus, deciding whether
CB(E1) ⊆ CB(E2) is equivalent to deciding whether models(T1) ⊆ models(T2),
which is equivalent to state whether T1 entails T2. By Lemma 5.6.1 from [13],
the entailment problem of two dual Horn formulas T1 and T2 can be decided in
O(|T1| · |T2|) time. It follows that the subset operation takes O(|B|2 · |E1| · |E2|)
time. For the equality operation, we simply need to check whether T1 entails
T2 and T2 entails T1.

The membership test is to determine whether a given constraint network is
associated, or not, to a consistent concept in the version space.

16



Proposition 5. The membership test takes O(|E| · |B|) time.

Proof. Let C ⊆ B be a constraint network. By Theorem 5, determining whether
fC ∈ CB(E) is equivalent to check whether ϕ−1(C) ∈ models(T ), which can be
done in O(|T |) time.

Apart from the membership test, we might also be interested to check
whether a given assignment is classified in the same way by all concepts in
the version space. Specifically, an assignment x is predictable by CB(E), if
CB(E) is not empty, and f(x) = 1 for all f ∈ CB(E), or f(x) = 0 for all
f ∈ CB(E). The prediction test suggested in [24], is to determine whether an
assignment is predictable, or not.

Proposition 6. The prediction test takes O(|E| · |B|) time.

Proof. Given an assignment x, let T0 (resp. T1) be the clausal theory obtained
from T by updating CB(E) with the example 〈x, 0〉 (resp. 〈x, 1〉). T0 is unsat-
isfiable if and only if CB(E ∪ {〈x, 0〉}) = ∅. This condition holds if and only
if f(x) = 1 for all f ∈ CB(E). Analogously, T1 is unsatisfiable if and only if
f(x) = 0 for all f ∈ CB(E). Note that CB(E) = ∅ if and only if both T0
and T1 are unsatisfiable. So, x is predictable if and only if exactly one of T0
or T1 is unsatisfiable. Since by Proposition 2 the update of CB(E) with 〈x, 0〉
(or 〈x, 1〉) takes O(|B|) time, the prediction test requires only two satisfiability
tests over dual Horn formulas, which takes O(|E| · |B|) time.

We close the list of operations be examining the boundary elements of the
version space, that is, the maximally specific concepts and the maximally general
ones.

Proposition 7. If CB(E) 6= ∅, then the maximally specific concept is unique
and a representation of it can be computed in O(|E| · |B|) time.

Proof. Suppose that CB(E) 6= ∅, and consider the network C = {c ∈ B |
¬a(c) 6∈ unit−(T )}. Note that C can be constructed in O(|E| · |B|) time by
computing unit−(T ) using unit propagation, and taking the atoms in B which do
not occur in unit−(T ). Now, consider any concept f ′ ∈ CB such that f ′ ⊂ fC .
Any representation C ′ of f ′ must include at least one constraint c in B \ C.
This implies that ¬a(c) ∈ unit−(T ), which in turn implies that φ−1(C ′) does
not satisfy T . Therefore, f ′ 6∈ CB(E), and hence, fC is the unique maximally
specific concept in CB(E).

Unfortunately, a dual property for maximally general concepts cannot be
derived, due to the fact that their number can grow exponentially with the size
of B. Indeed, as observed in [23], even in the very restricted case where the
domain is {0, 1} and B is a set of n unary constraints c with rel(c) = {1},
there are training sets E such that the number of maximally general concepts
in CB(E) is exponential in n. A tractable result can yet be derived when the
clausal representation T is reduced to a monomial (i.e., conjunction of unit
clauses).

17



Proposition 8. If CB(E) 6= ∅ and T is a monomial, then the maximally
general concept is unique and a representation of it can be computed in O(|E| ·
|B|) time.

Proof. Suppose again that CB(E) 6= ∅, and consider the network C = {c ∈ B |
a(c) ∈ unit+(T )}. Because T is a monomial, it is both Horn and dual Horn,
and hence, C can be constructed in O(|T |) time by deriving unit+(T ) via unit
propagation. Now, consider any concept f ′ ∈ CB such that fC ⊂ f ′. Here, any
representation C ′ of f ′ must exclude at least one constraint c ∈ C. This implies
that a(c) 6∈ unit+(T ), which in turn implies that φ−1(C ′) violates T . Therefore,
f ′ 6∈ CB(E), and hence, fC is the unique maximally general concept.

4.3 The Algorithm
The Conacq.1 algorithm is presented in Algorithm 1. It takes as input a bias B
and a training set E, and returns as output a clausal theory T that encodes the
version space CB(E). The algorithm starts from the empty theory (Line 1) and
iteratively expands it by encoding each example in the training set (Line 2). If e
is negative, we must discard from the version space all concepts that accept x(e).
This is done by expanding the theory with the clause consisting of all literals
a(c) in κ(x(e)) (Line 4). Dually, if e is positive, we must discard from the version
space all concepts that reject x(e). This is done by expanding the theory with
a unit clause ¬a(c) for each constraint c in κ(x(e)) (Line 5). After encoding the
example, a “collapse” message is returned if the theory is no longer satisfiable
(Line 6). When all examples in the training set are processed, Conacq.1 calls
a convergence procedure to determine whether CB(E) is reduced to a singleton
set, or not (Line 7). Finally Conacq.1 returns the resulting theory encoding
CB(E) together with the flag for convergence (Line 8).

As stated by Theorem 2, the convergence problem is coNP-complete. A
naive strategy for implementing the Convergence procedure is to start from
the interpretation I encoding the maximally specific network (as detailed in
Proposition 7), and to explore the other models of T in order to find an in-
terpretation I ′ for which the constraint networks φ−1(I) and φ−1(I ′) are not
equivalent. Yet, due to the exponential number of models of dual Horn theories,
and the complexity of constraint network equivalence, such an implementation
will be too expensive in most cases. The next section proposes two ways to
improve the way convergence is handled in Conacq.1.

5 Improvements for Convergence Testing
A natural way to alleviate the computational barrier related to the convergence
test is to use the notion of local consistency, which is ubiquitous in Constraint
Programming. The idea of local consistency can be summarized as an explic-
itation of inconsistent combinations of values or combinations of constraints
among subsets of variables. Such information can be exploited as a background

18



Algorithm 1: The Conacq.1 Algorithm

Input: a bias B and a training set E
Output: a clausal theory T encoding CB(E), a Boolean value v saying if
convergence is reached

1 T ← ∅
2 foreach example e ∈ E do
3 κ(x(e))← {c ∈ B | x(e) violates c}
4 if y(e) = 0 then T ← T ∧

(∨
c∈κ(x(e)) a(c)

)
5 if y(e) = 1 then T ← T ∧

∧
c∈κ(x(e)) ¬a(c)

6 if T is unsatisfiable then return “collapse”

7 v ← Convergence(T )
8 return (T , v)

knowledge for improving the learning process and speeding up the convergence
test. Taking a central part in Inductive Logic Programming [30], the back-
ground knowledge is a set of clauses that impose restrictions on the possible
representations of learned concepts. In our constraint acquisition setting, the
background knowledge is a set of rules, each encoding in a declarative way a
form of local consistency. By combining the clausal representation of a version
space with some background knowledge, the convergence problem can be solved
using backbone tests, a powerful SAT technique.

In this section, we first examine the concept of background knowledge adapted
to constraint acquisition, and then we turn to the technique of backbone tests.

5.1 Background Knowledge
Recall that a Horn clause is definite if it contains exactly one positive literal.
Intuitively, a rule is a definite Horn clause that captures, in form of implication,
a local consistency property between some constraints defined over the bias.

Definition 12 (Rule). Given a vocabulary 〈X,D〉, and a bias B, a rule is a
definite Horn clause

∧l
i=1 a(ci) → a(c) such that {c1, · · · , cl, c} ⊆ B. The rule

is correct for B if {c1, · · · , cl, c} is unsatisfiable.

Definition 13 (Background Knowledge). Given a bias B, a background knowl-
edge K for B is a set of correct rules for B.

Based on some background knowledge K, any candidate constraint network
C can be “saturated” by K, in order to yield an equivalent network C ′ including
all additional constraints forced by rules whose body is satisfied by C.

Definition 14 (Saturation). Given a bias B, a background knowledge K for B,
and a constraint network C ⊆ B, the saturation of C with K, denoted satK(C),

19



is the network C ∪ {c | a(c) ∈ unit+(K ∪ C)}. A network C ⊆ B is saturated
by K if C = satK(C).

Example 6. Consider the vocabulary composed of variables {x1, x2, x3} and
domain {1, 2, 3, 4, 5}, and the bias B = B≤,6=,≥. The following set of rules is
background knowledge for B.

K =


a(≤ij)↔ a(≥ji),∀i, j
a( 6=ij)↔ a(6=ji),∀i, j
a(≤ij) ∧ a(≤jk)→ a(≤ik),∀i, j, k
a(≥ij) ∧ a(≥jk)→ a(≥ik),∀i, j, k
a(≤ij) ∧ a(≥ij) ∧ a(◦jk)→ a(◦ik) with ◦ ∈ {≤, 6=,≥},∀i, j, k

Consider the constraint network C = {≤12,≤23}. The saturation of C with K
is C∗ = {≤12,≤23,≤13}. ♦

Informally, the background knowledge K is “complete” if all local consisten-
cies between constraints in the bias can be derived by K.

Definition 15 (Subsumed Rule). Given a bias B, background knowledge K for
B, and a correct rule R for B such that R 6∈ K, R is subsumed by K if and
only if satK∪{R}(C) = satK(C) for every constraint network C ⊆ B.

Definition 16 (Complete Background Knowledge). Given a bias B, back-
ground knowledge K for B is complete if any correct rule for B is either in K
or subsumed by K.

In presence of complete background knowledge, the equivalence between
constraint networks can be identified by saturation.

Lemma 1. Let B be a bias, and K be complete background knowledge for K.
Then, for any C,C ′ ⊆ B, C is equivalent to C ′ if and only if satK(C) =
satK(C ′).

Proof. If satK(C) = satK(C ′) then, because K is a set of correct rules for B, it
follows that C and C ′ are equivalent. Conversely, suppose that C = {c1, · · · , cl}
is equivalent to C ′. For any constraint c′ ∈ C ′, because C ∪ {c′} is entailed by
C, the rule R given by a(c1) ∧ · · · ∧ a(cl) → a(c′) is correct. And, since K is
complete, R is either in K or subsumed by K, which implies that c′ ∈ satK(C).
By applying the same strategy to all constraints in the symmetric difference
(C ′ \ C) ∪ (C \ C ′), we get that C ′ \ C ⊆ satK(C) and C \ C ′ ⊆ satK(C ′).
This, together with the fact that C ⊆ satK(C) and C ′ ⊆ satK(C ′) implies that
satK(C) = satK(C ∪ C ′) = satK(C ′), as desired.

Recall that a Boolean formula is uniquely satisfiable if it has a single model.
Based on this notion and the above result, a useful property can be derived from
complete forms of background knowledge.

Proposition 9. Let K be complete background knowledge for some bias B.
Then, for any training set E and its associated clausal representation T , CB(E)
has converged if and only if K ∧ T is uniquely satisfiable.

20



Proof. Suppose that CB(E) has converged to the unique concept f∗, and let
Cf∗ be the equivalence class of all representations of f∗ in B. By Theorem 1,
we know that φ−1(C) |= T for every C ∈ Cf∗ . By Lemma 1, we also know that
there exists exactly one representation C∗ ∈ Cf∗ such that C∗ = satK(C) for
all C ∈ Cf∗ . Since C∗ is saturated, it follows that φ−1(C∗) satisfies every rule
of K, and hence, φ−1(C∗) |= T ∧K. Now, consider any network C ∈ Cf∗ such
that C 6= C∗. Since C is a proper subset of satK(C), φ−1(C) violates every rule
R with body {a(c) | c ∈ C} and head in {a(c′) | c′ ∈ satK(C) \ C}. However,
because K is complete, R is subsumed by K, and by contraposition, φ−1(C) is
not a model of K. Consequently, φ−1(C∗) is the unique model of T ∧K.

Conversely, suppose that K ∧ T is uniquely satisfiable, and let I∗ be the
unique model of K ∧ T , with associated network C∗ = φ(I∗). Since I∗ |= T , we
know that f∗ = fC∗ is a member of CB(E). Now consider any consistent concept
f ∈ CB(E). For any representation C of f , the interpretation I = φ−1(C) must
be a model of T . If I is distinct from I∗, it cannot be a model of T ∧K, and
hence, C must be a proper subset of C ′ = satK(C). For this saturated network
C ′, we know that I ′ = φ−1(C ′) is a model of K. Since, in addition, K is a
set of correct rules for B, C ′ is a representation of f , which implies that I ′ is
also a model of T . Consequently, I ′ |= T ∧K, implying that I ′ = I∗ by unique
satisfiability of T ∧K, which in turn implies that f = f∗.

Building complete background knowledge is often too expensive, both in time
and space as it requires generating a set of rules potentially exponential in space
(all combinations of constraints that imply another one). This is not surprising
as it is closely related to the concept of relational consistency in constraint net-
works [16]. However, by analogy with “levels of consistency” used in Constraint
Programming, it is possible to compute approximations by bounding the num-
ber of constraints in the body of a rule. For instance, in all the experiments we
have performed with Conacq, we only generate the rules that contain two con-
straints in the body because we found that in practice many rules have a small
length. Take for instance the rule x ≤ y ∧y ≤ z → x ≤ z. It can be detected by
brute force generation of the |D|3 assignments on (x, y, z) that satisfy the body
of the rule, and testing that the head is always satisfied. Once detected, such
a rule must be put in K in the form of a clause a(≤ij) ∧ a(≤jk) → a(≤ik) for
all triplets of such constraints in B. In our example, there are |n3| such rules.
In general, given a rule of length l associated with a language Γ containing t
relations of maximum arity k, and a vocabulary involving n variables, we can
generate up to nkl rules to be put in K.

With these notions in hand, we can identify a case where checking conver-
gence in Conacq.1 is polynomial. The method described in Algorithm 2 pro-
vides and implementation of the Convergence procedure in situations where
the theory T is reduced to a monomial after unit propagation. Recall that
in such situations, the maximally specific and the maximally general concepts
are both unique (Propositions 7 and 8). We first take the maximally specific
constraint network S formed by all constraints whose associated atom is not
negated in T (Line 1). Next, we take the “saturated” maximally general net-

21



Algorithm 2: Procedure Restricted Convergence

Input: a satisfiable monomial theory T and a background knowledge K
Output: a Boolean reporting convergence or not

1 S ← {c ∈ B | ¬a(c) 6∈ unit−(T )}
2 G← {c ∈ B | a(c) ∈ unit+(T ∧K)}
3 return S = G

work G formed by all constraints whose associated atom occurs positively in
T ∧ K (Line 2). The convergence is established by simply testing whether S
and G are equal, or not (Line 3).

Theorem 6 (Restricted Convergence). Given a bias B, background knowledge
K for B, and a training set E, if K is complete for B and the clausal repre-
sentation T of CB(E) is reduced to a monomial by unit propagation, then the
convergence problem can be solved in O(|B|+ |K|) time.

Proof. First, we examine the correctness of the restricted convergence proce-
dure. Since T is a monomial, we know that the maximally specific concept fS
and the maximally general concept fG of CB(E) are unique (Propositions 7 and
8). So, CB(E) has converged if and only if fS = fG. Let S (resp. G) be a
representation of fS (resp. fG) over B. By Lemma 1, a sufficient condition to
establish the equality fS = fG is to show that satK(S) = satK(G). From this
perspective, consider the networks S and G constructed by Algorithm 2. By
Proposition 7, S is a representation of fS . Clearly S = satK(S) because other-
wise, there would be a constraint c ∈ satK(S) \ S such that ¬a(c) ∈ unit−(T ),
which in turn would imply that fS 6= fsatK(S), contradicting the fact that K is
a set of correct rules. By Proposition 8, the network G′ = {c | a(c) ∈ unit+(T )}
is a representation of fG, and by construction, G = satK(G′). Thus, CB(E) has
converged if and only if S = G, which is precisely what Algorithm 2 returns.

Now, let us turn to the complexity of the procedure. Since T is a monomial,
unit−(T ) can be computed in O(|T |) time, and since T ∧K is a Horn formula,
unit+(T ∧ K) can be computed in O(|T + K|) time. The result follows using
the fact that |T | is bounded by |B|.

We note in passing that the above result can be derived from Proposition 9.
Indeed, using the fact that T ∧K is a Horn theory when T is a monomial, the
unique satisfiability test can be evaluated in O(|T |+ |K|) time, using a directed
hypergraph representation of the Horn formula [13]. However, in our setting,
the restricted convergence procedure is much simpler to implement, requiring
only unit propagation for computing the sets S and G.

Example 7. Consider the theory T generated in Example 4. After unit propa-
gation, T contains two positive literals a(≤12) and a(≤23). The maximally spe-
cific network S is precisely {≤12,≤23,≤13} and the maximally general network
G is {≤12,≤23}. Using the background knowledge K presented in Example 6,

22



we derive that S is equal to the saturation of G with K. Hence, we infer that
the version space has converged. ♦

5.2 Backbone Detection
In general, the theory T returned by Conacq.1 cannot be reduced to a simple
monomial by unit propagation. Even if the theory includes conjunctions of
disjunctions, the version space may have converged because each maximally
general concept is equivalent to the maximally specific concept. This general
case is illustrated in the following example.

Example 8. Consider the variables {x1, x2, x3}, the domain {1, 2, 3, 4, 5}, and
the bias B = B≤,6=,≥. Suppose that the target network is C = {=12,=13,=23}.
To acquire this concept, the learner is given the set E of 7 examples illustrated
in the following table.

〈x1, x2, x3〉 y(e) unit propagated clauses in T
e1 〈1, 1, 1〉 1 ¬a( 6=12) ∧ ¬a( 6=13) ∧ ¬a(6=23)
e2 〈2, 2, 3〉 0 a(≥13) ∨ a(≥23)
e3 〈4, 4, 1〉 0 a(≤13) ∨ a(≤23)
e4 〈1, 2, 2〉 0 a(≥12) ∨ a(≥13)
e5 〈3, 1, 1〉 0 a(≤12) ∨ a(≤13)
e6 〈2, 4, 2〉 0 a(≥12) ∨ a(≤23)
e7 〈2, 1, 2〉 0 a(≤12) ∨ a(≥23)

This training set is sufficient to infer that the version space has converged.
However, all positive clauses in T contain two positive literals. It follows that,
even when using the complete background knowledge K given in Example 6,
unit propagation on T ∧K is not sufficient to detect convergence. ♦

In the above example, unit propagation on T∧K is not sufficient to infer that
any concept in the version space is equivalent to the target constraint network
{=12,=13,=23}. The powerful notion of backbone of a propositional formula can
be used here. A literal belongs to the backbone of a formula if it belongs to all
models of the formula [28]. In the setting of our framework, we say that an atom
a(c) is in the backbone of a theory T with respect to background knowledge K
if a(c) is entailed by T ∧ K, or equivalently, if T ∧ K ∧ ¬a(c) is unsatisfiable.
Once the literals in the backbone are detected, they can be exploited to prove
convergence.

The general version of convergence testing is described in Algorithm 3. As
in Algorithm 2, we start from the maximally specific concept S of the version
space (Line 1). But this time we cannot generate a unique maximally general
concept. So, we use the theory T and the background knowledge K and we
determine whether each constraint in S lies in the backbone of T ∧ K (Lines
2-3). If this is indeed the case, we have converged (Line 4).

23



Algorithm 3: Procedure General Convergence

Input: a satisfiable theory T and background knowledge K
Output: a Boolean reporting convergence or not

1 S ← {c ∈ B | ¬a(c) 6∈ unit−(T )}
2 foreach c ∈ S do
3 if T ∧K ∧ ¬a(c) is satisfiable then return no
4 return yes

Theorem 7 (General Convergence). Given a bias B, background knowledge
K for B, and a training set E, if K is complete for B, then the convergence
problem can be solved using O(|B|) backbone tests.

Proof. Suppose that K is complete, and let T be the clausal theory encoding
CB(E). By Proposition 9, we know that CB(E) has converged if and only if
T ∧ K is uniquely satisfiable. If T is satisfiable, then testing whether T ∧ K
is uniquely satisfiable can be done by checking whether for each constraint
c ∈ B, the positive literal a(c) or negative literal ¬a(c) over c is entailed by
T ∧K. However, since we already know that all negative literals in unit−(T ) are
entailed by T ∧K, we only need to check the constraints c ∈ B for which ¬a(c) /∈
unit−(T ). Furthermore, we also know that for the constraint network S = {c ∈
B | ¬a(c) 6∈ unit−(T )}, the corresponding interpretation φ−1(S) is a model of
T ∧K, because S is an encoding of the maximally specific concept fS ∈ CB(E)
(as stated in Proposition 7), and because S is saturated (as already shown in
the proof of Theorem 6). Therefore, for each c ∈ B such that a(c) /∈ unit−(T ),
we know that T ∧K ∧ a(c) is satisfiable. So, for each of these constraints c, we
only need to check the satisfiability of T ∧K ∧ ¬a(c), which is precisely what
the general convergence procedure performs, using at most |B| − |unit−(T )|
backbone tests.

From a computational point of view, we must keep in mind that the theory
T , coupled with the background knowledge K is neither a Horn (T is dual
Horn) nor a dual Horn (K is Horn) formula. So, testing whether a literal is in
the backbone of T with respect to K is coNP-complete. However, as shown in
our experiments, backbone detection can be very fast under this representation
scheme because both theories T and K efficiently propagate unit clauses.

Example 9. Consider again the scenario of Example 8. After processing the
examples e1, e2 and e4, we remark that a(≥13) is in the backbone of T ∧ K
because K includes the rule a(≥12) ∧ a(≥23) → a(≥13). Analogously, after
processing the examples e3 and e5, a(≤13) is in the backbone of T , because K
includes the rule a(≤12)∧ a(≤23)→ a(≤13). It follows that =13 is in the target
concept. After processing the example e6, a(≤23) is in the backbone of T ∧K
because K includes the rules a(≥12) ∧ a(=13)→ a(≥32) and a(≥32)→ a(≤23).
We similarly deduce that a(≥12) is in the backbone. Dually, after processing

24



the example e7, a(≤12) and a(≥23) are in the backbone of T ∧ K. We have
converged on the concept {=12,=13,=23}. ♦

6 The Active Conacq.2 Algorithm
As specified in Section 3, constraint acquisition is the problem of identifying
a representation of some target concept using a constraint language and user-
supplied information taking the form of examples. In the passive acquisition
setting examined in Section 4, the information given by the user is a training
set E over which the learner has no control. By contrast, in the active acquisition
setting, the learner is allowed to ask membership queries, that is, to select an
assignment x and to ask the user what is the label of x. The user answers yes if x
is a solution of the target problem, and no otherwise. For many concept classes,
the use of membership queries in conjunction with equivalence queries is known
to dramatically accelerate the learning process [11, 12]. Though equivalence
queries are not considered in constraint acquisition, and membership queries
alone are not powerful enough to guarantee convergence in a polynomial number
of queries (Theorem 4), the use of membership queries in conjunction with a
given training set can substantially improve the acquisition process.

In this section, we will assume that the constraint acquisition problem is
realizable, and membership queries are answered correctly. Namely, the target
concept f∗ is representable by a satisfiable constraint network over B, and the
answer y to any query q = x is consistent with f∗, i.e. y = f∗(x). The more
general, yet challenging, “agnostic” constraint acquisition setting, with possible
omissions and errors in answers to membership queries, is deferred to future
research.

Intuitively, a membership query q = x is “informative” or “irredundant” if,
whatever being the user’s answer y, the resulting example 〈x, y〉 added to the
current training set E will ensure to reduce the learner’s version space. The task
of finding such queries is, however, far from easy. In this section, we begin by
a formal characterization of the notion of informative membership query, and
next, we show that the problem of finding such a query is NP-hard. We then
present the Conacq.2 algorithm, an active version of Conacq, which relies on
different strategies for efficiently generating informative queries.

6.1 Informative Queries
Let B be a constraint bias, and E a set of examples. Formally, a membership
query q = x is informative (or irredundant) with respect to CB(E) if and only
if x is not predictable by CB(E). In other words, q is informative if and only if
x is not classified in the same way by all concepts in the version space.

Example 10. [Redundant Query] Consider the vocabulary defined over the
variables {x1, x2, x3}, the domain {1, 2, 3, 4}, and the bias B = B≤,6=,≥. Given
the positive example e+ = 〈1, 2, 3〉, the associated clausal theory T will contain
¬a(≥12), ¬a(≥13), and ¬a(≥23). Asking the user to classify x = 〈1, 2, 4〉 is

25



redundant because all constraints rejecting it are already forbidden by T . In
other words, any concept in the version space classifies x as positive. ♦

The next property is a variant of Proposition 6 which will be useful in ac-
tive constraint acquisition. Given an assignment x over D|X|, we denote by
κ[T ](x) the subset obtained by removing from κ(x) all constraints that appear
as negated literals in T , that is, κ[T ](x) = κ(x)\{ci | ¬a(ci) ∈ unit−(T )}. With
a slight abuse of terminology, we say that κ[T ](x) is subsumed by a clause α ∈ T
if constraints(α) ⊆ κ[T ](x).

Proposition 10. Given a constraint bias B, and a training set E, any mem-
bership query q = x is informative if and only if κ[T ](x) is neither empty nor
subsumed by any clause in T , where T is the reduced clausal theory of CB(E).

Proof. By Proposition 6, x is not predictable by CB(E) if and only if both T0
and T1 are satisfiable, where T0 and T1 are the clausal encodings of CB(E ∪
{〈x, 0〉}) and CB(E ∪ {〈x, 1〉}), respectively. Let α be the positive clause∨
{a(c) | c ∈ κ(x)}. Then, T0 is satisfiable if and only if T ∧ α is satisfi-

able, which is equivalent to state that κ[T ](x) is nonempty. Moreover, T1 is
satisfiable if and only if T does not entail α, which is equivalent to state that
κ[T ](x) does not cover any clause in the reduced theory T .

Example 11. [Irredundant Query] Consider again Example 10 in which ex-
ample e+ has been processed, yielding T = {¬a(≥12),¬a(≥13),¬a(≥23)}. The
query q = 〈1, 2, 2〉 is irredundant because κ[T ](q) is neither empty nor a superset
of any clause in T , and κ[T ](q) = κ(q) \ {≥12,≥13,≥23} = {6=23}. On the one
hand, if the query q is classified as positive, the clauses ¬a(≥12), ¬a(≥13) and
¬a( 6=23) are added to T because κ(q) = {≥12,≥13, 6=23}, which yields the theory
T ∧ ¬a( 6=23). On the other hand, if the query q is classified as negative, the
clause a(≥12) ∨ a(≥13) ∨ a( 6=23) is added to T , which by unit reduction yields
the theory T ∧ a(6=23). Regardless of the classification of q, something new was
learned. ♦

Though irredundant queries ensure that a nonempty portion of the version
space is eliminated, some queries are “more” informative than others, by reduc-
ing larger portions of the hypothesis space. Technically, our Conacq architec-
ture does not have access to the size of version spaces, but instead to a logical
representation of them, for which the number of models is an approximation
of the number of consistent concepts. From this viewpoint, the quality of a
membership query is assessed here by the number of models it eliminates from
the clausal representation of the version space. By ‖T‖, we denote the number
of distinct interpretations which satisfy a theory T , i.e. ‖T‖ = |models(T )|.

Definition 17. Let B be a constraint bias, E a set of examples, and T be the
clausal encoding of CB(E). Given a real θ in [0, 1], a membership query q = x
is called weakly (resp. strongly) θ-informative with respect to CB(E) if

0 < ‖Ty‖ ≤ (1− θ)‖T‖

26



for some (resp. all) y ∈ {0, 1}, where Ty is the encoding of CB(E ∪ {〈x, y〉}).

In other words, a membership query q = x is weakly θ-informative if, for at
least one of the possible answers y ∈ {0, 1}, the resulting theory Ty obtained by
updating the version space with 〈x, y〉 eliminates at least θ‖T‖ models from the
original encoding T of CB(E). By contrast, q = x is strongly θ-informative if,
whatever being the user’s answer y, ‖T‖ will be reduced by a factor of at least
θ. Since ‖Ty‖ must be positive, any (weakly or strongly) θ-informative query
with θ ∈ [0, 1] is irredundant.

Proposition 11. Let B be a constraint bias, E be a set of examples, and T be
the clausal encoding of CB(E). Then, for any membership query q = x such
that κ[T ](x) does not cover any clause in T , if |κ[T ](x)| = t then q is weakly
(1− 1/2t)-informative, and if |κ[T ](x)| = 1 then q is strongly 1/2-informative.

Proof. Let y be the answer to the query q = x. If y = 1 then, by construction,
T1 = T∧{¬a(c) : c ∈ κ[T ](x)}. Since κ[T ](x) and the set of constraints occurring
in T are disjoint, it follows that ‖T1‖ = 1/2t‖T‖, and hence, q is weakly (1−1/2t)-
informative. Furthermore, if t = 1 then let c be the unique constraint occurring
in κ[T ](x). Because T0 = T ∧a(c), T1 = T ∧¬a(c), and c does not occur in T , it
follows that ‖T0‖ = ‖T1‖ = 1/2‖T‖, and hence, q is strongly 1/2-informative.

In light of the above result, we shall examine two strategies for generat-
ing membership queries, namely, the optimistic strategy, and the optimal-in-
expectation strategy.

Optimistic Strategy. Intuitively, an optimistic query captures a large infor-
mation gain when it is classified “in our favor”, but conveys very little informa-
tion when it is classified otherwise. Given x ∈ D|X|, the larger |κ[T ](x)|, the
more optimistic the query q = x. By denoting t = |κ[T ](x)|, we know by Propo-
sition 11 that q is weakly (1− 1/2t)-informative. Specifically, if q is classified as
positive, the resulting example prunes a large portion of models(T ) by assigning
|κ[T ](x)| literals in T to 0; if q is classified as negative, it will only prune a tiny
portion of models(T ) by just expanding T with the clause

∨
{a(c) | c ∈ κ[T ](x)}.

The next example illustrates the acquisition process with an optimistic strategy.

Example 12. [Optimistic Queries] Suppose we wish to acquire the constraint
network specified in Example 5, namely, the target network involves four vari-
ables, {x1, . . . , x4} defined over the domain D = {1, 2, 3, 4}, a single constraint
x1 6= x4. Using the context defined in Example 5, the bias is B = B≤, 6=,≥, and
the training set is given by the three examples e+

1 = 〈1, 2, 3, 4〉, e+
2 = 〈4, 3, 2, 1〉

and e−3 = 〈1, 1, 1, 1〉. The unique positive clause in T is a(6=12)∨a(6=13)∨a(6=14
)∨ a( 6=23)∨ a(6=24)∨ a(6=34). All other atoms in T are fixed to 0 because of e+

1
and e+

2 . Here, q4 = 〈1, 1, 1, 3〉 and q5 = 〈1, 1, 3, 1〉 are two optimistic queries for
T . κ[T ](q4) = {6=12, 6=13, 6=23} and κ[T ](q5) = {6=12, 6=14, 6=24} are both of size
3. According to the target network, q4 will be classified positive by the user.
Clauses ¬a(6=12), ¬a( 6=13) and ¬a(6=23) are then added to T and its number
of models is divided by 23. Consider q5 instead of q4: according to the target

27



Table 1: The Optimal-in-expectation query generation strategy of Example 13.
E y κ[T ](q) T

e1, e2, e3 1,1,0 T12 ∧ (a(6=12) ∨ a(6=13) ∨ a(6=14) ∨ a(6=23) ∨ a(6=24) ∨ a( 6=34))
q4 = 〈1, 1, 2, 3〉 1 {6=12} T12 ∧ (¬a(6=12)) ∧ (a(6=13) ∨ a(6=14) ∨ a(6=23) ∨ a(6=24) ∨ a(6=34))
q5 = 〈2, 1, 1, 3〉 1 {6=23} T12 ∧ (¬a(6=12)) ∧ (¬a( 6=23)) ∧ (a( 6=13) ∨ a( 6=14) ∨ a( 6=24) ∨ a( 6=34))
q6 = 〈2, 3, 1, 1〉 1 {6=34} T12 ∧ (¬a(6=12)) ∧ (¬a( 6=23)) ∧ (¬a(6=34)) ∧ (a(6=13) ∨ a(6=14) ∨ a(6=24))
q7 = 〈1, 3, 1, 2〉 1 {6=13} T12 ∧ (¬a(6=12)) ∧ (¬a( 6=23)) ∧ (¬a(6=34)) ∧ (¬a(6=13)) ∧ (a(6=14) ∨ a(6=24))
q8 = 〈2, 1, 3, 1〉 1 {6=24} T12 ∧ (¬a(6=12)) ∧ (¬a( 6=23)) ∧ (¬a(6=34)) ∧ (¬a(6=13)) ∧ (¬a( 6=24)) ∧ (a( 6=14))

network, it is classified negative by the user. The clause a( 6=12)∨a(6=14)∨a( 6=24)
is added to T and its number of models only decreases of 1/23. This example
reveals how unbalanced optimistic queries can be. ♦

Optimal-in-expectation Strategy. As observed in [12], a membership query
is optimal if it reduces the size of the version space in half regardless of how the
user classifies it. The aforementioned optimistic queries are clearly not optimal
in this sense. A query q = x is called optimal-in-expectation if κ[T ](x) = 1.
Since we are guaranteed that one literal will be fixed in T , whatever being the
choice of y, q is strongly 1/2-informative. The next example illustrates a se-
quence of optimal-in-expectation queries that are sufficient for establishing the
version space convergence.

Example 13. [Optimal-in-Expectation Queries] Consider again the target net-
work x1 6= x4, using a vocabulary involving four variables x1, . . . , x4, the do-
main D = {1, 2, 3, 4}, and the bias B = B≤,6=,≥. Using the training set
E = {e+

1 , e
+
2 , e
−
3 }, the unique positive clause in T is α = a( 6=12)∨a(6=13)∨a(6=14

) ∨ a(6=23) ∨ a(6=24) ∨ a(6=34). All other atoms in T are set to 0. Using T12 as
an abbreviation of ¬a(≤12) ∧ . . . ∧ ¬a(≤34) ∧ ¬a(≥12) ∧ . . .¬a(≥34), we can
write T = T12 ∧ α. Table 1 captures a sequence of queries which are optimal-
in-expectation for CB(E). The first column specifies q, the second column
indicates the user response y, the third column defines κ[T ](q), and the final col-
umn captures the update of T . For the query q4, we know that a(6=12) will be
fixed to a unit clause in the resulting theory, whatever being the user response.
By repeating this invariant to all other queries, we are ensured that the version
space will converge after processing q8. ♦

In Example 13, we found a sequence of optimal-in-expectation queries for
establishing convergence. However, it is not always possible to generate such
queries, due to the interdependency between constraints in the bias. Example
14 illustrates the impossibility to generate an optimal-in-expectation query.

Example 14. [No Possible Optimal-in-Expectation Query] Consider the acqui-
sition problem, using B = B≤,6=,≥, and with x1 = x2 = x3 as a target network.
After processing an initial positive example (for instance e+

1 = 〈2, 2, 2〉), the
possible constraints in the version space are ≤12,≤13,≤23,≥12,≥13,≥23. Here,
every membership query q has either a κ[T ](q) of size 3 (if no variables equal),
or a κ[T ](q) of size 2 (if two variables equal), or a κ[T ](q) of size 0 (if all three

28



variables equal). Therefore, no query with a κ[T ](q) of size 1 can be gener-
ated. Interdependency between constraints prevents us from generating such
examples. ♦

Detecting whether a query strategy is feasible, or not, is intrinsically related
to the “query generation” problem, examined below.

6.2 Query Generation Problem
The membership queries q of interest in this study only differ by the number
t = |κ[T ](q)| of constraints which are not rejected by the clausal theory T . For
optimal-in-expectation queries, we search for an assignment such that t = 1,
whereas for optimistic queries, we search for an assignment with a larger t.
When T already contains a non-unary clause α, we may want to shrink α, thus
searching for an assignment such that κ[T ](q) ⊂ constraints(α). The query
generation problem is formulated as follows.

Definition 18 (Query Generation Problem). Given a bias B, a training set
E, an integer t, (and optionally a non-unary positive clause α in T ), the query
generation problem is to find a query q such that κ[T ](q) does not cover any
clause in T (resp. κ[T ](q) ⊂ constraints(α)) and |κ[T ](q)| = t. Deciding whether
such a query q exists is called the query existence problem.

Proposition 12 (Intractability of query generation). The query existence prob-
lem is NP-complete for any value of t, and thus the generation problem is NP-
hard for any value of t.

Proof. Membership. Given a bias B, a theory T , (optionally a non-unary pos-
itive clause α in T ), and an expected size t, checking that a given query q is a
solution to the query generation problem is polynomial. Building κ(q) is linear
in |B|. From κ(q), building κ[T ](q), checking that κ[T ](q) does not cover any
clause in T (resp. checking that κ[T ](q) ⊂ constraints(α)), and checking that
κ[T ](q) is of size t are all linear in |κ(q)| · |T |.

Completeness. We reduce the problem of coloring a graph with three colors
(3Col) to the problem of the existence of a query q with κ[T ](q) = t. Let (N,E)
be a graph, where N is a set of n vertices and E a set of edges. vi refers to
the ith vertex and eij to the edge between vertices vi and vj . We transform the
instance of graph coloring problem into the following query generation prob-
lem. The vocabulary is composed of a set of variables X = {xi | vi ∈ N} ∪
{xn+1, . . . , xn+t+1}, and a domain D such that D(xi) = {1, 2, 3},∀i ∈ [1..n],
and D(xi) = {1},∀i ∈ [n + 1..n + t + 1]. The constraint bias B is the set
{6=ij | eij ∈ E} ∪ {6=i,i+1| i ∈ [n + 1..n + t]}. (The clausal theory T could op-
tionally contain the clause α =

∨
6=ij∈B a( 6=ij). This could have happened after

receiving the negative example 〈1, 1, . . . , 1, 1〉.) Suppose we want to generate a
query q with t (and optionally α) as input. Such a query will necessarily be
an assignment on X that violates 6=i,i+1 for all i ∈ {n + 1, · · · , n + t} because
D(xi) = D(xi+1) = {1}. Hence, the query will be any assignment that satisfies

29



Algorithm 4: The Conacq.2 Algorithm

Input: a bias B, background knowledge K , a strategy Strategy
Output: a clausal theory T encoding the target network

1 T ← ∅ ; converged← false; N ← ∅
2 while ¬converged do
3 q ← QueryGeneration(B, T,K,N,Strategy)
4 if q = nil then converged← true
5 else
6 if Ask(q) = no then T ← T ∧

(∨
c∈κ(q) a(c)

)
7 else T ← T ∧

∧
c∈κ(q) ¬a(c)

8 return T

all other constraints in B because we want the query to violate exactly t con-
straints. Now, by construction, an assignment on X \ {xn+1, . . . , xn+t+1} that
satisfies all constraints in B corresponds to a 3-coloring of (N,E). Thus, the
query existence problem has a solution if and only if the graph is 3-colorable.
Our transformation is polynomial in the size of (N,E). Therefore, the query
existence problem is NP-complete and the query generation problem is NP-
hard.

6.3 Description of Conacq.2
Based on a computational analysis of query generation, we are now ready to
examine an active version of Conacq.

As presented in Algorithm 4, the Conacq.2 algorithm takes as input a
constraint bias B, background knowledge K for B, and a query generation
strategy used by function QueryGeneration (Algorithm 5) for the generation
of queries. Each time we discover an interdependency among constraints that is
not captured by the background knowledge K, we encode the interdependency
as a logical nogood that is stored in a set N to avoid repeatedly discovering
it. The algorithm returns a clausal theory T that encodes a constraint network
representing the target concept.

Conacq.2 starts from an empty theory T (Line 1) and iteratively expands
it by an example 〈x, y〉 formed by the query q = x generated in Line 3, and the
user response y supplied in Line 6. The query generation process is implemented
by the function QueryGeneration, which takes as input the bias B, the
current clausal theory T , the given background knowledge K, the current set of
nogoods N , and the given strategy Strategy. If there exist irredundant queries,
QueryGeneration returns an irredundant query q following Strategy as much
as possible, that is, with |κ[T ](q)| as close as possible to the specified t. If there
is no irredundant query, this means that we have reached convergence and we
return the theory encoding the target network (Lines 4 and 8). Otherwise, the

30



query q is supplied to the user, who answers by yes (1) or no (0). If q is classified
as negative by the user, we must discard from the version space all concepts that
accept q. This is done by expanding the theory with the clause consisting of
all literals a(c) with c in κ(q) (Line 6). Dually, if q is classified as positive, we
must discard from the version space all concepts that reject q. This is done
by expanding the theory with a unit clause ¬a(c) for each constraint c in κ(q)
(Line 7).

6.4 Implementing our Strategies
The technique we propose to generate a query q is based on the following basic
idea: define a constraint network expressing the strategy, that is, whose solutions
are queries following the strategy. Based on Section 6.1, optimistic strategies
and optimal-in-expectation strategies are both characterized by the number
t = |κ[T ](q)| of constraints which are not inconsistent with (any concept of) the
version space. To generate a query q that violates a number t of such constraints,
we build a constraint network that forces t of those constraints to be violated.
To be able to build this constraint network, we assume that for any constraint
c ∈ B, the complement c of c is available for building the constraint network.
Thanks to the bounded arity assumption, the relation associated with c does not
require an exponential space. As seen in Example 14 and Proposition 12, it may
be the case that, due to interdependency between constraints, there does not
exist any network in the version space that has a solution s with |κ[T ](s)| = t.
We then must allow for some flexibility ε in the number of constraints rejecting
a query.

We implement the query generation problem in function QueryGenera-
tion (Algorithm 5). The goal in function QueryGeneration is to find a good
query following the given strategy. The algorithm starts by initializing the query
q to nil and the clause α to the empty set (Line 1). Then, it enters the main
loop in Line 2 if T is not a monomial. (Otherwise it immediately returns any
irredundant query generated in Line 19.) The loop starts by testing whether a
clause α is currently processed (i.e., α non-empty) or not. If α is empty and
there still exist non-unary clauses in T that have not yet been marked, Line 4
reads such a (necessarily positive) clause in T . (The meaning of marked clauses
is explained later.) We should bear in mind that a positive clause in T represents
the set of constraints that reject a negative example already processed. So, we
are sure that at least one of the constraints in constraints(α) must belong to the
target network. Line 5 initializes the flexibility parameter ε to 0. ε measures
how much we accept to deviate from the strategy. That is, a generated query
q has to be such that |t − κ[T ](q)| ≤ ε. The expected number t of constraints
in the κ[T ](q) of the query q we will generate is set to the value corresponding
to the strategy we use. For instance, in the optimal-in-expectation strategy, t
is always set to 1.

Once ε, α, and t are set, if α is non-empty the purpose of the loop is to find a
query q that will allow us to reduce the size of α. In Line 6 the Boolean splittable
is computed. splittable will tell us if ε is small enough to produce a query that

31



Algorithm 5: QueryGeneration
Input: the bias B, the clausal theory T , background knowledge K, a
nogood set N , and a strategy Strategy
Output: a query q

1 q ← nil; α← ∅
2 while (T is not a monomial) and (q = nil) do
3 if (α = ∅) and (T contains non-unary unmarked clauses) then
4 read a non-unary unmarked clause α in T
5 ε← 0; Assign t depending on Strategy
6 splittable← (α 6= ∅) ∧ ((t+ ε < |α|) ∨ (t− ε > 0))
7 F ←BuildFormula (splittable, T, α, t, ε)
8 if models(F ∧K ∧N) = ∅ then
9 if splittable then ε← ε+ 1

10 else T ← T ∪ {a(c) | a(c) ∈ α} \ {α}; α← ∅
11 else
12 select I ∈ models(F ∧K ∧N)
13 if Sol(ϕ(I)) = ∅ then
14 foreach CS ∈ ConflictSets(ϕ(I)) do
15 N ← N ∪ {

∨
c∈CS ¬a(c)}

16 else
17 select any q in sol(ϕ(I))
18 if (¬splittable) and (α 6= ∅) then mark α
19 if q = nil then q ← IrredundantQuery(T )
20 return q

will reduce the size of α. In Line 7, the function BuildFormula is called
(see Algorithm 6). If splittable is true, this function returns a pseudo-Boolean
formula F such that any solution s of any network corresponding to a model
of F has a κ[T ](s) of size t ± ε subsuming α. If α is non-splittable, constraints
outside α can belong to κ[T ](s). If α is empty, some constraints not yet decided
as member or non-member of the target network must belong to κ[T ](s). The
formula F is defined on the atoms of T plus all atoms a(c) such that c ∈ B and
c /∈ B. Once the formula F is generated, it is solved in Line 8. If F ∧K ∧ N
is unsatisfiable, and α is still splittable, we must increase the flexibility ε (Line
9). If F ∧K ∧ N is unsatisfiable and α is non-splittable, this means that our
current background knowledge K and nogoods N are sufficient to prove that
α cannot be split because of the interdependency among its own constraints
and independently of constraints outside α. Then, all literals corresponding to
constraints of α are put in T , α is removed from T and is reset (Line 10) so that
at the next iteration, a new clause will be selected.

In Line 12 a model I of F ∧ K ∧ N is selected. If the constraint network
ϕ(I) has no solution (Line 13), this means that an interdependency between
constraints of ϕ(I) was not caught by K and the current stored nogoods N .

32



Algorithm 6: BuildFormula
Input: a Boolean splittable, the clausal theory T , a clause α, an
expected size t and the allowed flexibility ε
Output: a formula F

1 if α 6= ∅ then
2 F ← T \ {{¬a(c)} | c ∈ constraints(α)}
3 foreach c ∈ B | {¬a(c)} /∈ T do
4 if splittable ∧ c /∈ constraints(α) ∧ c /∈ constraints(α) then
5 F ← F ∧ (a(c))
6 if c ∈ constraints(α) then F ← F ∧ (a(c) ∨ a(c))
7 if splittable then
8 lower ← max(|α| − t− ε, 1)
9 upper ← min(|α| − t+ ε, |α| − 1)

10 else lower ← 1;upper ← |α| − 1
11 F ← F ∧ atLeast(lower, α) ∧ atMost(upper, α)
12 else F ← T \ {{¬a(c)} | c ∈ B, a(c) unset} ∪ {

∨
c∈B,a(c) unset a(c)}

13 return F

Lines 14-15 extract some conflicting sets of constraints (not necessarily all)2

from ϕ(I) and add the corresponding nogood clauses to N to avoid repeatedly
generating models I ′ with this hidden inconsistency in ϕ(I ′). Finally, if ϕ(I)
has solutions, such a solution q is selected in Line 17 and returned as the query
to be asked to the user (Line 20). If α was non-splittable (and non-empty),
Line 18 marks it as non-splittable to avoid selecting it again in a later call to
QueryGeneration.

We now present function BuildFormula (Algorithm 6). As already said
above, BuildFormula takes as input a Boolean splittable, a theory T , a clause
α, an expected size t and an allowed flexibility ε. If α is not empty, the formula
F is initialized to T minus the literals discarding the negation c of constraints
c occurring in constraints(α) (Line 2). The idea is to build a formula F that
only allows for a subset of the constraints in α to be violated. To monitor this
number, we must be able to force a constraint or the negation of a constraint
in constraints(α). This is why we remove the literals ¬a(c) for constraints c in
constraints(α). For each literal a(c) not already negated in T (Line 3), if we
are in the splittable mode and if c and c are both outside constraints(α), we
force a(c) to be true (Line 5). Hence, we force the constraint c to belong to
the network ϕ(I) for any model I of F , so that any solution s of ϕ(I) will be
rejected only by constraints in constraints(α) or by constraints already negated
in T (so no longer in the version space). Thus, κ[T ](s) ⊆ constraints(α). This
will ensure that the query generated cannot extend α. If non-splittable, we do
not force constraints outside constraints(α) to be satisfied.

2If we do not return all the conflict sets in ϕ(I), the only negative effect is the possibility
to generate again a network ϕ(I′) containing one of these missed conflict sets.

33



We now have to force the size of κ[T ](s) to be in the right interval. In
the splittable mode, if a(c) belongs to α we add the clause (a(c) ∨ a(c)) to F
to ensure that either c or its complementary constraint c is in the resulting
network (Line 6). c is required because ¬a(c) only expresses the absence of the
constraint c. ¬a(c) is not sufficient to force c to be violated. We now just add
two pseudo-Boolean constraints that ensure that the number of constraints from
constraints(α) violated by solutions of ϕ(I) will be in the interval [t− ε .. t+ ε].
This is done by forcing at least |α| − t− ε and at most |α| − t+ ε literals from
α to be set to true (lines 8–9 and Line 11). The ‘min’ and ‘max’ ensure we
avoid trivial cases (i.e., no literal or all literals from α set to true). In the non-
splittable mode, we just set the lower and upper bounds to the smallest and
greatest non-trivial values (Line 10).

If α is empty, this means that we just want to generate a formula whose
models will represent networks whose solutions are irredundant queries. The
formula F is thus built in such a way that it satisfies T and violates at least one
of the constraints not yet decided as member or not of the target network. For
such constraints c we do not put ¬a(c) in F to be able to force violation of one
such constraint c. Line 13 returns F .

We finally present function IrredundantQuery (Algorithm 7). Function
IrredundantQuery returns an irredundant query if one exists. This means
that IrredundantQuery answers the convergence problem when it returns
nil. As we want our technique to work whatever the background knowledge K
is complete or not, we cannot apply Theorem 7 and thus cannot work at the level
of the logical theory T to prove convergence. Fortunately, IrredundantQuery
is called only when T is a monomial, which makes the test much easier. Line
1 builds the network CL of constraints that have been learned as members of
the target network. In lines 2 to 4, the function iteratively tries to randomly
generate an irredundant query during a short amount of time that is sufficient
in most cases to find one. If the time limit is reached, we enter a systematic
way of generating such an irredundant query. Line 5 stores in the set RuledOut
all constraints that have been ruled out of the version space. Then, for each
constraint c that is neither ruled out nor set in CL, Line 7 tries to find an
assignment that satisfies CL whereas violating c. If such an assignment s exists,
it is returned as an irredundant query (Line 8). If no such assignment exists,
this means that c is implied by CL and a(c) can be added to T without changing
the version space (Line 9). If there does not exist any constraint that can be
violated whereas satisfying CL this means that T has converged. The function
returns nil (Line 10).

Lemma 2. QueryGeneration terminates and returns an irredundant query
if there is one, nil otherwise.

Proof. Termination. Termination is based on the fact that the loop of Line 2
cannot run forever. The loop starts by selecting an unmarked clause α if it
exists (Line 4). Once a given α selected (or α still being the empty set), the
loop necessarily executes one of the lines 9, 10, 15, or 17. We show that none

34



Algorithm 7: Function IrredundantQuery

Input: a monomial T
Output: an irredundant query q if it exists

1 CL ← {c ∈ B | a(c) ∈ T}
2 while no more than 0.1 second has elapsed do
3 s← any assignment in sol(CL)
4 if (κ[T ](s) 6= ∅) then return s

5 RuledOut← {c ∈ B | ¬a(c) ∈ T}
6 foreach c ∈ B \ (CL ∪RuledOut) do
7 s← any assignment in sol(CL ∪ {c})
8 if s 6= nil then return s
9 else T ← T ∪ {a(c)}

10 return nil

of these instructions can be repeated forever for a given α.
Let us first suppose α 6= ∅. As α is of finite size and ε is bounded above

by |α| (Line 6), Line 9 cannot be executed an infinite number of times. Line 10
resets α to ∅ so it can be executed only once. In Line 15, a nogood is added to
the set N of nogoods. This nogood is necessarily new, otherwise I would not
have been a model of F ∧K ∧N . As nogoods are defined on a finite number of
atoms (atoms a(c) and a(c) for each c in B), we cannot add an infinite number
of nogoods without making N unsatisfiable, and thus no longer entering Line
15. Line 17 is executed only once as it breaks the condition of the loop.

Let us now consider the case where α = ∅. We show that lines 9 and 10
cannot be executed. If α = ∅, function BuildFormula has executed its Line
12. When entering BuildFormula, T was not a monomial. Hence, there exists
at least one atom a(c) which is unset (that is, T ∧K ∧N has two models I and
I ′ with I[a(c)] = 0 and I ′[a(c)] = 1).3 Thus, the only clause in F which is not
in T (added in Line 12) is non-empty. Furthermore, the atoms of this clause are
unset in F by construction. As a result, the extra clause added to F in Line
12 cannot lead to inconsistency of F ∧ K ∧ N . We are thus guaranteed that
F ∧K∧N is satisfiable and QueryGeneration goes directly to Line 12. Lines
15 and 17 cannot be executed an infinite number of times for the same reason
as the case α 6= ∅.

Finally, we have to prove that a given α cannot be selected several times
in Line 4. Once a given α selected, the only way to stop processing it is by
executing Line 10 or Line 17. If Line 10 is executed, we know α was not empty.
Adding its literals to T makes it subsumed by T , and thus it can no longer
appear in T . If Line 17 is executed, we have two cases. The first case is that
we are in the splittable mode. By construction of F , the query q is such that
κ[T ](q) ⊂ constraints(α). This means that whatever the answer of the user, a

3We have to keep in mind that T ∧ K ∧ N is maintained backboned.

35



clause will be generated by Conacq.2 that will subsume α, thus discarding α
from T . The second case, non-splittable mode, means that Line 18 is executed
and α is marked, so that it will never be selected again in Line 4.

Correctness. QueryGeneration returns a query q generated in Line 17 or
the result of IrredundantQuery in Line 19. If a query q has been generated
in Line 17, by construction of formula F in function BuildFormula, q satisfies
at least one constraint of each positive clause of T . In addition, it violates at
least one constraint of α if α is not empty, or it violates at least one unset
constraint. Thus, q is irredundant. If a query q has been generated in Line
19, it is irredundant by construction (see function IrredundantQuery). If no
irredundant query has been found by IrredundantQuery, this means that
none exists, and nil is returned.

Theorem 8. Conacq.2 is correct and terminates.

Proof. Correctness. At each non-terminal execution of the main loop, (Line 2),
a new example (q, y) is generated, where q is the query returned by BuildFor-
mula, and y is the user’s response given at Line 6. Since we took the assumption
that the constraint acquisition setting is realizable, and membership queries are
answered correctly, (q, y) is consistent with the the target concept, and hence,
CB(E) cannot collapse. By Definition 6, we also know that the clauses gen-
erated at Line 6 or at Line 7 yield a correct representation of CB(E). So, by
Theorem 5, the invariant of the main loop is that T is always satisfiable.

The set N only contains nogoods that represent inconsistent sets of con-
straints. Hence, N cannot lead to the deletion of any concept from the version
space, except the inconsistent concept (which, by assumption, is not the target
concept.) Thus, if K is a correct background knowledge, for any concept fC
consistent with the examples, ϕ−1(C) is a model of T ∧K∧N . Now, by Lemma
2, Line 4 sets the Boolean converged to true if and only if there does not exist
any irredundant query. So, the version space represented by T has converged.

Termination. By Lemma 2 we know that the query q generated by Build-
Formula is irredundant. So, by Proposition 10, the clauses added to T in lines
6 and 7 are not subsumed by T . As T involves a finite number of atoms, we
cannot add new clauses forever without making T unsatisfiable. However, as an
invariant of the main loop, we know that T is always satisfiable. This implies
that the number of iterations of the main loop is finite.

Now that we have presented the algorithm generating queries, we see that
implementing our strategies is just a matter of setting t to the right value. In
the optimal-in-expectation strategy, t must be set to 1 for every query. This
corresponds to near-misses in machine learning ([35]), dividing by 2 the size of
the version space whatever the answer from the user. In the optimistic strategy,
we can set t to any value greater than 1 and smaller than the size of the clause
α we want to shrink.

36



6.5 Example of the Query Generation Process
We now illustrate the query generation process on a small example.

Example 15. [Query Generation] We want to acquire the constraint net-
work involving variables, x1, . . . , x3, with domains D(x1) = D(x2) = D(x3) =
{1, 2, 3, 4} and constraints CT = {x1 ≤ x2, x2 6= x3}, with B = B≤, 6=,≥ and
K = ∅. In the table below, the first column reports the queries generated by
the query generation procedure, the second column reports the classification of
the query, and the third column is the update of T .

E y T
q1 = 〈2, 2, 4〉 1 ¬a( 6=12),¬a(≥13),¬a(≥23)
q2 = 〈2, 1, 4〉 0 a(≤12),¬a(6=12),¬a(≥13),¬a(≥23)
q3 = 〈1, 1, 1〉 0 a(≤12),¬a(6=12),¬a(≥13),¬a(≥23), a( 6=13) ∨ a(6=23)
q4 = 〈1, 2, 2〉 0 a(≤12),¬a(6=12),¬a(≥13),¬a(≥23), a( 6=13) ∨ a(6=23), a(≥12) ∨ a( 6=23)
q5 = 〈1, 2, 3〉 1 a(≤12),¬a(6=12),¬a(≥12),¬a(≥13), a( 6=23),¬a(≥23)
q6 = 〈1, 2, 1〉 1 a(≤12),¬a(6=12),¬a(≥12),¬a(6=13),¬a(≥13),¬a(≤23), a( 6=23),¬a(≥23)
q7 = 〈2, 3, 1〉 1 a(≤12),¬a(6=12),¬a(≥12),¬a(≤13),¬a(6=13),¬a(≥13),¬a(≤23), a( 6=23),¬a(≥23)

At each execution of the main loop of Conacq.2, Line 3 calls the function
QueryGeneration for producing a new query.

• At the beginning T is empty. The query generation process directly goes
to Line 19 of QueryGeneration and calls the function Irredundan-
tQuery. As T is empty, CL is also empty and an arbitrary assignment
is returned (Line 4). Let q1 = 〈2, 2, 4〉 be this first query. We have
κ(q1) = {6=12,≥13,≥23}. As q1 is classified positive by the user, we add
the clauses ¬a(6=12), ¬a(≥13), and ¬a(≥23) to T in Line 7 of Conacq.2.

• At the second call to QueryGeneration, T is still a monomial so we
again directly call IrredundantQuery, which will return a query non-
redundant with q1. Let q2 = 〈2, 1, 4〉 be that second query. We have
κ(q2) = {≤12,≥13,≥23}, and κ[T ](q2) = {≤12}. As q2 is classified negative
by the user, we add the clause a(≤12) to T in Line 6 of Conacq.2.

• Again T is a monomial and by the same process, the query q3 = 〈1, 1, 1〉
is returned. We have κ(q3) = {6=12, 6=13, 6=23}, and κ[T ](q3) = {6=13, 6=23}.
As q3 is classified negative by the user, we add the clause a( 6=13)∨ a(6=23)
to T .

• At this point T is no longer a monomial. QueryGeneration selects
the non-unary clause α = (a(6=13) ∨ a( 6=23)) in Line 4 and calls function
BuildFormula in Line 7 with the Boolean splittable set to true. In
Line 2, function BuildFormula builds a formula F that contains all
clauses of T . (Note that it is here irrelevant to remove literals a(c) as
our language does not contain any negation of constraints.) In addition,
F forces all atoms which are neither already negated nor belonging to α
to be true (Line 5). For each constraint c involved in α, F forces either
a(c) or a(c). This will be used by the cardinality constraint in Line 11
to ensure that the number of constraints satisfying or rejecting a solution

37



of a network built from a model of F follows the strategy. In our case,
whatever the strategy is, t = 1 because |α| = 2. Thus, F is equal to {a(≤12
), a(≥12), a(≤13), a(≤23), a( 6=13)∨ a(=23), a(=13)∨ a(6=23), exactly(1, α)}.
A model of F is returned in Line 12 of QueryGeneration. But whatever
this model is, ϕ(I) is inconsistent because we cannot have x1 = x2, and x3
equal to one of the variables x1, x2 and different from the other. (Observe
that if K had contained the rules a(≤ij) ∧ a(≥ij) ∧ a(6=ik) → a(6=jk),
F ∧K would have been unsatisfiable.) After two similar executions of the
loop, Line 15 of QueryGeneration has added the conflict sets {a(≤12
), a(≥12), a( 6=13), a(=23)} and {a(≤12), a(≥12), a(=13), a( 6=23)} to N . We
loop to Line 2, selecting again α and entering BuildFormula. The
same formula is produced, but this time Line 8 of QueryGeneration
detects that F ∧ N is inconsistent. ε is incremented and we loop again.
splittable is flipped to false and BuildFormula is called. When splittable
is false, we do not force all atoms outside α to be satisfied. Thus, F ∧
N is satisfiable and Line 12 of QueryGeneration produces a model I
that necessarily contains either {a(≤12), a( 6=13), a(=23)} or {a(≤12), a(=13
), a( 6=23)}. Suppose I contains the former. ϕ(I) has solutions, and one of
them, q4 = 〈1, 2, 2〉, is returned. Before returning q4, α is marked in Line
18 of QueryGeneration, not to be selected again for splitting it. q4 is
classified as negative and a new clause a(≥12) ∨ a( 6=23) is added to T .

• At the next loop, the clause a(6=13) ∨ a( 6=23) being marked, this is the
clause α = a(≥12) ∨ a( 6=23) which is selected. BuildFormula works
as usual, forcing all non-set literals to true except those in α, for which
exactly one has to be satisfied. F is satisfiable, and its unique model
leads to a satisfiable network. Let q5 = 〈1, 2, 3〉 be the query generated.
κ[T ](q5) = {≥12}. q5 is classified positive. As a result, a(≥12) is set to
false. By unit propagation, a(6=23) is set to true and CL is equal to the
target network.

• T is again a monomial. The two next loops of QueryGeneration call
IrredundantQuery, which produces two, necessarily positive (because
CL = CT ), queries, q6 = 〈1, 2, 1〉 and q7 = 〈2, 4, 1〉, leading to the unit
literals ¬a( 6=13), ¬a(≤23) and ¬a(≤13).

• At this point IrredundantQuery is called a last time but cannot pro-
duce any irredundant query as all constraints in B \ CL have been ruled
out (Line 6). Conacq.2 returns convergence.

♦

7 Experimental Evaluation
We made some experiments to evaluate and compare the algorithms presented
in this paper. We implemented the passive Conacq.1 and the active Conacq.2

38



algorithms. We first present the benchmark problems we used for our experi-
ments and we give a brief description on how we obtain a background knowledge
for each problem instance. Then, we report the results of acquiring these prob-
lems with Conacq.1 and Conacq.2. We evaluate the impact of the background
knowledge and of the different strategies proposed in Section 6. Our tests were
conducted on an Intel Core i7 @ 2.9 GHz with 8 Gb of RAM.

7.1 Benchmark Problems
Random. We generated binary random target networks rand_n_d_m with n
variables, domains of size d, and m binary constraints.
Schur’s lemma problem. (prob015 in [21]) We considered the Schur’s lemma
problem. The problem is to put n balls labeled 1 to n into three boxes so that
for any triple of balls (x, y, z) with x+ y = z, not all are in the same box.
Golomb Rulers. (prob006 in [21]) The problem is to find a ruler where the
distance between any two marks is different from that between any other two
marks. The target network is encoded with n variables corresponding to the n
marks, and constraints of varying arity. For our experiments, we selected the
instances from 4-marks to 8-marks rulers.
Sudoku. We used the Sudoku logic puzzle with 4 × 4 and 9 × 9 grids. The
grid must be filled with numbers from 1 to 4 (resp. 1 to 9) in such a way that
all rows, all columns and the 4 (resp. 9) non-overlapping 2 × 2 (resp. 3 × 3)
squares contain the numbers 1 to 4 (resp. 1 to 9). The target network of the
Sudoku has 16 variables (resp. 81 variables) with domains of size 4 (resp. 9)
and 56 (resp. 810) binary 6= constraints on rows, columns and squares.

For all these problems we used biases containing the basic arithmetic bi-
nary relations ≤, <, 6=, =, ≥, and >, plus, in some cases, quaternary con-
straints |xi − xj | 6= |xk − xl|, |xi − xj | = |xk − xl|, allEqual(xi, xj , xk, xl),
notAllEqual(xi, xj , xk, xl), allDiff(xi, xj , xk, xl), notAllDiff(xi, xj , xk, xl), and
all ternary constraints obtained when two indices among {i, j, k, l} are the same.
This gives us biases of size 80 for the smallest problems to more than 6000 for
the largest. For each problem, the bias used is able to express the problem.

7.2 Background Knowledge Generation
We implemented a generator for the background knowledge to be used in Conacq.
Generating a complete background knowledge is generally too expensive in
time and space as it requires generating a set of rules potentially exponen-
tial in space (see Section 5.1). Given a language Γ, our generator, called
gen_rules(#V ars, UB,maxSize), generates all first order rules involving a
number #V ars of variables, with domains [0, .., UB], and maxSize constraints.
For instance, with Γ = {≤, 6=,≥}, gen_rules(3, UB, 3) would produce the rule
a(≤ij) ∧ a(≤jk) → a(≤ik) whatever UB is. To ensure that generated rules
are correct, the set [0, .., UB] must be a superset of the domain D for all vo-
cabularies 〈X,D〉 on which we want to apply the rule. For instance, the rule

39



Table 2: Background knowledge generation using gen_rules generator

Problems K: #V ars UB maxSize #rules time (sec.)
rand_3_5_2 K1: 3 10 3 212 7.95
rand_5_6_10 K2: 4 10 3 752 218.41

schurs_6 K3: 4 10 2 56 8.83
schurs_8 K4: 4 10 3 104 31.13
schurs_10 K5: 5 10 3 230 371.77
golomb_4 K6: 3 20 3 32 7.98
golomb_6 K7: 4 40 3 48 320.95
golomb_8 K8: 5 70 3 48 2192.89
sudoku_4x4 K9: 4 10 3 54 8.13
sudoku_9x9 K10: 4 10 4 114 15.62

a( 6=ij) ∧ a( 6=jk) → a(=ik) generated by gen_rules(3, 1, 3) is no longer correct
when applied on the domain D = {0, 1, 2}. Given a vocabulary 〈X,D〉, the
background knowledge K is obtained by taking each rule in gen_rules and by
generating all ground instances of the rule on all subsets of #V ars variables in
X. Such a K is correct background knowledge.

Table 2 reports the obtained background knowledge Ki for each problem in-
stance using our gen_rules(#V ars, UB,maxSize) generator. The last column
reports the CPU time consumed to generate Ki. Take schurs_6 as an example.
gen_rules(4, 10, 2) takes 8.83 seconds to produce K3, a background knowledge
of 56 ground instances of rules.

7.3 Conacq.1: Passive Learning
Table 3 reports the evaluation of passive learning using Conacq.1. For each
problem instance, we ran 100 times the learning process. All number reported in
the table are averages of these 100 runs. For each run, we randomly generated a
training set E of 100 examples. The line denoted by (1+100) represents the case
where we process an extra positive example before processing E. The gray line
represents the case where we use a background knowledge (Ki of Table 2). Each
line of the table reports the size |E| of the training set (smaller than 100 when
convergence was reached before processing all examples), the number of positive
examples |E+| and negative examples |E−|, and the size of the target network
CT . We also report the sizes of the learned network CL and the most specific
network S after all examples have been processed. S contains all constraints c
from the bias such that ¬a(c) does not belong to T . The column S/CT reports
the ratio of solutions of S to CT . |EC | represents the number of examples
needed to reach convergence. For obtaining |EC | we have run Conacq.1 with
900 additional examples after the 100 first examples have been processed. The
last column reports the average time in seconds needed to process an example

40



(average over the 100 first examples).
The first observation is the short time needed by Conacq.1 to process an

example from the training set. If we except schurs_10 that is more expensive,
it goes from 0.1 seconds for the smallest problems to 2 seconds for the largest
(the sudoku 9× 9 and its 810 constraints). These CPU times include backbone
detection in the theory T representing the version space each time an example
is processed.

The second thing we observe in Table 3 is that without a background knowl-
edge, Conacq.1 is never able to converge to the target network. This is not
surprising as we only work on the clausal theory T . If the target network con-
tains an implied constraint c, taking any model of T and flipping a(c) from 0 to
1 or 1 to 0 will remain a model, thus preventing convergence (see Algorithm 3).
Nevertheless, we observe that the most specific network S is often quite close or
equivalent to the target network (S/CT ≈ 100%). For instance, on golomb_4,
only two constraints were learned after 100 examples, but the most specific net-
work S contains 24 constraints that are equivalent to the target network CT
(S/CT = 100%). Providing a positive example at the beginning increases even
more this behavior, especially on problems which are critically constrained.

The third observation we can make in Table 3 is that providing Conacq.1
with some background knowledge often helps a lot to reach convergence. Take
for instance schurs_6. Without background knowledge, Conacq.1 is able to
learn a CL of 6 constraints in 1+100 examples, and the most specific network
S has 9 constraints. By adding a background knowledge, we reach convergence
after 70 examples. In this case the three missing constraints were implied by
CL. On schurs_8 the scenario is almost the same. After 1+100 examples,
Conacq.1 with some background knowledge has learned 8 more constraints
than without. It has not yet converged but will do after 123 examples. Half of
our problems have converged before 1000 examples.

7.4 Conacq.2: Active Learning
We present some results on active learning using Conacq.2. In our implemen-
tation of Conacq.2 we made the following choices. In Line 4 of Algorithm 5,
we always select the clause α of minimum size. In Line 14 of Algorithm 5, the
function ConflictSets returns a single conflict set. In the optimistic strategy,
the parameter t is set to b|α|/2c. The following two subsections are respectively
devoted to active learning without background knowledge and to active learning
using some background knowledge.

7.4.1 Conacq.2 Without Background Knowledge

Table 4 displays results on active learning using Conacq.2 without any back-
ground knowledge. We give a comparison between the two query generation
strategies, optimal-in-expectation and optimistic, described in Section 6. For
each strategy and for each problem instance, we report the size |CT | of the tar-
get network, the total number of queries #q, and the numbers #yes and #no

41



Table 3: Passive learning using Conacq.1
Instance |E| |E+| |E−| |CT | |CL| |S| S/CT |EC | time

rand_3_5_2 100 13 87 2 0 5 100% — 0.14
1+100 14 87 2 0 5 100% — 0.13

K1 1+20 4 17 2 5 5 100% 21 0.04

rand_5_6_10 100 0 100 10 0 60 0% — 0.26
1+100 1 100 10 0 30 36% — 0.16

K2 1+100 1 100 10 0 30 36% 818 0.94

schurs_6 100 55 45 6 6 9 100% — 0.11
1+100 56 45 6 6 9 100% — 0.11

K3 1+69 42 28 6 9 9 100% 70 0.11

schurs_8 100 31 69 12 11 22 51% — 0.16
1+100 32 69 12 11 21 55% — 0.16

K4 1+100 32 69 12 19 21 55% 123 0.81

schurs_10 100 5 95 20 0 66 1% — 8.48
1+100 6 95 20 0 36 2% — 8.12

K5 1+100 6 95 20 0 36 2% 323 10.97

golomb_4 100 1 99 18 2 24 100% — 0.16
1+100 2 99 18 2 24 100% — 0.16

K6 1+100 2 99 18 2 24 100% >1000 0.22

golomb_6 100 0 100 110 0 240 0% — 0.27
1+100 1 100 110 0 120 100% — 0.19

K7 1+100 1 100 110 0 120 100% >1000 0.37

golomb_8 100 0 100 385 0 798 0% — 0.17
1+100 1 100 385 0 399 100% — 0.27

K8 1+100 1 100 385 0 399 100% >1000 0.99

sudoku_4x4 100 0 100 56 0 240 0% — 0.42
1+100 1 100 56 0 120 8% — 0.59

K9 1+100 1 100 56 0 120 8% >1000 0.76

sudoku_9x9 100 0 100 810 0 6480 0% — 1.72
1+100 1 100 810 0 3240 0% — 1.96

K10 1+100 1 100 810 0 3240 0% >1000 2.03

42



Table 4: Active learning using Conacq.2 without background knowledge
Optimal-in-expectation Optimistic

|CT | #q #yes #no time #q #yes #no time
rand_3_5_2 2 11 3 8 0.12 12 4 8 0.17
rand_5_6_10 10 20 3 17 0.37 68 3 65 0.24

schurs_6 6 53 30 23 0.16 37 19 18 0.14
schurs_8 12 134 33 101 4.71 110 28 82 4.73
schurs_10 20 342 57 285 7.13 263 48 215 6.98
golomb_4 18 95 3 92 0.05 108 2 106 0.05
golomb_6 110 337 1 336 0.51 370 1 369 0.76
golomb_8 385 993 1 992 11.24 1030 1 1029 17.13

sudoku_4× 4 56 >1000 — — — >1000 — — —
sudoku_9× 9 810 >1000 — — — >1000 — — —

of positive and negative answers. We also report the time in seconds needed to
generate and to process a query. (We obviously do not count the time needed
by the user to reply. This effort is measured by #q.)

The first observation that we can draw from Table 4 is that generating a
query generally takes more time than processing an example in Conacq.1. Nev-
ertheless, these times remain reasonable for a non-optimized implementation.
They go from 0.05 to 11 seconds for the optimal-in-expectation strategy.

The second observation is that the number of queries asked by Conacq.2 is
dramatically reduced compared to Conacq.1 (regardless of the query generation
strategy that is used). For all instances of Random, Schur’s Lemma and Golomb
rulers, Conacq.2 converges to the target network in less than 1000 queries
whereas Conacq.1 without background knowledge could not converge. For
instance, for golomb_4, Conacq.1 has learned only 2 constraints with 100
examples, whereas Conacq.2 converges to the target network with only 95
queries. Unfortunately, we also observe that Conacq.2, like Conacq.1, is not
able to learn Sudoku puzzles with 1000 queries.

When we compare the two query generation approaches among themselves,
we see that the optimistic one is the best on under-constrained networks (e.g.,
Schur’s Lemma). This confirms that when the probability of a yes answer is high
enough, choosing a query that violates several constraints is a good strategy.
However, on critically constrained problems, where the density of solutions is
low, the optimal-in-expectation strategy becomes the best.

Figure 1 shows the impact of Conacq.1 and Conacq.2 on the version space
for golomb_4. At the initial state, the learned network CL is empty and the
most specific S contains the whole bias (i.e., all possible constraints). Providing
Conacq.1 and Conacq.2 with a positive example at the beginning divides
the version space by half. Conacq.1 learns 4 constraints when processing the
526 first examples. Thereafter, the version space remains stable in size (|S| =
24, |CL| = 4) until we have processed the 1000 examples in the training set.
In Conacq.2, the learning process is much more efficient. S is reduced to the
target network in 75 queries and convergence is proved in 95 queries.

43



Figure 1: Conacq.1 and Conacq.2 learning golomb_4.

7.4.2 Conacq.2 with Background Knowledge

Table 5 reports our experiments on Conacq.2 using a background knowledge.
The strategy for query generation is optimal-in-expectation. In addition to the
size of the learned network |CL|, the number of queries (#q, #yes, #no) and
the average time needed for generating and processing a query, we report the
background knowledge Ki of Table 2 we used.

The first observation is that, in Conacq.2, the use of a background knowl-
edge does not reduce the number of queries required for convergence. This is
explained by the test of convergence in Conacq.2, which is no longer done on
the clausal theory T but on the actual constraint networks. Hence, implied con-
straints become irrelevant. (The small variations in number of queries between
Conacq.2 with and without background knowledge are due to the difference in
queries generated.)

The second information we can draw from Table 5 is that the use of back-
ground knowledge speeds up significantly the generation of queries. It is, for
instance, between 3 and 4 times faster on schurs_10 or golomb_8. The reason
for the speed up in generating queries is that rules in K prevent some of the fails
in Line 13 of function QueryGeneration. Instead of repeatedly generating
unsatisfiable constraint networks, a rule allows to directly detect unsatisfiability
in the clausal formula (Line 8), avoiding the generation of a potentially large
number of nogoods.

Finally, we observe that despite background knowledge, we are still unable
to learn the sudoku puzzles. The reason for this bad behavior is probably that
our background knowledges K9 and K10 do not contain rules useful for learning
the cliques of disequalities of the sudoku.

7.5 Discussion
In this section we have provided basic experiments on a bench of toy problems.
Not surprisingly, Conacq.1 often requires a huge number of examples to con-
verge to the target network. The good news are that even when Conacq.1

44



Table 5: Active learning using Conacq.2 with background knowledge

instances |CT | K #q #yes #no time
rand_3_5_2 2 K1 10 3 7 0.11
rand_5_6_10 10 K2 21 2 19 0.15
schurs_6 6 K3 54 28 26 0.07
schurs_8 12 K4 128 30 98 1.32
schurs_10 20 K5 337 55 282 2.10
golomb_4 18 K6 98 3 95 0.05
golomb_6 110 K7 328 2 326 0.55
golomb_8 385 K8 994 1 993 3.15

sudoku_4× 4 56 K9 >1000 — — —
sudoku_9× 9 810 K10 >1000 — — —

has not converged, the most specific network in the version space is often quite
close to the target network. Conacq.2, by its active behavior, reduces a lot the
number of examples needed to converge to the target network. Once the user
has produced the effort to learn her target network, we can wonder about the
re-usability of this network. By definition of our framework, the network will be
usable as long as the user wants to solve instances of the problem on the same
set of variables and with domains included in the domain of the vocabulary
used to learn. For instance, once the sudoku network has been learned, any
sudoku grid can be solved with this network, by simply specifying the singleton
domains associated with the clues. However, one can object that even if re-
usable, these numbers of queries remain too large if a human user is in the loop.
This weakness of our basic constraint acquisition framework has led to several
subsequent works based on or inspired by the Conacq approach. These works
are briefly discussed in the next section. Their common denominator is to use
as much background knowledge as possible or to allow for more complex queries
asked to the user. Background knowledge is a well-known technique in machine
learning consisting in using properties of the problem to learn to reduce the bias
as much as possible so that the version space to explore becomes small enough.
Complex queries is another way to speed up convergence by allowing a more
informative communication between the user and the learner so as to capture
more information Complex queries is another way to speed up convergence by
allowing a more informative communication between the user and the learner
so as to capture more information.

8 Related Work
It is instructive to compare our constraint acquisition approaches with the classi-
cal learning approaches advocated in the machine learning literature. Notably,
in the Probably Approximately Correct (PAC) learning introduced by Valiant

45



[36], the learner is merely passive and interacts with an oracle that supplies
examples independently at random according to a fixed distribution. In this
setting, an ε-good hypothesis is a concept for which the probability of misclas-
sifying an example supplied by the oracle is at most ε. Very roughly, the goal of
a PAC learning algorithm is to provide, with high probability (1− δ), an ε-good
hypothesis. In our passive acquisition, the user can be viewed as an example or-
acle. Yet, the essential difference is that she is not required to supply examples
according to a fixed distribution. The distribution is allowed to change during
the acquisition process.

In [4], Beldiceanu and Simonis have proposed ModelSeeker, a passive
constraint acquisition system. ModelSeeker is devoted to problems having a
regular structure, such as matrix models. In ModelSeeker the bias contains
global constraint from the global constraints catalog ([3]) whose scopes are the
rows, the columns, or any other structural property ModelSeeker can capture.
ModelSeeker also provides an efficient ranking technique that returns the
best candidate constraints representing the pattern occurring on a particular
set of variables (e.g., variables composing a row). As opposed to our passive
learning approach, ModelSeeker handles positive examples only. Its very
specific bias allows it to quickly find candidate models when the problem has
a good structure. The counterpart is that it misses any constraint that does
not belong to one of the structural patterns it is able to handle. Finally, its
efficiency also comes from the fact that it does not prove convergence. It provides
candidate constraints. It is the user who selects the constraints that fit the best
the target problem.

In [25], Lallouet et al. have proposed a passive constraint acquisition system
based on inductive logic programming. Their system is able to learn constraints
from a given language that classify correctly the examples. To overcome the
problem of the huge space of possible candidate constraint networks, their sys-
tem requires the structure of the constraint network to be put in the background
knowledge. They illustrate their approach on graph coloring problems. The pos-
itive/negative examples (i.e., correct and wrong colorations) are provided with
their logical description using a set of given predicates. The background knowl-
edge already contains all edges of the graph. These assumptions on the provided
background knowledge make the approach questionable.

In [6], Bessiere et al. have proposed QuAcq, an active learner which, in ad-
dition to membership queries, is able to ask the user to classify partial queries.
A partial query is an assignment that does not involve all variables. This is thus
an extra condition on the capabilities of the user: Even if she is not able to artic-
ulate the constraints of her problem, she is able to decide if partial assignments
of variables violate some requirements or not. The significant advantage of us-
ing partial queries is that our Theorem 4 about the impossibility to guarantee
the existence of a polynomial sequence of queries to converge no longer holds.
For instance, given a negative example, Conacq produces a non-unary positive
clause on the candidate constraints for rejecting that example. Using partial
queries, QuAcq is able, from the same negative example, to return exactly a
constraint of the target network in a number of (partial) queries logarithmic

46



in the number of variables. The overall number of queries to converge is thus
polynomial.

In [33], the approach used in Conacq.2 has been extended to allow the user
to provide arguments. Given a target network C, an argument arg is a set of
constraints and/or variable assignments that the user labels as positive (i.e.,
C ∪ arg is satisfiable), negative (i.e., C ∪ arg is unsatisfiable), sufficient (i.e.,
arg |= C), or necessary (i.e., C |= arg). Such arguments allow the constraint ac-
quisition process to converge more rapidly (with less examples) than Conacq.2.
However, it puts more of the effort of constraint acquisition on the shoulders of
the user. For instance, deciding that an argument is positive is NP-complete,
deciding that an argument is negative/sufficient/necessary is coNP-complete.
In Conacq.2, classifying a query as positive/negative is linear in the number
of constraints in the target network C.

Finally, we would like to point out to the reader that what we call constraint
acquisition in this paper is not comparable to works presented for instance in
[10, 26]. These two papers propose techniques, which, given a model for a
constraint problem, learn implied (global) constraints that can enhance the
model (in [10]) or replace some simpler constraints of the model (in [26]). The
goal is not to acquire a constraint model for the problem the user has in mind,
but instead, to acquire a better model than the one the user proposed. In
this case, better means a model with (global) constraints that are expected to
propagate more or faster during search. This does not mean that Conacq
cannot be viewed as a reformulation tool. We could indeed initialize Conacq
with a bias containing only constraints for which we know efficient propagators,
and let it interact with the user’s model instead of the user directly. The learned
network would then hopefully be more efficient to solve than the original one.

9 Conclusion
In this paper we have presented the basic architecture for acquiring constraint
networks from examples classified by the user. We have formally defined the
main constraint acquisition problems related to passive and active acquisition.
We have closed several central complexity results that were still open. For in-
stance, we have shown that consistency of the version space is polynomial to
decide whereas convergence is intractable. We have also shown that constraint
networks are not learnable in general with a polynomial number of membership
queries. We have then proposed Conacq, a system for acquiring constraint
networks that uses a clausal representation of the version space. Conacq is
presented in a passive version (Conacq.1), where the learner is only provided
a pool of examples, and an active version (Conacq.2), where the learner asks
membership queries to the user. The clausal representation of the version space
allows Conacq to perform operations on the version space efficiently. For in-
stance, the clausal representation is used to implement query generation strate-
gies in active acquisition. Finally, we have compared experimentally the passive
and active versions of Conacq on a set of toy problems.

47



Acknowledgments.

This work was supported by a Ulysses Travel Grant from Enterprise Ireland and
CNRS (Grant Number FR/2003/022). This work also received support from
Science Foundation Ireland under Grant 00/PI.1/C075, from Agence Nationale
de la Recherche under projects CANAR (ANR-06-BLAN-0383-02) and BR4CP
(ANR-11-BS02-008), and from the European Union under project ICON (FP7-
284715). The Insight Centre for Data Analytics at UCC is supported by Science
Foundation Ireland through Grant No. SFI/12/RC/2289.

References
[1] D. Angluin. Queries revisited. Theoretical Computer Science, 313:175–194,

2004.

[2] K. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[3] N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint
catalogue: Past, present and future. Constraints, 12(1):21–62, 2007.

[4] N. Beldiceanu and H. Simonis. A model seeker: Extracting global con-
straint models from positive examples. In Proceedings of the Seventeenth
International Conference on Principles and Practice of Constraint Pro-
gramming (CP’12), LNCS 7514, Springer–Verlag, pages 141–157, Quebec
City, Canada, 2012.

[5] C. Bessiere, R. Coletta, E. Freuder, and B. O’Sullivan. Leveraging the
learning power of examples in automated constraint acquisition. In Pro-
ceedings CP’04, pages 123–137, Toronto, Canada, 2004.

[6] C. Bessiere, R. Coletta, E. Hebrard, G. Katsirelos, N. Lazaar, N. Naro-
dytska, C.G. Quimper, and T. Walsh. Constraint acquisition via partial
queries. In Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (IJCAI’13), pages 475–481, Beijing, China, 2013.

[7] C. Bessiere, R. Coletta, F. Koriche, and B. O’Sullivan. A SAT-based version
space algorithm for acquiring constraint satisfaction problems. In Proceed-
ings of the European Conference on Machine Learning (ECML’05), LNAI
3720, Springer–Verlag, pages 23–34, Porto, Portugal, 2005.

[8] C. Bessiere, R. Coletta, F. Koriche, and B. O’Sullivan. Acquiring con-
straint networks using a SAT-based version space algorithm. In Proceedings
AAAI’06, pages 1565–1568, Boston MA, 2006. Nectar paper.

[9] C. Bessiere, R. Coletta, B O’Sullivan, and M. Paulin. Query-driven con-
straint acquisition. In Proceedings IJCAI’07, pages 44–49, Hyderabad, In-
dia, 2007.

48



[10] C. Bessiere, R. Coletta, and T. Petit. Learning implied global constraints.
In Proceedings IJCAI’07, pages 50–55, Hyderabad, India, 2007.

[11] A. Blum and S. Rudich. Fast learning of k-term dnf formulas with queries.
Journal of Computer and System Sciences, 51(3):367–373, 1995.

[12] N. H. Bshouty, S. A. Goldman, T. R. Hancock, and S. Matar. Asking
questions to minimize errors. J. Comput. Syst. Sci., 52(2):268–286, 1996.

[13] H. K. Büning and T. Lettman. Propositional Logic: Decution and Algo-
rithms. Cambridge Tracts in Theoretical Computer Science, 48. Cambridge,
1999.

[14] D. Cohen and P. Jeavons. Tractable constraint languages. In R. Dechter,
editor, Constraint Processing. Elsevier, 2003.

[15] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, San
Francisco, CA, 2003.

[16] R. Dechter and P. van Beek. Local and global relational consistency. The-
oretical Computer Science, 173(1):283–308, 1997.

[17] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. Journal of Logic Programming,
1(3):267–284, 1984.

[18] P. Flach. Machine Learning: The Art and Science of Algorithms that Make
Sense of Data. Cambridge, 2012.

[19] E. Freuder. Modeling: The final frontier. In 1st International Confer-
ence on the Practical Applications of Constraint Technologies and Logic
Programming, pages 15–21, London, UK, 1999. Invited Talk.

[20] A. M. Frisch, C. Jefferson, B. Martínez Hernández, and I. Miguel. The rules
of constraint modelling. In 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI’05), pages 109–116, Edinburgh, Scotland, 2005.
Professional Book Center.

[21] I.P. Gent and T. Walsh. Csplib: a benchmark library for constraints.
http://www.csplib.org/, 1999.

[22] C.A. Gunter, T-H. Ngair, P. Panangaden, and D. Subramanian. The com-
mon order-theoretic structure of version spaces and atms’s. In 9th National
Conference on Artificial Intelligence (AAAI), pages 500–505, 1991.

[23] D. Haussler. Quantifying inductive bias: AI learning algorithms and
Valiant’s learning framework. Artificial Intelligence, 36:177–221, 1988.

[24] H. Hirsh, N. Mishra, and L. Pitt. Version spaces and the consistency
problem. Artificial Intelligence, 156(2):115–138, 2004.

49



[25] A. Lallouet, M. Lopez, L. Martin, and C. Vrain. On learning constraint
problems. In Proceedings of the 22nd IEEE International Conference
on Tools for Artificial Intelligence (IEEE-ICTAI’10), pages 45–52, Arras,
France, 2010.

[26] K. Leo, C. Mears, G. Tack, and M. Garcia de la Banda. Globalizing con-
straint models. In Proceedings of the Eighteenth International Conference
on Principles and Practice of Constraint Programming (CP’13), LNCS
8124, Springer–Verlag, pages 432–447, Uppsala, Sweden, 2013.

[27] T. Mitchell. Generalization as search. AI Journal, 18(2):203–226, 1982.

[28] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Ttroyansky.
Determining computational complexity from characteristic ’phase transi-
tion’. Nature, 400:133–137, 1999.

[29] M. Paulin, C. Bessiere, and J. Sallantin. Automatic design of robot be-
haviors through constraint network acquisition. In Proceedings of the 20th
IEEE International Conference on Tools for Artificial Intelligence (IEEE-
ICTAI’08), pages 275–282, Dayton OH, 2008.

[30] L. De Raedt. Logical and Relational Learning. Cognitive Technologies.
Springer, 2008.

[31] L. De Readt and L. Dehaspe. Clasual discovery. Machine Learning, 26:99–
146, 1997.

[32] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.
Foundations of Artificial Intelligence. Elsevier, 2006.

[33] K.M. Shchekotykhin and G. Friedrich. Argumentation based constraint
acquisition. In Proceedings of the Ninth IEEE International Conference on
Data Mining (ICDM’09), pages 476–482, Miami, Florida, 2009.

[34] B. Smith. Modelling. In F. Rossi, P. van Beek, and T. Walsh, editors,
Handbook of Constraint Programming, chapter 21. Elsevier, 2006.

[35] B. D. Smith and P. S. Rosenbloom. Incremental non-backtracking focus-
ing: A polynomially bounded generalization algorithm for version spaces.
In Proceedings of the 8th National Conference on Artificial Intelligence
(AAAI’90), pages 848–853, Boston, MA, 1990. AAAI Press / The MIT
Press.

[36] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

50


