Mohamed Wahbi
email: mohamed.wahbi@insight-centre.org

Younes Mechqrane
email: ymechqrane@gmail.com

Christian Bessiere
email: bessiere@lirmm.fr

Kenneth N Brown
email: ken.brown@insight-centre.org

A General Framework for Reordering Agents Asynchronously in Distributed CSP

Reordering agents during search is an essential component of the efficiency of solving a distributed constraint satisfaction problem. Termination values have been recently proposed as a way to simulate the min-domain dynamic variable ordering heuristic. The use of termination values allows the greatest flexibility in reordering agents dynamically while keeping polynomial space. In this paper, we propose a general framework based on termination values for reordering agents asynchronously. The termination values are generalized to represent various heuristics other than min-domain. Our general framework is sound, complete, terminates and has a polynomial space complexity. We implemented several variable ordering heuristics that are well-known in centralized CSPs but could not until now be applied to the distributed setting. Our empirical study shows the significance of our framework compared to state-of-the-art asynchronous dynamic ordering algorithms for solving distributed CSP.

Introduction

Distributed artificial intelligence involves numerous combinatorial problems where multiple entities, called agents, need to cooperate in order to find a consistent combination of actions. Agents have to achieve the combination in a distributed manner and without any centralization. Examples of such problems are: traffic light synchronization [START_REF] Junges | Evaluating the performance of dcop algorithms in a real world, dynamic problem[END_REF], truck task coordination [START_REF] Ottens | Coordination agent plans trough distributed constraint optimization[END_REF], target tracking in distributed sensor networks [START_REF] Jung | Argumentation as Distributed Constraint Satisfaction: Applications and Results[END_REF], distributed scheduling [START_REF] Maheswaran | Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling[END_REF], distributed planning [START_REF] Bonnet-Torrés | Multiply-constrained dcop for distributed planning and scheduling[END_REF], distributed resource allocation [START_REF] Petcu | A Value Ordering Heuristic for Distributed Resource Allocation[END_REF], distributed vehicle routing [START_REF] Léauté | Coordinating Logistics Operations with Privacy Guarantees[END_REF], etc. These problems were successfully formalized using the distributed constraint satisfaction problem (DisCSP) paradigm.

DisCSP are composed of multiple agents, each owning its local constraint network. Variables in different agents are connected by constraints. Agents must assign values to their variables distributively so that all constraints are satisfied. To achieve this goal, agents assign values to their variables that satisfy their own constraints, and exchange messages to satisfy constraints with variables owned by other agents. During the last two decades, many algorithms have been designed for solving DisCSP. Most of these algorithms assume a total (priority) order on agents that is static. However, it is known from centralized CSPs that reordering variables dynamically during search improves the efficiency of the search procedure. Moreover, reordering agents in DisCSP may be required in various applications (e.g., security [START_REF] Silaghi | Generalized English Auctions by Relaxation in Dynamic Distributed CSPs with Private Constraints[END_REF]).

Agile Asynchronous Backtracking (AgileABT) [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF] is a polynomial space asynchronous algorithm that is able to reorder all agents in the problem. AgileABT is based on the notion of termination value, a tuple of agents' domain sizes. Besides implementing the min-domain ([START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF]) dynamic variable ordering heuristic (DVO), the termination value acts as a timestamp for the orders exchanged by agents during search. Since the termination of AgileABT depends on the form of the termination value, the use of other forms of termination values (implementing other heuristics) may directly affect the termination of the algorithm.

In this paper, we generalize AgileABT to get a new framework AgileABT(α), in which α represents any measure used to implement a DVO (e.g., domain size in min-domain). AgileABT(α) is sound and complete. We define a simple condition on the measure α which guarantees that AgileABT(α) terminates. If the computation of the measure α also has polynomial space complexity, then AgileABT(α) has polynomial space complexity. This allows us to implement for the first time in Distributed CSP a wide variety of DVOs that have been studied in centralized CSP. To illustrate this, we implement a number of DVOs, including dom/deg [START_REF] Bessiere | MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems[END_REF] and dom/wdeg [START_REF] Lecoutre | Backjump-Based Techniques versus Conflict-Directed Heuristics[END_REF], and evaluate their performance on benchmark DisCSP problems.

The paper is organized as follows. Section 2 gives the necessary background on distributed CSP and dynamic reordering materials. It then discusses the Agile Asynchronous Backtracking algorithm for solving distributed CSP. Our general framework is presented and analyzed in Section 3. We show our empirical results in Section 4 and report related work in Section 5. Finally, we conclude in Section 6.

Background

Distributed Constraint Satisfaction Problem

The Distributed Constraint Satisfaction Problem (DisCSP) is a 5-tuple (A, X , D, C, ϕ), where A is a set of agents {A 1 , . . . , A p }, X is a set of variables {x 1 , . . . , x n }, D = {D 1 , . . . , D n } is a set of domains, where D i is the initial set of possible values which may be assigned to variable x i , C is a set of constraints, and ϕ : X → A is a function specifying an agent to control each variable. During a solution process, only the agent which controls a variable can assign it a value. A constraint C(X) ∈ C, on the ordered subset of variables X = (x j1 , . . . ,

x j k), is C(X) ⊆ D j1 × • • • × D j k ,
and specifies the tuples of values which may be assigned simultaneously to the variables in X. For this paper, we restrict attention to binary constraints. We denote by C i ⊆ C all constraints that involve x i . A solution is an assignment to each variable of a value from its domain, satisfying all constraints. Each agent A i only knows constraints relevant to its variables (C i) and the existence of other variables involved in these constraints (its neighbors). Without loss of generality, we assume each agent controls exactly one variable (p = n), so we use the terms agent and variable interchangeably and do not distinguish between A i and x i .

Each agent A i stores a unique order, an ordered tuple of agents IDs, denoted by λ i . λ i is called the current order of A i . Agents appearing before A i in λ i are the higher priority agents (predecessors) denoted by λ - i and conversely the lower priority agents (successors) λ + i are agents appearing after A i in λ i . We denote by λ i [k] (∀k ∈ 1..n) the ID of the agent located at position k in λ i .

Asynchronous Backtracking -ABT

The first complete asynchronous search algorithm for solving DisCSP is Asynchronous Backtracking (ABT) [START_REF] Yokoo | Distributed constraint satisfaction for formalizing distributed problem solving[END_REF][START_REF] Bessiere | Asynchronous backtracking without adding links: a new member in the ABT family[END_REF]. In ABT, agents act concurrently and asynchronously, and do not have to wait for decisions of others. However, ABT requires a total priority order among agents. Each agent tries to find an assignment satisfying the constraints with what is currently known from higher priority agents. When an agent assigns a value to its variable, it sends out messages to lower priority agents, with whom it is constrained, informing them about its assignment. When no value is possible for a variable, the inconsistency is reported to higher agents in the form of a no-good (an unfruitful value combination). ABT computes a solution (or detects that no solution exists) in a finite time. However, the priority order of agents is static and uniform across the agents.

No-goods and Explanations

During a solution process, agents can infer inconsistent sets of assignments, called no-goods. No-goods are used to justify value removals. A no-good ruling out value v i from the domain of a variable x i is a clause of the form x j = v j ∧. . .∧x k = v k → x i = v i . This no-good, which means that the assignment x i = v i is inconsistent with the assignments x j = v j ∧. . .∧x k = v k , is used by agent A i to justify removal of v i from its domain D i . The left hand side (lhs) and the right hand side (rhs) of a no-good are defined from the position of →. The variables in the lhs of a no-good must precede the variable on its rhs in the current order because the assignments of these variables have been used to filter the domain of the variable in its rhs. These ordering constraints induced by a no-good are called safety conditions in [START_REF] Ginsberg | GSAT and dynamic backtracking[END_REF]. For example, the no-good

x j = v j ∧ x k = v k → x i = v i
implies that x j ≺ x i and x k ≺ x i that is x j and x k must precede x i in the variable ordering (i.e., x j , x k ∈ λ - i). We say that a no-good is compatible with an order λ i if all agents in its lhs appear before its rhs in λ i .

The current domain of a variable x i , maintained by A i , is composed by values not ruled out by a no-good. 4 The initial domain size (before search starts) of A i is denoted by d 0 i while its current domain size is denoted by d i . Let Σ i be the conjunction of the left hand sides of all no-goods ruling out values from D i . We explain the current domain size of D i by the following expression e i : Σ i → d i , called explanation of x i (e i). Every explanation e i induces safety conditions:

{∀x m ∈ Σ i , x m ≺ x i }.
When all values of a variable x i are ruled out by some nogoods (Σ i → 0), these no-goods are resolved, producing a new no-good from Σ i . There are clearly many different ways of representing Σ i as a directed no-good (an implication). In standard backtracking search algorithms (like ABT), the variable, say x t , that has the lowest priority in the current order (among variables in Σ i) must change its value. x t is called the backtracking target and the directed no-good is ng t : Σ i \ x t → x t = v t . In AgileABT the backtracking target is not necessarily the variable with the lowest priority within the conflicting variables in the current order.

Agile Asynchronous Backtracking

In AgileABT, an order λ is always associated with a termination value τ. A termination value is a tuple of positive integers (representing the sizes of the domains of other agents seen from A i). When comparing two orders the strongest order is that associated with the lexicographically smallest termination value. The lexicographic order on agents IDs (< lex) is used to break ties, the smallest being the strongest.

In AgileABT, all agents start with the same order. Then, every agent A i is allowed to change the order asynchronously. In the following we describe AgileABT by illustrating the computation performed within agent A i . A i can change its current order λ i only if it receives a stronger one from another agent or if itself proposes a new order (λ i) stronger than its current order λ i . A i can only propose new orders (λ i) when it tries to backtrack after detecting a dead-end (Σ i → 0).

In AgileABT, agents exchange the following types of messages to coordinate the search (where A i is the sender):

-ok? message is sent by A i to all lower agents (λ + i) to ask whether its assignment is acceptable. Besides the assignment, the ok? message contains an explanation e i which communicates the current domain size of x i , the current order λ i , and the current termination value τ i stored by A i .

-ngd message is sent by A i when all its values are ruled out by Σ i . This message contains a directed no-good, as well as λ i and τ i . -order message is sent to propose a new order. This message includes the order λ i proposed by A i accompanied by the termination value τ i .

Each agent needs to compute the size of the domain of other variables to build its termination value. Hence, each agent A i stores a set E i of explanations sent by other agents. During search, A i updates E i to store new received explanations and to remove those that are no more relevant to the search state or not compatible with its current order λ i . If e k ∈ E i , A i uses this explanation to justify the size dom(k) of the current domain of x k , i.e., d k . Otherwise, A i assumes that the size of the current domain of x k is equal to d 0 k .

Algorithm 1: Computing termination value using heuristic α.

function T V α (λ) 1.
τ is an array of length n;

2. for (j ← 1 to n) do τ[j] ← α(λ[j]) ; 3. return τ;
In AgileABT, the termination value

τ i = [tv 1 i , . . . , tv n i] computed by agent A i is such that tv k i = dom(λ i [k]), ∀k ∈ 1.
.n. τ i depends on the order λ i and the domain sizes of agents given by the set of explanations E i (Algorithm 1, using

T V α (λ i) with α = dom).
In standard backtracking search algorithms, the backtracking target is always the variable that has the lowest priority among the variables in the detected conflict (i.e., Σ i). AgileABT relaxes this restriction by allowing A i to select the target of backtracking x t among conflicting variables Σ i . The only restriction for selecting x t as a backtracking target is to find an order λ i such that τ i = T V α (λ i) with α = dom (Algorithm 1) is lexicographically smaller than the termination value associated with the current order λ i and x t is the lowest among variables in Σ i w.r.t. λ i .

When a dead-end occurs, AgileABT iterates through all variables x t ∈ Σ i , considering x t as the target of the backtracking, i.e., the directed no-good is ng t : Σ i \ x t → x t = v t . A i then updates E i to remove all explanations containing x t (after backtracking x t assignment will be changed). Next, it updates the explanation of x t by considering the new generated no-good ng t (i.e., e t ← [Σ t ∪ lhs(ng t) → d t -1]). Finally, A i computes a new order (λ i) and its associated termination value (τ i) from the updated explanations E i . λ i is obtained by performing a topological sort on the directed acyclic graph (G) formed by safety conditions induced by the updated explanations

E i (∀x m ∈ Σ k |e k ∈ E i , (x m , x k) ∈ G) and τ i is obtained from T V α (λ i) with α = dom (Algorithm 1)
. Let λ i be the strongest computed order over all possible targets in Σ i . If the termination value τ i associated to λ i is lexicographically smaller than the τ i associated to the current order λ i , A i reorders agents according to λ i and informs all agents about the new order λ i and its associated termination value τ i . The backtracking target is that used when A i computed λ i . If no λ i stronger than λ i exists, the backtracking target x t is the variable that has the lowest priority among Σ i in the current order λ i . For more details we refer the reader to [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF][START_REF] Wahbi | Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction Problems[END_REF].

Example of running AgileABT

A 1 A 2 A 3 A 4 A 5 x 1 x 2 x 3 x 4 x 5 . = . = . x 1 = |x 5 -2| . = . < . ≥ ∀i ∈ 1..4 D i = {1, 2, 3, 4} (a) The constraint graph Data structures maintained by A 5 ∀i ∈ 1..5, λ i = [1, 2, 3, 4, 5], τ i = [4, 4, 4, 4, 4] Σ 5 : x 1 = 1 ∧ x 2 = 2 ∧ x 4 = 3 incoming messages ok? 1→5 : e 1 , x 1 = 1, λ 1 , τ 1 ok? 2→5 : e 2 , x 2 = 2, λ 2 , τ 2 ok? 3→5 : e 3 , x 3 = 2, λ 3 , τ 3 ok? 4→5 : e 4 , x 4 = 3, λ 4 , τ 4 e 1 : [] → d 1 = 4 e 2 : [x 1 = 1] → d 2 = 3 e 3 : [x 1 = 1] → d 3 = 3 e 4 : [x 3 = 2] → d 4 = 2 explanations (E 5) [x 1 = 1] → x 5 = [x 2 = 2] → x 5 = [x 1 = 1] → x 5 = [x 4 = 3] → x 5 = no-goods (D 5 = ∅) (b)
Explanations and no-goods maintained by A5

A 5 : when choosing x 1 as backtracking target for Σ 5

Updated explanations (c) A5: updated explanations with x1 as target

e 1 : [x 2 = 2 ∧ x 4 = 3] → d 1 = 3 e 2 : [] → d 2 = 4 e 3 : [] → d 3 = 4 e 4 : [x 3 = 2] → d 4 = 2 e 5 : [x 2 = 2 ∧ x 4 = 3] → d 5 = 2
A 5 : target selection Selected no-good: ng 1 : [x 4 = 3 ∧ x 2 = 2] → x 1 =1 λ 5 = [1, 2, 3, 4, 5] τ 5 = [4, 4, 4, 4, 4]
target agent ordering termination value

x 1 = 1 λ 5 = [3, 4, 2, 5, 1] τ 5 = [4, 2, 4, 2, 3] x 2 = 2 λ 5 = [1, 3, 4, 5, 2] τ 5 = [4, 3, 2, 1, 2] x 4 = 3 λ 5 = [1, 2, 5, 3, 4] τ 5 = [4, 3, 1, 3, 1] (d) A5: selection of target (x1)
Σ 5 : {x 1 = 1 ∧ x 2 = 2 ∧ x 4 = 3}.
A 5 iterates through all variables x t ∈ Σ 5 , considering x t as the target of the backtracking. Figure 1c shows the updates on the explanations stored in A 5 (E 5) when it considers x 1 as the target of the backtracking (i.e., x t = x 1). A 5 updates E 5 to remove all explanations containing x 1 (i.e., e 2 and e 3) and considering the new generated no-good ng 1 in the explanation of x 1 , i.e., e 1 (fig. 1c, left). Finally, A 5 computes a new order (λ 5) and its associated termination value (τ 5) from the updated explanations E 5 . λ 5 is obtained by performing a topological sort on the directed acyclic graph formed by safety conditions induced by the updated explanations E 5 (fig. 1c, right). Figure 1d presents the computed orderings and their associated termination values (by topological sort) when considering each x t ∈ Σ 5 as backtracking target. The strongest computed order (e.g, λ 5 = [3, 4, 2, 5, 1], τ 5 = [4, 2, 4, 2, 3]) is that computed when considering x 1 as backtracking target. Since λ 5 is stronger than λ 5 , A 5 changes its current order to λ 5 and proposes this ordering to all other agents through order messages (i.e., order : λ 5 , τ 5). Then, A 5 sends the no-good ng 1 to agent x 1 .

Algorithm 2: AgileABT(α): Procedures for changing the order by A i .

procedure processOrder(λj, τj) changeOrder(λ i , τ i) ;

5.

sendMsg: order λi, τi to all agents in A ; procedure changeOrder(λ , τ) 6. λi ← λ ; τi ← τ ; 7. remove no-goods and explanations incompatible with τi ;

It has been proved that AgileABT is sound, complete and terminates [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF][START_REF] Wahbi | Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction Problems[END_REF]. The termination proofs of AgileABT are based on the fact that the termination value is a tuple of positive integers (representing the expected sizes of the domains of other agents) and, as search progresses, these tuples can only decrease lexicographically. Thus, any change to the form of the termination values (i.e. implemented heuristic) may directly affect the termination of AgileABT.

Generalized AgileABT

In AgileABT, the termination value can be seen as an implementation of the dom dynamic variable ordering heuristic. In this section, we generalize Ag-ileABT to get a new framework AgileABT(α), in which α represents any measure used to implement a DVO. The original AgileABT [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF] is then equivalent to AgileABT(dom).

Due to space constraints, we only present in Algorithm 2 the pseudo-code of AgileABT(α) related to the cases where an agent (A i) may change its current order λ i (i.e., calling procedure changeOrder) where ≺ tv is an ordering on the termination values and tv = represents the equality. A i can change its current order λ i and its associated termination value τ i (procedure changeOrder, line 6) in two cases. The first case is when A i receives a stronger order λ j associated with the termination value τ j from another agent A j (processOrder, line 1). The second case occurs when A i itself proposes a new order (λ i) associated with a termination value τ i that is preferred (w.r.t. ≺ tv) to the termination value τ i associated to its current order λ i (procedure proposeOrder, lines 3 and 4).

The soundness, completeness and polynomial space complexity 5 of AgileABT(α) are directly inherited from original AgileABT, i.e., AgileABT(dom). The only property that could be jeopardized is the termination of the algorithm. In the following we define a sufficient condition on termination values and the ordering ≺ tv which guarantees that AgileABT(α) (Algorithm 2) terminates. Next, we will discuss a condition on the measure α that allows the termination values to obey the required condition.

Condition 1

The priority ordering ≺ tv is a well-ordering on the range of function T V α . Proposition 1. AgileABT(α) terminates if ≺ tv obeys condition 1.

Proof. Following the pseudo-code of AgileABT(α), an agent A i can only change its current order in two cases (lines 1 and 3). The termination values can only decrease w.r.t. the well-ordering ≺ tv , or remain the same and have a lexicographically decreasing agent order (line 1). The agent order cannot decrease lexicographically indefinitely and by condition 1 the termination values cannot decrease indefinitely w.r.t. ≺ tv . Therefore, AgileABT(α) cannot change the order indefinitely. Once the order stops changing, all agents will eventually have the same termination value and the same order to which it is attached (line 5, Algorithm 2). This order corresponds to the strongest order computed in the system so far. Since the agent order is now common and static, AgileABT(α) will behave exactly like ABT, which terminates.

To guarantee that AgileABT(α) terminates we need to define a well-ordering ≺ tv on the termination values. Let α be the measure applied to the agents, and let the function T V α be as defined in Algorithm 1. Let S be the range of α and let ≺ α be a total preference order on S. Definition 1 Let λ i and λ j be two total agent orderings, τ i = T V α (λ i) and τ j = T V α (λ j). The termination value τ i is preferred (w.r.t. ≺ tv) to τ j (i.e., τ i ≺ tv τ j) if and only if τ i is lexicographically less than τ j (w.r.t. ≺ α). In other words,

τ i ≺ tv τ j iff ∃ k ∈ 1..n such that α(λ i [k]) ≺ α α(λ j [k]) and ∀p ∈ 1..k-1 α(λ i [p])=α(λ j [p]).
Condition 2 The priority ordering ≺ α is a well-ordering on the range of measure α. Proposition 2. AgileABT(α) terminates if ≺ α obeys condition 2.

Proof. Suppose condition 2 is satisfied but AgileABT(α) does not terminate. Then, by proposition 1, condition 1 is not satisfied. Therefore, ≺ tv is not a well-ordering on the range of T V α . In other words, we can obtain an infinite decreasing sequence of termination values using a lexicographic comparison w.r.t. ≺ α . Therefore we must have an infinite decreasing sequence of α(λ[k]) values, for some k ∈ 1..n. But this contradicts condition 2 that forces ≺ α to be a wellordering on S. Therefore AgileABT(α) must terminate.

In the following, we consider a number of different heuristics that are known to be effective in reducing search in centralized CSP, but which could not before now be applied to distributed CSP. We show how the measures that inform these heuristics can obey condition 2, and thus can be applied in the general AgileABT(α) framework.

Neighborhood based variable ordering heuristics

In the first category we try to take into account the neighborhood of each agent. We implemented three DVOs (dom/deg, dom/f deg and dom/pdeg) to obtain respectively AgileABT(dom/deg), AgileABT(dom/f deg), and AgileABT(dom/pdeg). In AgileABT(dom/deg), each agent A i only requires to know the degree deg(k) of each agent A k in the problem. deg(k) (i.e., the number of neighbors of A k) can be obtained before the search starts as is the case for d 0 k of each agent. Afterwards,

A i computes τ i = T V dom/deg (λ i) using α(k) = dom(k) deg(k) (Algorithm 1, line 2).
In AgileABT(dom/f deg) and AgileABT(dom/pdeg) each agent A i is required to know the set of neighbors of each agent A k because it will need to compute the incoming degree pdeg(k) and the outgoing degree f deg(k) of A k for any proposed order. Again this information can be known in a preprocessing step before running AgileABT(α). Afterwards,

A i computes τ i from T V dom/f deg (λ i) (resp. T V dom/pdeg (λ i)) using α(k) = dom(k) f deg(k) (resp. α(k) = dom(k) pdeg(k))
where the incoming degree pdeg(k) in λ i is the number of neighbors of A k that appear before k in λ i and the outgoing degree f deg(k) in λ i is the number of neighbors of A k that appear after k in λ i .

Conflict-directed variable ordering heuristic

The second category covers the conflict-directed variable ordering heuristic: dom/wdeg. In order to compute τ i using α(k) = dom(k) wdeg(k) , each agent A i in AgileABT(dom/wdeg) requires to know the weighted degree wdeg(k) of each other agent A k . A i maintains its weighted degree, wdeg(i), that it computes and the weighted degrees received from other agents, wdeg(k). In order to compute the weighted degree, wdeg, (Algorithm 3) each agent A i maintains a counter weight[C] for each constraint C(X) in C i . Whenever a domain (D j where x j ∈ X) is wiped-out while propagating C(X) (line 3, Algorithm 3), weight[C] is incremented. Before assigning its variable and sending an ok? message to lower priority agents, A i computes its weighted degree, wdeg(i), by summing up (line 6, Algorithm 3) the weights of all constraints in C i having at least two unassigned variables ([START_REF] Lecoutre | Backjump-Based Techniques versus Conflict-Directed Heuristics[END_REF]). However, to guarantee that AgileABT(dom/wdeg) terminates we only update wdeg(i) if the new computed weighted degree (wdeg) does not exceed a limit W on which all agents agree beforehand (line 7, Algorithm 3). In AgileABT(dom/wdeg), whenever A i sends an ok? message it attaches to this message the largest weighted degree computed so far wdeg(i).

Theoretical Analysis

Lemma 1. All measures α above are a well-ordering on a subset of Q w.r.t. <.

Proof. We proceed by contradiction. Suppose there is an infinite decreasing sequence of values of α(k). In all measures above, α(k) = dom(k) ω(k) , for some ω(k). dom(k) is the expected domain size of the agent A k . It is obvious that dom(k) is a well-ordering on N w.r.t. <, and so cannot decrease indefinitely. Therefore, ω(k) must increase indefinitely. ω(k) is a positive integer whose value depends on the measure used. Two cases were explored in this paper. The first case concerns the family of degree-based heuristics (deg, pdeg, f deg). In this case, all of the ω(k) are greater than or equal to 1 and smaller than the number of agents in the system (i.e., n) because an agent is at most constrained to n -1 other agents. Thus, 1 ≤ ω(k) ≤ n -1. The second case is related to the heuristic wdeg. We have outlined in section 3.2 that an agent is not allowed to increment its weight when it has reached the limit W set beforehand (Algorithm 3, line 7). Thus, 1 ≤ ω(k) ≤ W . In both cases ω(k) cannot increase indefinitely. Therefore for all measures presented above, of the form α(k) = dom(k) ω(k) , cannot decrease indefinitely, and so α(k) is a well-ordering w.r.t. <.

Empirical Analysis

In this section we experimentally compare AgileABT(α) 6 using different DVO heuristics to three other algorithms: ABT, ABT DO with nogood-triggered heuristic (ABT DO-ng) [START_REF] Zivan | Dynamic Ordering for Asynchronous Backtracking on DisC-SPs[END_REF] and ABT DO with min-domain retroactive heuristic (ABT DO Retro(mindom)) [START_REF] Zivan | Min-Domain Retroactive Ordering for Asynchronous Backtracking[END_REF]. All experiments were performed on the DisChoco 2.0 platform [START_REF] Wahbi | DisChoco 2: A Platform for Distributed Constraint Reasoning[END_REF], 7 in which agents are simulated by Java threads that communicate only through message passing.

When comparing distributed algorithms, the performance is evaluated using two common metrics: the communication load and computation effort. Communication load is measured by the total number of exchanged messages among agents during algorithm execution (#msg) [START_REF] Lynch | Distributed Algorithms[END_REF]. Computation effort is measured by the number of non-concurrent constraint checks (#ncccs) [START_REF] Zivan | Parallel Backtrack search on DisCSPs[END_REF]. #ncccs is the metric used in distributed constraint solving to simulate computation time, but for dynamic reordering algorithms its variant generic #ncccs is used [START_REF] Zivan | Message delay and DisCSP search algorithms[END_REF]. Algorithms are evaluated on three benchmarks: uniform binary random DisCSPs, 6 For AgileABT(dom/wdeg), we fixed W = 1, 000. But, varying W made negligible difference to the results.

Uniform binary random DisCSPs

Uniform binary random DisCSPs are characterized by n, d, p 1 , p 2 , where n is the number of agents/variables, d is the number of values in each domain, p 1 is the network connectivity defined as the ratio of existing binary constraints to possible binary constraints, and p 2 is the constraint tightness defined as the ratio of forbidden value pairs to all possible pairs. We solved instances of two classes of random DisCSPs: sparse problems 20, 10, 0.2, p 2 and dense problems 20, 10, 0.7, p 2 . We varied the tightness from 0.1 to 0.9 by steps of 0.05. For each pair of fixed density and tightness (p 1 , p 2), we generated 20 instances, solved 5 times each. We report average over the 100 execution.

Figures 2 and3 show the results on sparse respectively dense uniform binary random DisCSPs. In sparse problems (Figure 2), AgileABT(α) outperforms all other algorithms on both #msg and #ncccs. ABT with AC-2001 is significantly the slowest algorithm but it requires fewer messages than ABT DOng. Regarding the speedup, AgileABT(α) shows almost an order of magnitude improvement compared to ABT and they all improve on ABT DO-ng and ABT DO Retro(mindom). Comparing AgileABT(α) algorithms, neighborhood based heuristics (i.e., deg, pdeg and f deg) show an almost two-fold improvement over dom and wdeg on #ncccs. This improvement is even more significant on #msg. wdeg requires fewer messages than dom. In dense problems (Figure 3), neighborhood based heuristics outperform all other algorithms both on #msg and #ncccs. ABT requires almost half the #msg of ABT DO Retro(mindom), AgileABT(dom), and AgileABT(dom/wdeg). ABT DO-ng is always the algorithm that requires more messages. AgileABT(dom/wdeg) shows poor performance. It is slower and requires more messages than AgileABT(dom).

Distributed graph coloring problems

Distributed graph coloring problems are characterized by n, d, p 1 , where n, d and p 1 are as above and all constraints are binary difference constraints. We

Composed random instances:

We also evaluate all algorithms on two sets of unsatisfiable composed random instances used to evaluate the conflict-directed variable ordering heuristic in cen-tralized CSP [START_REF] Roussel | Xml representation of constraint networks: Format XCSP 2[END_REF][START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF]. 8 Each set contains 10 different instances where each instance is composed of a main (under-constrained) fragment and some auxiliary fragments, each of which being grafted to the main one by introducing some binary constraints. Each instance contains 33 variables and 10 values per variable, and as before, each variable is controlled by a different agent. We solved each instance 5 times and present the average over 50 executions in Table 2. The results show that AgileABT(dom/pdeg) outperforms all other algorithms in both classes. The second best algorithm for solving these instances is AgileABT(dom). ABT shows very poor performance on solving these problems followed by ABT DO-ng that cannot solve instances in the second class (25-1-40) within the limits we fixed for all algorithms (10 8 #msg and 10 9 #ncccs). Regarding AgileABT(α) DVOs, wdeg seems to pay off on these instances compared to dom/deg and dom/f deg.

In 25-1-40, AgileABT(dom/deg) outperforms ABT DO Retro(mindom), but the opposite happens for 25-1-25.

Discussion

Looking at all results together, we come to the straightforward conclusion that AgileABT(α) with neighbourhood-based heuristics, namely deg, f deg and pdeg perform very well compared to other techniques. We think that neighbourhoodbased heuristics perform well thanks to their ability to take into account the structure of the problem [START_REF] Bessiere | MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems[END_REF]. Distinctly, among these three heuristics dom/pdeg seems to be the best one because of the limited changes on the agent at the first position. In dom/pdeg τ [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF] = dom(λ [START_REF] Bessiere | Agile asynchronous backtracking for distributed constraint satisfaction problems[END_REF]) because pdeg(λ[1]) = 1. Thus, the number of order changes (cost on messages) in AgileABT(dom/pdeg) is reduced. Note that the strength of AgileABT(α) is that it enables any ordering to be identified and executed as the algorithm runs. However, each change invokes a series of coordination messages, and so too many changes of order will have a negative impact.

On the other hand the AgileABT(α) with the conflict-directed variable ordering heuristic, namely wdeg, shows a relatively poor performance. This fact can be explained by the limited amount of constraint propagation performed by DisCSP algorithms. Furthermore, asynchrony affects reception and treatment of ok? and ngd messages and has a direct impact on the computation of weights and new orders. For some instances of the coloring problem, the performance of the conflict-directed heuristic varies significantly from one execution to another, indicating it is more sensitive to the asynchrony than the other heuristics.

Related Work

Bliek ([START_REF] Bliek | Generalizing partial order and dynamic backtracking[END_REF]) proposed Generalized Partial Order Dynamic Backtracking (GPODB), an algorithm that generalizes both Partial Order Dynamic Backtracking (PODB) [START_REF] Ginsberg | GSAT and dynamic backtracking[END_REF] and Dynamic Backtracking (DBT) [START_REF] Ginsberg | Dynamic Backtracking[END_REF]. This generalization was obtained by relaxing the safety conditions of PODB which results in additional flexibility. AgileABT has some similarities with PODB and GPODB because AgileABT also maintains a set of safety conditions. However, both PODB and GPODB are subject to the same restriction: when a dead end occurs, the backtracking target of the generated no-good must be selected such that the safety conditions induced by the new no-good satisfy all existing safety conditions. By contrast, AgileABT overcomes this restriction by allowing the violation of existing safety conditions by relaxing some explanations.

Silaghi et al. proposed Asynchronous Backtracking with Reordering (ABTR) [START_REF] Silaghi | Framework for modeling reordering heuristics for asynchronous backtracking[END_REF][START_REF] Silaghi | Generalized Dynamic Ordering for Asynchronous Backtracking on DisCSPs[END_REF][START_REF] Silaghi | ABT with Asynchronous Reordering[END_REF]. In ABTR, a reordering heuristic identical to the centralized dynamic backtracking [START_REF] Ginsberg | Dynamic Backtracking[END_REF] was applied to ABT. The authors in [START_REF] Zivan | Dynamic Ordering for Asynchronous Backtracking on DisC-SPs[END_REF] proposed Dynamic Ordering for Asynchronous Backtracking (ABT DO) [START_REF] Zivan | Dynamic Ordering for Asynchronous Backtracking on DisC-SPs[END_REF]. When an ABT DO agent assigns a value to its variable, it can reorder lower priority agents. In other words, an agent on a position j can change order of the agents on positions j +1 through n. The authors in [START_REF] Zivan | Dynamic Ordering for Asynchronous Backtracking on DisC-SPs[END_REF] proposed three different ordering heuristics to reorder lower priority agents: random, min-domain and nogood-triggered inspired by dynamic backtracking [START_REF] Ginsberg | Dynamic Backtracking[END_REF]. Their experimental results show that nogood-triggered (ABT DO-ng), where the generator of the no-good is placed just after the target of the backtrack, is best.

A new kind of ordering heuristics for ABT DO is presented in [START_REF] Zivan | Min-Domain Retroactive Ordering for Asynchronous Backtracking[END_REF] for reordering higher agents. These retroactive heuristics enable the generator of a no-good (backtrack) to be moved to a higher position than that of the target of the backtrack. The resulting algorithm is called ABT DO Retro. The degree of flexibility of these heuristics depends on the size of the no-good storage capacity K, which is predefined. Agents are limited to store no-goods with a size equal to or smaller than K. The space complexity of the agents is thus exponential in K. However, the best of those heuristics, ABT DO Retro(mindom) [START_REF] Zivan | Min-Domain Retroactive Ordering for Asynchronous Backtracking[END_REF][START_REF] Mechqrane | Corrigendum to "Min-Domain Retroactive Ordering for Asynchronous Backtracking[END_REF], does not need any no-good storage. In ABT DO Retro(mindom), the agent that generates a no-good is placed between the last and the second last agents in the no-good if its domain size is smaller than that of the agents it passes on the way up.

Conclusion

We proposed a general framework for reordering agents asynchronously in DisC-SPs which can implement many different dynamic variable ordering heuristics. Our general framework is sound, complete, and has a polynomial space complexity. We proved that a simple condition on the measure used in the heuristics is enough to guarantee termination. We implemented several DVOs heuristics that are well-known in centralized CSP but were not able to be used before in the distributed CSP. Our empirical study shows the significance of these DVOs on a distributed setting. In particular, it highlights the good performance of neighborhood based heuristics. Future work will focus on designing new DVOs that can be used in AgileABT(α).

Figure 1

 1 Figure 1 presents an example of a possible execution of AgileABT on a simple problem. This problem (fig. 1a) consists of 5 agents with the following domains ∀i ∈ 1..5, D i = {1, 2, 3, 4} and 6 constraints among these agents c 12 : x 1 = x 2 , c 13 : x 1 = x 3 , c 15 : x 1 = |x 5 -2|, c 25 : x 2 = x 5 , c 34 : x 3 < x 4 , and c 45 : x 4 ≥ x 5 . All agents start with the same initial ordering λ i = [1, 2, 3, 4, 5] associated with

Fig. 1 :

 1 Fig. 1: An example of a possible execution of AgileABT on a simple problem.

Algorithm 3 :

 3 Compute the wdeg of agent A i (wdeg(i)). // Filtering xj ∈ X by propagating C(X) function revise(C(X), xj) 1. foreach (vj ∈ Dj) do 2. if (¬hasSupport(C(X), vj, xj)) then Dj ← Dj \ vj; 3. if (Dj = ∅) then weight[C] ← weight[C] + 1 ; 4. return Dj = ∅; procedure computeWeight() 5. wdeg ← 1; 6. foreach (C(X) ∈ Ci | nbU nassigned(X) > 1) do wdeg ← wdeg + weight[C]; 7. wdeg(i) ← min(wdeg, W) ;

Fig. 2 :

 2 Fig. 2: Sparse uniform binary random DisCSPs

Fig. 3 :

 3 Fig. 3: Dense uniform binary random DisCSPs

Table 1 :

 1 Distributed graph coloring problems

	Algorithm	15, 5, 0.65	25, 5, 0.45
		#msg #ncccs	#msg #ncccs
	AgileABT(dom/wdeg)	90,630 188,991 2,600,016 2,783,132
	AgileABT(dom/f deg)	51,820 104,517 940,481 937,861
	AgileABT(dom/pdeg)	47,949 89,514 454,998 434,540
	AgileABT(dom/deg)	44,083 78,050 607,927 505,140
	AgileABT(dom)	79,518 204,012 3,001,538 3,836,301
	ABT DO Retro(mindom) 73,278 115,850 1,089,024 830,423
	ABT DO-ng	157,873 282,737 4,547,565 3,639,791
	ABT	58,817 288,803 1,626,901 3,836,391

Table 2 :

 2 Composed random instances report the average on 100 instances of two classes n = 15, d = 5, p 1 = 0.65 and n = 25, d = 5, p 1 = 0.45 in Table1. Again, AgileABT(α) using neighborhood based DVO are by far the best algorithms for solving both classes. ABT DO-ng shows poor performance on solving those problems. ABT DO Retro(mindom) outperforms AgileABT(dom) in both classes. Comparing AgileABT(dom) to AgileABT(dom/wdeg), dom is slower than wdeg but it requires fewer messages. In n = 15, d = 5, p 1 = 0.65 , only AgileABT(α) using neighborhood based DVO outperform ABT on messages while other asynchronous dynamic ordering algorithms require more messages.

	Instances	25-1-25	25-1-40
	Algorithm	#msg	#ncccs	#msg	#ncccs
	AgileABT(dom/wdeg)	85,521	30,064	89,804	33,461
	AgileABT(dom/f deg)	146,668	219,980 1,337,552 2,830,906
	AgileABT(dom/pdeg)	57,079	16,043 54,667	17,704
	AgileABT(dom/deg)	122,735	309,064 740,669 2,793,670
	AgileABT(dom)	57,451	20,944	59,859	23,405
	ABT DO Retro(mindom)	67,022	41,401	96,783	59,980
	ABT DO-ng	1,329,257 1,614,960	> 10 8	> 10 9
	ABT	2,850,137 22,042,094 9,429,088 72,524,742

To stay polynomial, Ai keeps only one no-good per removed value.

If the computation of the measure α also has polynomial space complexity.

http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html