D. Angluin, Queries revisited, Theoretical Computer Science, vol.313, pp.175-194, 2004.

K. Apt, Principles of Constraint Programming, 2003.

N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, Global constraint catalogue: Past, present and future, Constraints, vol.12, issue.1, pp.21-62, 2007.

N. Beldiceanu and H. Simonis, A model seeker: Extracting global constraint models from positive examples, Proceedings of the Seventeenth International Conference on Principles and Practice of Constraint Programming (CP'12), vol.7514, pp.141-157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00754341

C. Bessiere, R. Coletta, E. Freuder, and B. O'sullivan, Leveraging the learning power of examples in automated constraint acquisition, Proceedings CP'04, pp.123-137, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108774

C. Bessiere, R. Coletta, E. Hebrard, G. Katsirelos, N. Lazaar et al., Constraint acquisition via partial queries, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI'13), pp.475-481, 2013.
URL : https://hal.archives-ouvertes.fr/lirmm-00830325

C. Bessiere, R. Coletta, F. Koriche, and B. O'sullivan, A SAT-based version space algorithm for acquiring constraint satisfaction problems, Proceedings of the European Conference on Machine Learning (ECML'05), vol.3720, pp.23-34, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00106044

C. Bessiere, R. Coletta, F. Koriche, and B. O'sullivan, Acquiring constraint networks using a SAT-based version space algorithm, Proceedings AAAI'06, pp.1565-1568, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00135484

C. Bessiere, R. Coletta, B. O'sullivan, and M. Paulin, Query-driven constraint acquisition, Proceedings IJCAI'07, pp.44-49, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00195905

C. Bessiere, R. Coletta, and T. Petit, Learning implied global constraints, Proceedings IJCAI'07, pp.50-55, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00195896

A. Blum and S. Rudich, Fast learning of k-term dnf formulas with queries, Journal of Computer and System Sciences, vol.51, issue.3, pp.367-373, 1995.

N. H. Bshouty, S. A. Goldman, T. R. Hancock, and S. Matar, Asking questions to minimize errors, J. Comput. Syst. Sci, vol.52, issue.2, pp.268-286, 1996.

H. K. Büning and T. Lettman, Propositional Logic: Decution and Algorithms. Cambridge Tracts in Theoretical Computer Science, 48. Cambridge, 1999.

D. Cohen and P. Jeavons, Tractable constraint languages, Constraint Processing, 2003.

R. Dechter, Constraint Processing, 2003.

R. Dechter and P. Van-beek, Local and global relational consistency. Theoretical Computer Science, vol.173, pp.283-308, 1997.

W. F. Dowling and J. H. Gallier, Linear-time algorithms for testing the satisfiability of propositional horn formulae, Journal of Logic Programming, vol.1, issue.3, pp.267-284, 1984.

P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, 2012.

E. Freuder, Modeling: The final frontier, 1st International Conference on the Practical Applications of Constraint Technologies and Logic Programming, pp.15-21, 1999.

A. M. Frisch, C. Jefferson, B. M. Hernández, and I. Miguel, The rules of constraint modelling, 19th International Joint Conference on Artificial Intelligence (IJCAI'05), pp.109-116, 2005.

I. P. Gent and T. Walsh, Csplib: a benchmark library for constraints, 1999.

C. A. Gunter, T. Ngair, P. Panangaden, and D. Subramanian, The common order-theoretic structure of version spaces and atms's, 9th National Conference on Artificial Intelligence (AAAI), pp.500-505, 1991.

D. Haussler, Quantifying inductive bias: AI learning algorithms and Valiant's learning framework, Artificial Intelligence, vol.36, pp.177-221, 1988.

H. Hirsh, N. Mishra, and L. Pitt, Version spaces and the consistency problem, Artificial Intelligence, vol.156, issue.2, pp.115-138, 2004.

A. Lallouet, M. Lopez, L. Martin, and C. Vrain, On learning constraint problems, Proceedings of the 22nd IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI'10), pp.45-52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01016891

K. Leo, C. Mears, G. Tack, M. Garcia, and . Banda, Globalizing constraint models, Proceedings of the Eighteenth International Conference on Principles and Practice of Constraint Programming (CP'13), vol.8124, pp.432-447, 2013.

T. Mitchell, Generalization as search, AI Journal, vol.18, issue.2, pp.203-226, 1982.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Ttroyansky, Determining computational complexity from characteristic 'phase transition', Nature, vol.400, pp.133-137, 1999.

M. Paulin, C. Bessiere, and J. Sallantin, Automatic design of robot behaviors through constraint network acquisition, Proceedings of the 20th IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI'08), pp.275-282, 2008.

L. D. Raedt, Logical and Relational Learning. Cognitive Technologies, 2008.

L. De-readt and L. Dehaspe, Clasual discovery. Machine Learning, vol.26, pp.99-146, 1997.

F. Rossi, P. Van-beek, and T. Walsh, Handbook of Constraint Programming. Foundations of Artificial Intelligence, 2006.

K. M. Shchekotykhin and G. Friedrich, Argumentation based constraint acquisition, Proceedings of the Ninth IEEE International Conference on Data Mining (ICDM'09), pp.476-482, 2009.

B. Smith, Modelling, Handbook of Constraint Programming, chapter 21, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00631613

B. D. Smith and P. S. Rosenbloom, Incremental non-backtracking focusing: A polynomially bounded generalization algorithm for version spaces, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI'90), pp.848-853, 1990.

L. G. Valiant, A theory of the learnable, Communications of the ACM, vol.27, issue.11, pp.1134-1142, 1984.