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Abstract. Reordering agents during search is an essential component
of the efficiency of solving a distributed constraint satisfaction prob-
lem. Termination values have been recently proposed as a way to sim-
ulate the min-domain dynamic variable ordering heuristic. The use of
termination values allows the greatest flexibility in reordering agents dy-
namically while keeping polynomial space. In this paper, we propose
a general framework based on termination values for reordering agents
asynchronously. The termination values are generalized to represent var-
ious heuristics other than min-domain. Our general framework is sound,
complete, terminates and has a polynomial space complexity. We im-
plemented several variable ordering heuristics that are well-known in
centralized CSPs but could not until now be applied to the distributed
setting. Our empirical study shows the significance of our framework
compared to state-of-the-art asynchronous dynamic ordering algorithms
for solving distributed CSP.

1 Introduction

Distributed artificial intelligence involves numerous combinatorial problems
where multiple entities, called agents, need to cooperate in order to find a con-
sistent combination of actions. Agents have to achieve the combination in a
distributed manner and without any centralization. Examples of such problems
are: traffic light synchronization [12], truck task coordination [18], target track-
ing in distributed sensor networks [11], distributed scheduling [16], distributed
planning [6], distributed resource allocation [19], distributed vehicle routing [13],
etc. These problems were successfully formalized using the distributed constraint
satisfaction problem (DisCSP) paradigm.

DisCSP are composed of multiple agents, each owning its local constraint
network. Variables in different agents are connected by constraints. Agents must
assign values to their variables distributively so that all constraints are satisfied.
To achieve this goal, agents assign values to their variables that satisfy their
own constraints, and exchange messages to satisfy constraints with variables



owned by other agents. During the last two decades, many algorithms have been
designed for solving DisCSP. Most of these algorithms assume a total (priority)
order on agents that is static. However, it is known from centralized CSPs that
reordering variables dynamically during search improves the efficiency of the
search procedure. Moreover, reordering agents in DisCSP may be required in
various applications (e.g., security [24]).

Agile Asynchronous Backtracking (AgileABT) [1] is a polynomial space asyn-
chronous algorithm that is able to reorder all agents in the problem. AgileABT is
based on the notion of termination value, a tuple of agents’ domain sizes. Besides
implementing the min-domain ([10]) dynamic variable ordering heuristic (DVO),
the termination value acts as a timestamp for the orders exchanged by agents
during search. Since the termination of AgileABT depends on the form of the
termination value, the use of other forms of termination values (implementing
other heuristics) may directly affect the termination of the algorithm.

In this paper, we generalize AgileABT to get a new framework AgileABT(α),
in which α represents any measure used to implement a DVO (e.g., domain
size in min-domain). AgileABT(α) is sound and complete. We define a simple
condition on the measure α which guarantees that AgileABT(α) terminates. If
the computation of the measure α also has polynomial space complexity, then
AgileABT(α) has polynomial space complexity. This allows us to implement
for the first time in Distributed CSP a wide variety of DVOs that have been
studied in centralized CSP. To illustrate this, we implement a number of DVOs,
including dom/deg [3] and dom/wdeg [14], and evaluate their performance on
benchmark DisCSP problems.

The paper is organized as follows. Section 2 gives the necessary background
on distributed CSP and dynamic reordering materials. It then discusses the
Agile Asynchronous Backtracking algorithm for solving distributed CSP. Our
general framework is presented and analyzed in Section 3. We show our empirical
results in Section 4 and report related work in Section 5. Finally, we conclude
in Section 6.

2 Background

2.1 Distributed Constraint Satisfaction Problem

The Distributed Constraint Satisfaction Problem (DisCSP) is a 5-tuple
(A,X ,D, C, ϕ), where A is a set of agents {A1, . . . , Ap}, X is a set of variables
{x1, . . . , xn}, D = {D1, . . . , Dn} is a set of domains, where Di is the initial set
of possible values which may be assigned to variable xi, C is a set of constraints,
and ϕ : X → A is a function specifying an agent to control each variable. During
a solution process, only the agent which controls a variable can assign it a value.
A constraint C(X) ∈ C, on the ordered subset of variables X = (xj1 , . . . , xjk),
is C(X) ⊆ Dj1 × · · · × Djk , and specifies the tuples of values which may be
assigned simultaneously to the variables in X. For this paper, we restrict at-
tention to binary constraints. We denote by Ci ⊆ C all constraints that involve



xi. A solution is an assignment to each variable of a value from its domain,
satisfying all constraints. Each agent Ai only knows constraints relevant to its
variables (Ci) and the existence of other variables involved in these constraints
(its neighbors). Without loss of generality, we assume each agent controls exactly
one variable (p=n), so we use the terms agent and variable interchangeably and
do not distinguish between Ai and xi.

Each agent Ai stores a unique order, an ordered tuple of agents IDs, denoted
by λi. λi is called the current order of Ai. Agents appearing before Ai in λi are
the higher priority agents (predecessors) denoted by λ−i and conversely the lower
priority agents (successors) λ+i are agents appearing after Ai in λi. We denote
by λi[k] (∀k ∈ 1..n) the ID of the agent located at position k in λi.

2.2 Asynchronous Backtracking - ABT

The first complete asynchronous search algorithm for solving DisCSP is Asyn-
chronous Backtracking (ABT) [27,2]. In ABT, agents act concurrently and asyn-
chronously, and do not have to wait for decisions of others. However, ABT re-
quires a total priority order among agents. Each agent tries to find an assign-
ment satisfying the constraints with what is currently known from higher priority
agents. When an agent assigns a value to its variable, it sends out messages to
lower priority agents, with whom it is constrained, informing them about its as-
signment. When no value is possible for a variable, the inconsistency is reported
to higher agents in the form of a no-good (an unfruitful value combination).
ABT computes a solution (or detects that no solution exists) in a finite time.
However, the priority order of agents is static and uniform across the agents.

2.3 No-goods and Explanations

During a solution process, agents can infer inconsistent sets of assignments, called
no-goods. No-goods are used to justify value removals. A no-good ruling out value
vi from the domain of a variable xi is a clause of the form xj = vj∧. . .∧xk = vk →
xi 6= vi. This no-good, which means that the assignment xi = vi is inconsistent
with the assignments xj = vj∧. . .∧xk = vk, is used by agent Ai to justify removal
of vi from its domain Di. The left hand side (lhs) and the right hand side (rhs)
of a no-good are defined from the position of →. The variables in the lhs of
a no-good must precede the variable on its rhs in the current order because
the assignments of these variables have been used to filter the domain of the
variable in its rhs. These ordering constraints induced by a no-good are called
safety conditions in [9]. For example, the no-good xj = vj ∧ xk = vk → xi 6= vi
implies that xj ≺ xi and xk ≺ xi that is xj and xk must precede xi in the
variable ordering (i.e., xj , xk ∈ λ−i ). We say that a no-good is compatible with
an order λi if all agents in its lhs appear before its rhs in λi.

The current domain of a variable xi, maintained by Ai, is composed by values
not ruled out by a no-good.4 The initial domain size (before search starts) of Ai

4 To stay polynomial, Ai keeps only one no-good per removed value.



is denoted by d0i while its current domain size is denoted by di. Let Σi be the
conjunction of the left hand sides of all no-goods ruling out values from Di. We
explain the current domain size of Di by the following expression ei : Σi → di,
called explanation of xi (ei). Every explanation ei induces safety conditions:
{∀xm ∈ Σi, xm ≺ xi}. When all values of a variable xi are ruled out by some no-
goods (Σi → 0), these no-goods are resolved, producing a new no-good from Σi.
There are clearly many different ways of representing Σi as a directed no-good
(an implication). In standard backtracking search algorithms (like ABT), the
variable, say xt, that has the lowest priority in the current order (among variables
in Σi) must change its value. xt is called the backtracking target and the directed
no-good is ngt : Σi \ xt → xt 6= vt. In AgileABT the backtracking target is not
necessarily the variable with the lowest priority within the conflicting variables
in the current order.

2.4 Agile Asynchronous Backtracking

In AgileABT, an order λ is always associated with a termination value τ. A
termination value is a tuple of positive integers (representing the sizes of the
domains of other agents seen from Ai). When comparing two orders the strongest
order is that associated with the lexicographically smallest termination value.
The lexicographic order on agents IDs (<lex) is used to break ties, the smallest
being the strongest.

In AgileABT, all agents start with the same order. Then, every agent Ai is al-
lowed to change the order asynchronously. In the following we describe AgileABT
by illustrating the computation performed within agent Ai. Ai can change its
current order λi only if it receives a stronger one from another agent or if itself
proposes a new order (λ′i) stronger than its current order λi. Ai can only propose
new orders (λ′i) when it tries to backtrack after detecting a dead-end (Σi → 0).

In AgileABT, agents exchange the following types of messages to coordinate
the search (where Ai is the sender):

– ok? message is sent by Ai to all lower agents (λ+i ) to ask whether its as-
signment is acceptable. Besides the assignment, the ok? message contains
an explanation ei which communicates the current domain size of xi, the
current order λi, and the current termination value τi stored by Ai.

– ngd message is sent by Ai when all its values are ruled out by Σi. This
message contains a directed no-good, as well as λi and τi.

– order message is sent to propose a new order. This message includes the
order λi proposed by Ai accompanied by the termination value τi.

Each agent needs to compute the size of the domain of other variables to
build its termination value. Hence, each agent Ai stores a set Ei of explanations
sent by other agents. During search, Ai updates Ei to store new received ex-
planations and to remove those that are no more relevant to the search state or
not compatible with its current order λi. If ek ∈ Ei, Ai uses this explanation
to justify the size dom(k) of the current domain of xk, i.e., dk. Otherwise, Ai
assumes that the size of the current domain of xk is equal to d0k.



Algorithm 1: Computing termination value using heuristic α.

function TV α(λ)
1. τ is an array of length n;
2. for ( j ← 1 to n ) do τ[j]← α(λ[j]) ;
3. return τ;

In AgileABT, the termination value τi = [tv1i , . . . , tv
n
i ] computed by agent

Ai is such that tvki = dom(λi[k]),∀k ∈ 1..n. τi depends on the order λi and the
domain sizes of agents given by the set of explanations Ei (Algorithm 1, using
TV α(λi) with α= dom).

In standard backtracking search algorithms, the backtracking target is always
the variable that has the lowest priority among the variables in the detected
conflict (i.e., Σi). AgileABT relaxes this restriction by allowing Ai to select the
target of backtracking xt among conflicting variables Σi. The only restriction for
selecting xt as a backtracking target is to find an order λ′i such that τ ′i =TV α(λ′i)
with α= dom (Algorithm 1) is lexicographically smaller than the termination
value associated with the current order λi and xt is the lowest among variables
in Σi w.r.t. λ′i.

When a dead-end occurs, AgileABT iterates through all variables xt ∈ Σi,
considering xt as the target of the backtracking, i.e., the directed no-good is
ngt: Σi \ xt → xt 6= vt. Ai then updates Ei to remove all explanations con-
taining xt (after backtracking xt assignment will be changed). Next, it up-
dates the explanation of xt by considering the new generated no-good ngt
(i.e., et ← [Σt ∪ lhs(ngt) → dt − 1]). Finally, Ai computes a new order
(λ′i) and its associated termination value (τ ′i) from the updated explanations
Ei. λ

′
i is obtained by performing a topological sort on the directed acyclic

graph (G) formed by safety conditions induced by the updated explanations
Ei (∀xm ∈ Σk|ek ∈ Ei, (xm, xk) ∈ G) and τ ′i is obtained from TV α(λ′i) with
α= dom (Algorithm 1). Let λ′i be the strongest computed order over all possible
targets in Σi. If the termination value τ ′i associated to λ′i is lexicographically
smaller than the τi associated to the current order λi, Ai reorders agents ac-
cording to λ′i and informs all agents about the new order λ′i and its associated
termination value τ ′i . The backtracking target is that used when Ai computed
λ′i. If no λ′i stronger than λi exists, the backtracking target xt is the variable
that has the lowest priority among Σi in the current order λi. For more details
we refer the reader to [1,25].

Example of running AgileABT

Figure 1 presents an example of a possible execution of AgileABT on a simple
problem. This problem (fig. 1a) consists of 5 agents with the following domains
∀i ∈ 1..5, Di = {1, 2, 3, 4} and 6 constraints among these agents c12: x1 6= x2,
c13: x1 6= x3, c15: x1 6= |x5 − 2|, c25: x2 6= x5, c34: x3 < x4, and c45: x4 ≥ x5.
All agents start with the same initial ordering λi = [1, 2, 3, 4, 5] associated with
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A5: target selection

Selected no-good: ng1: [x4 =3 ∧ x2 =2]→ x1 6=1

λ5 = [1, 2, 3, 4, 5] τ5 = [4, 4, 4, 4, 4]

target agent ordering termination value

x1 6= 1 λ′5 = [3, 4, 2, 5, 1] τ ′5 = [4, 2, 4, 2, 3]

x2 6= 2 λ′5 = [1, 3, 4, 5, 2] τ ′5 = [4, 3, 2, 1, 2]

x4 6= 3 λ′5 = [1, 2, 5, 3, 4] τ ′5 = [4, 3, 1, 3, 1]

(d) A5: selection of target (x1)

Fig. 1: An example of a possible execution of AgileABT on a simple problem.

the termination value τi = [4, 4, 4, 4, 4] and values are chosen lexicographically.
Consider the situation in A5 after receiving ok? messages from other agents
(fig. 1b). On receipt, explanations e1, e2, e3, and e4 are stored in E5, and as-
signments x1 = 1, x2 = 2, x3 = 2, and x4 = 3 are stored in A5 agent-view. After
checking its constraints (c15, c25, and c45), A5 detects a dead-end (D5 = ∅) where
Σ5: {x1 = 1 ∧ x2 = 2 ∧ x4 = 3}. A5 iterates through all variables xt ∈ Σ5, con-
sidering xt as the target of the backtracking. Figure 1c shows the updates on
the explanations stored in A5 (E5) when it considers x1 as the target of the
backtracking (i.e., xt =x1). A5 updates E5 to remove all explanations contain-
ing x1 (i.e., e2 and e3) and considering the new generated no-good ng1 in the
explanation of x1, i.e., e1 (fig. 1c, left). Finally, A5 computes a new order (λ′5)
and its associated termination value (τ ′5) from the updated explanations E5.
λ′5 is obtained by performing a topological sort on the directed acyclic graph
formed by safety conditions induced by the updated explanations E5 (fig. 1c,
right). Figure 1d presents the computed orderings and their associated termina-
tion values (by topological sort) when considering each xt ∈ Σ5 as backtracking
target. The strongest computed order (e.g, λ′5 = [3, 4, 2, 5, 1], τ ′5 = [4, 2, 4, 2, 3]) is
that computed when considering x1 as backtracking target. Since λ′5 is stronger
than λ5, A5 changes its current order to λ′5 and proposes this ordering to all
other agents through order messages (i.e., order :〈λ′5, τ ′5〉). Then, A5 sends the
no-good ng1 to agent x1.



Algorithm 2: AgileABT(α): Procedures for changing the order by Ai.

procedure processOrder(λj , τj)

1. if ( τj ≺tv τi ∨ (τj
tv
= τi ∧ λj <lex λi) ) then changeOrder(λj , τj) ;

procedure proposeOrder(args)
2. 〈λ′

i, τ
′
i〉 ← computeNewOrder(args);

3. if ( τ ′i ≺tv τi ) then
4. changeOrder(λ′

i, τ
′
i) ;

5. sendMsg: order〈λi, τi〉 to all agents in A ;

procedure changeOrder(λ′, τ ′)
6. λi ← λ′ ; τi ← τ ′ ;
7. remove no-goods and explanations incompatible with τi ;

It has been proved that AgileABT is sound, complete and terminates [1,25].
The termination proofs of AgileABT are based on the fact that the termination
value is a tuple of positive integers (representing the expected sizes of the do-
mains of other agents) and, as search progresses, these tuples can only decrease
lexicographically. Thus, any change to the form of the termination values (i.e.
implemented heuristic) may directly affect the termination of AgileABT.

3 Generalized AgileABT

In AgileABT, the termination value can be seen as an implementation of the
dom dynamic variable ordering heuristic. In this section, we generalize Ag-
ileABT to get a new framework AgileABT(α), in which α represents any mea-
sure used to implement a DVO. The original AgileABT [1] is then equivalent to
AgileABT(dom).

Due to space constraints, we only present in Algorithm 2 the pseudo-code of
AgileABT(α) related to the cases where an agent (Ai) may change its current
order λi (i.e., calling procedure changeOrder) where ≺tv is an ordering on the

termination values and
tv
= represents the equality. Ai can change its current order

λi and its associated termination value τi (procedure changeOrder, line 6) in
two cases. The first case is when Ai receives a stronger order λj associated with
the termination value τj from another agent Aj (processOrder, line 1). The
second case occurs when Ai itself proposes a new order (λ′i) associated with a
termination value τ ′i that is preferred (w.r.t. ≺tv) to the termination value τi
associated to its current order λi (procedure proposeOrder, lines 3 and 4).

The soundness, completeness and polynomial space complexity5

of AgileABT(α) are directly inherited from original AgileABT, i.e.,
AgileABT(dom). The only property that could be jeopardized is the ter-
mination of the algorithm. In the following we define a sufficient condition on

5 If the computation of the measure α also has polynomial space complexity.



termination values and the ordering ≺tv which guarantees that AgileABT(α)
(Algorithm 2) terminates. Next, we will discuss a condition on the measure α
that allows the termination values to obey the required condition.

Condition 1 The priority ordering ≺tv is a well-ordering on the range of func-
tion TV α.

Proposition 1. AgileABT(α) terminates if ≺tv obeys condition 1.

Proof. Following the pseudo-code of AgileABT(α), an agent Ai can only change
its current order in two cases (lines 1 and 3). The termination values can only
decrease w.r.t. the well-ordering ≺tv, or remain the same and have a lexico-
graphically decreasing agent order (line 1). The agent order cannot decrease
lexicographically indefinitely and by condition 1 the termination values cannot
decrease indefinitely w.r.t. ≺tv. Therefore, AgileABT(α) cannot change the or-
der indefinitely. Once the order stops changing, all agents will eventually have
the same termination value and the same order to which it is attached (line 5,
Algorithm 2). This order corresponds to the strongest order computed in the
system so far. Since the agent order is now common and static, AgileABT(α)
will behave exactly like ABT, which terminates. ut

To guarantee that AgileABT(α) terminates we need to define a well-ordering
≺tv on the termination values. Let α be the measure applied to the agents, and
let the function TV α be as defined in Algorithm 1. Let S be the range of α and
let ≺α be a total preference order on S.

Definition 1 Let λi and λj be two total agent orderings, τi =TV α(λi) and
τj =TV α(λj). The termination value τi is preferred (w.r.t. ≺tv) to τj (i.e.,
τi ≺tv τj) if and only if τi is lexicographically less than τj (w.r.t. ≺α). In other
words, τi ≺tv τj iff ∃ k ∈ 1..n such that α(λi[k]) ≺α α(λj [k]) and ∀p ∈ 1..k−1
α(λi[p])=α(λj [p]).

Condition 2 The priority ordering ≺α is a well-ordering on the range of mea-
sure α.

Proposition 2. AgileABT(α) terminates if ≺α obeys condition 2.

Proof. Suppose condition 2 is satisfied but AgileABT(α) does not terminate.
Then, by proposition 1, condition 1 is not satisfied. Therefore, ≺tv is not a
well-ordering on the range of TV α. In other words, we can obtain an infinite
decreasing sequence of termination values using a lexicographic comparison w.r.t.
≺α. Therefore we must have an infinite decreasing sequence of α(λ[k]) values,
for some k ∈ 1..n. But this contradicts condition 2 that forces ≺α to be a well-
ordering on S. Therefore AgileABT(α) must terminate. ut

In the following, we consider a number of different heuristics that are known
to be effective in reducing search in centralized CSP, but which could not before
now be applied to distributed CSP. We show how the measures that inform
these heuristics can obey condition 2, and thus can be applied in the general
AgileABT(α) framework.



Algorithm 3: Compute the wdeg of agent Ai (wdeg(i)).

// Filtering xj ∈X by propagating C(X)
function revise(C(X), xj)
1. foreach ( vj ∈ Dj ) do
2. if ( ¬hasSupport(C(X), vj , xj) ) then Dj ← Dj \ vj ;
3. if ( Dj = ∅ ) then weight[C]← weight[C] + 1 ;
4. return Dj 6= ∅;

procedure computeWeight()

5. wdeg ← 1;
6. foreach ( C(X) ∈ Ci | nbUnassigned(X) > 1 ) do wdeg ← wdeg+weight[C];
7. wdeg(i)← min(wdeg,W ) ;

3.1 Neighborhood based variable ordering heuristics

In the first category we try to take into account the neighborhood
of each agent. We implemented three DVOs (dom/deg, dom/fdeg and
dom/pdeg) to obtain respectively AgileABT(dom/deg), AgileABT(dom/fdeg),
and AgileABT(dom/pdeg). In AgileABT(dom/deg), each agent Ai only requires
to know the degree deg(k) of each agent Ak in the problem. deg(k) (i.e.,
the number of neighbors of Ak) can be obtained before the search starts as
is the case for d0k of each agent. Afterwards, Ai computes τ ′i =TV dom/deg(λ′i)
using α(k) = dom(k)

deg(k) (Algorithm 1, line 2). In AgileABT(dom/fdeg) and

AgileABT(dom/pdeg) each agent Ai is required to know the set of neighbors
of each agent Ak because it will need to compute the incoming degree pdeg(k)
and the outgoing degree fdeg(k) of Ak for any proposed order. Again this in-
formation can be known in a preprocessing step before running AgileABT(α).
Afterwards, Ai computes τ ′i from TV dom/fdeg(λ′i) (resp. TV dom/pdeg(λ′i)) using
α(k) = dom(k)

fdeg(k) (resp. α(k) = dom(k)
pdeg(k) ) where the incoming degree pdeg(k) in λ′i

is the number of neighbors of Ak that appear before k in λ′i and the outgoing
degree fdeg(k) in λ′i is the number of neighbors of Ak that appear after k in λ′i.

3.2 Conflict-directed variable ordering heuristic

The second category covers the conflict-directed variable ordering heuristic:
dom/wdeg. In order to compute τ ′i using α(k) = dom(k)

wdeg(k) , each agent Ai in

AgileABT(dom/wdeg) requires to know the weighted degree wdeg(k) of each
other agent Ak. Ai maintains its weighted degree, wdeg(i), that it computes
and the weighted degrees received from other agents, wdeg(k). In order to
compute the weighted degree, wdeg, (Algorithm 3) each agent Ai maintains a
counter weight[C] for each constraint C(X) in Ci. Whenever a domain (Dj where
xj ∈ X) is wiped-out while propagating C(X) (line 3, Algorithm 3), weight[C]
is incremented. Before assigning its variable and sending an ok? message to
lower priority agents, Ai computes its weighted degree, wdeg(i), by summing
up (line 6, Algorithm 3) the weights of all constraints in Ci having at least two



unassigned variables ([14]). However, to guarantee that AgileABT(dom/wdeg)
terminates we only update wdeg(i) if the new computed weighted degree (wdeg)
does not exceed a limit W on which all agents agree beforehand (line 7, Al-
gorithm 3). In AgileABT(dom/wdeg), whenever Ai sends an ok? message it
attaches to this message the largest weighted degree computed so far wdeg(i).

3.3 Theoretical Analysis

Lemma 1. All measures α above are a well-ordering on a subset of Q w.r.t. <.

Proof. We proceed by contradiction. Suppose there is an infinite decreasing se-
quence of values of α(k). In all measures above, α(k)= dom(k)

ω(k) , for some ω(k).
dom(k) is the expected domain size of the agent Ak. It is obvious that dom(k)
is a well-ordering on N w.r.t. <, and so cannot decrease indefinitely. Therefore,
ω(k) must increase indefinitely. ω(k) is a positive integer whose value depends
on the measure used. Two cases were explored in this paper. The first case con-
cerns the family of degree-based heuristics (deg, pdeg, fdeg). In this case, all of
the ω(k) are greater than or equal to 1 and smaller than the number of agents
in the system (i.e., n) because an agent is at most constrained to n − 1 other
agents. Thus, 1 ≤ ω(k) ≤ n − 1. The second case is related to the heuristic
wdeg. We have outlined in section 3.2 that an agent is not allowed to incre-
ment its weight when it has reached the limit W set beforehand (Algorithm 3,
line 7). Thus, 1 ≤ ω(k) ≤ W . In both cases ω(k) cannot increase indefinitely.
Therefore for all measures presented above, of the form α(k)= dom(k)

ω(k) , cannot
decrease indefinitely, and so α(k) is a well-ordering w.r.t. <. ut

4 Empirical Analysis

In this section we experimentally compare AgileABT(α)6 using different DVO
heuristics to three other algorithms: ABT, ABT DO with nogood-triggered
heuristic (ABT DO-ng) [29] and ABT DO with min-domain retroactive heuris-
tic (ABT DO Retro(mindom)) [31]. All experiments were performed on the
DisChoco 2.0 platform [26],7 in which agents are simulated by Java threads
that communicate only through message passing.

When comparing distributed algorithms, the performance is evaluated using
two common metrics: the communication load and computation effort. Commu-
nication load is measured by the total number of exchanged messages among
agents during algorithm execution (#msg) [15]. Computation effort is measured
by the number of non-concurrent constraint checks (#ncccs) [28]. #ncccs is the
metric used in distributed constraint solving to simulate computation time, but
for dynamic reordering algorithms its variant generic #ncccs is used[30]. Al-
gorithms are evaluated on three benchmarks: uniform binary random DisCSPs,

6 For AgileABT(dom/wdeg), we fixed W = 1, 000. But, varying W made negligible
difference to the results.

7 http://dischoco.sourceforge.net/

http://dischoco.sourceforge.net/
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Fig. 2: Sparse uniform binary random DisCSPs

distributed graph coloring problems, and composed random instances. All binary
table constraints in these problems are implemented using AC-2001 [4].

4.1 Uniform binary random DisCSPs

Uniform binary random DisCSPs are characterized by 〈n, d, p1, p2〉, where n is
the number of agents/variables, d is the number of values in each domain, p1
is the network connectivity defined as the ratio of existing binary constraints
to possible binary constraints, and p2 is the constraint tightness defined as the
ratio of forbidden value pairs to all possible pairs. We solved instances of two
classes of random DisCSPs: sparse problems 〈20, 10, 0.2, p2〉 and dense problems
〈20, 10, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of 0.05. For each
pair of fixed density and tightness (p1, p2), we generated 20 instances, solved 5
times each. We report average over the 100 execution.

Figures 2 and 3 show the results on sparse respectively dense uniform bi-
nary random DisCSPs. In sparse problems (Figure 2), AgileABT(α) outper-
forms all other algorithms on both #msg and #ncccs. ABT with AC-2001 is
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Fig. 3: Dense uniform binary random DisCSPs

significantly the slowest algorithm but it requires fewer messages than ABT DO-
ng. Regarding the speedup, AgileABT(α) shows almost an order of magni-
tude improvement compared to ABT and they all improve on ABT DO-ng and
ABT DO Retro(mindom). Comparing AgileABT(α) algorithms, neighborhood
based heuristics (i.e., deg, pdeg and fdeg) show an almost two-fold improvement
over dom and wdeg on #ncccs. This improvement is even more significant on
#msg. wdeg requires fewer messages than dom. In dense problems (Figure 3),
neighborhood based heuristics outperform all other algorithms both on #msg
and #ncccs. ABT requires almost half the #msg of ABT DO Retro(mindom),
AgileABT(dom), and AgileABT(dom/wdeg). ABT DO-ng is always the algo-
rithm that requires more messages. AgileABT(dom/wdeg) shows poor perfor-
mance. It is slower and requires more messages than AgileABT(dom).

4.2 Distributed graph coloring problems

Distributed graph coloring problems are characterized by 〈n, d, p1〉, where n, d
and p1 are as above and all constraints are binary difference constraints. We



Table 1: Distributed graph coloring problems

Algorithm
〈15,5,0.65〉 〈25,5,0.45〉

#msg #ncccs #msg #ncccs

AgileABT(dom/wdeg) 90,630 188,991 2,600,016 2,783,132

AgileABT(dom/fdeg) 51,820 104,517 940,481 937,861

AgileABT(dom/pdeg) 47,949 89,514 454,998 434,540

AgileABT(dom/deg) 44,083 78,050 607,927 505,140

AgileABT(dom) 79,518 204,012 3,001,538 3,836,301

ABT DO Retro(mindom) 73,278 115,850 1,089,024 830,423

ABT DO-ng 157,873 282,737 4,547,565 3,639,791

ABT 58,817 288,803 1,626,901 3,836,391

Table 2: Composed random instances

Instances 25-1-25 25-1-40

Algorithm #msg #ncccs #msg #ncccs

AgileABT(dom/wdeg) 85,521 30,064 89,804 33,461

AgileABT(dom/fdeg) 146,668 219,980 1,337,552 2,830,906

AgileABT(dom/pdeg) 57,079 16,043 54,667 17,704

AgileABT(dom/deg) 122,735 309,064 740,669 2,793,670

AgileABT(dom) 57,451 20,944 59,859 23,405

ABT DO Retro(mindom) 67,022 41,401 96,783 59,980

ABT DO-ng 1,329,257 1,614,960 > 108 > 109

ABT 2,850,137 22,042,094 9,429,088 72,524,742

report the average on 100 instances of two classes 〈n= 15, d= 5, p1 = 0.65〉 and
〈n= 25, d= 5, p1 = 0.45〉 in Table 1. Again, AgileABT(α) using neighborhood
based DVO are by far the best algorithms for solving both classes. ABT DO-ng
shows poor performance on solving those problems. ABT DO Retro(mindom)
outperforms AgileABT(dom) in both classes. Comparing AgileABT(dom) to
AgileABT(dom/wdeg), dom is slower than wdeg but it requires fewer messages.
In 〈n= 15, d= 5, p1 = 0.65〉, only AgileABT(α) using neighborhood based DVO
outperform ABT on messages while other asynchronous dynamic ordering algo-
rithms require more messages.

4.3 Composed random instances:

We also evaluate all algorithms on two sets of unsatisfiable composed random
instances used to evaluate the conflict-directed variable ordering heuristic in cen-



tralized CSP [20,7].8 Each set contains 10 different instances where each instance
is composed of a main (under-constrained) fragment and some auxiliary frag-
ments, each of which being grafted to the main one by introducing some binary
constraints. Each instance contains 33 variables and 10 values per variable, and
as before, each variable is controlled by a different agent. We solved each instance
5 times and present the average over 50 executions in Table 2. The results show
that AgileABT(dom/pdeg) outperforms all other algorithms in both classes. The
second best algorithm for solving these instances is AgileABT(dom). ABT shows
very poor performance on solving these problems followed by ABT DO-ng that
cannot solve instances in the second class (25-1-40) within the limits we fixed
for all algorithms (108 #msg and 109 #ncccs). Regarding AgileABT(α) DVOs,
wdeg seems to pay off on these instances compared to dom/deg and dom/fdeg.
In 25-1-40, AgileABT(dom/deg) outperforms ABT DO Retro(mindom), but the
opposite happens for 25-1-25.

4.4 Discussion

Looking at all results together, we come to the straightforward conclusion that
AgileABT(α) with neighbourhood-based heuristics, namely deg, fdeg and pdeg
perform very well compared to other techniques. We think that neighbourhood-
based heuristics perform well thanks to their ability to take into account the
structure of the problem [3]. Distinctly, among these three heuristics dom/pdeg
seems to be the best one because of the limited changes on the agent at the
first position. In dom/pdeg τ[1] = dom(λ[1]) because pdeg(λ[1])= 1. Thus, the
number of order changes (cost on messages) in AgileABT(dom/pdeg) is reduced.
Note that the strength of AgileABT(α) is that it enables any ordering to be
identified and executed as the algorithm runs. However, each change invokes a
series of coordination messages, and so too many changes of order will have a
negative impact.

On the other hand the AgileABT(α) with the conflict-directed variable or-
dering heuristic, namely wdeg, shows a relatively poor performance. This fact
can be explained by the limited amount of constraint propagation performed by
DisCSP algorithms. Furthermore, asynchrony affects reception and treatment of
ok? and ngd messages and has a direct impact on the computation of weights
and new orders. For some instances of the coloring problem, the performance of
the conflict-directed heuristic varies significantly from one execution to another,
indicating it is more sensitive to the asynchrony than the other heuristics.

5 Related Work

Bliek ([5]) proposed Generalized Partial Order Dynamic Backtracking
(GPODB), an algorithm that generalizes both Partial Order Dynamic Back-
tracking (PODB) [9] and Dynamic Backtracking (DBT) [8]. This generalization

8 http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html


was obtained by relaxing the safety conditions of PODB which results in addi-
tional flexibility. AgileABT has some similarities with PODB and GPODB be-
cause AgileABT also maintains a set of safety conditions. However, both PODB
and GPODB are subject to the same restriction: when a dead end occurs, the
backtracking target of the generated no-good must be selected such that the
safety conditions induced by the new no-good satisfy all existing safety condi-
tions. By contrast, AgileABT overcomes this restriction by allowing the violation
of existing safety conditions by relaxing some explanations.

Silaghi et al. proposed Asynchronous Backtracking with Reordering (ABTR)
[21,22,23]. In ABTR, a reordering heuristic identical to the centralized dynamic
backtracking [8] was applied to ABT. The authors in [29] proposed Dynamic Or-
dering for Asynchronous Backtracking (ABT DO) [29]. When an ABT DO agent
assigns a value to its variable, it can reorder lower priority agents. In other words,
an agent on a position j can change order of the agents on positions j+1 through
n. The authors in [29] proposed three different ordering heuristics to reorder
lower priority agents: random, min-domain and nogood-triggered inspired by dy-
namic backtracking [8]. Their experimental results show that nogood-triggered
(ABT DO-ng), where the generator of the no-good is placed just after the target
of the backtrack, is best.

A new kind of ordering heuristics for ABT DO is presented in [31] for re-
ordering higher agents. These retroactive heuristics enable the generator of a
no-good (backtrack) to be moved to a higher position than that of the target of
the backtrack. The resulting algorithm is called ABT DO Retro. The degree of
flexibility of these heuristics depends on the size of the no-good storage capacity
K, which is predefined. Agents are limited to store no-goods with a size equal
to or smaller than K. The space complexity of the agents is thus exponential
in K. However, the best of those heuristics, ABT DO Retro(mindom) [31,17],
does not need any no-good storage. In ABT DO Retro(mindom), the agent that
generates a no-good is placed between the last and the second last agents in the
no-good if its domain size is smaller than that of the agents it passes on the way
up.

6 Conclusion

We proposed a general framework for reordering agents asynchronously in DisC-
SPs which can implement many different dynamic variable ordering heuristics.
Our general framework is sound, complete, and has a polynomial space complex-
ity. We proved that a simple condition on the measure used in the heuristics is
enough to guarantee termination. We implemented several DVOs heuristics that
are well-known in centralized CSP but were not able to be used before in the
distributed CSP. Our empirical study shows the significance of these DVOs on
a distributed setting. In particular, it highlights the good performance of neigh-
borhood based heuristics. Future work will focus on designing new DVOs that
can be used in AgileABT(α).
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