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Abstract We introduce in this paper an itemset mining approach to tackle
the fault localization problem, which is one of the most difficult processes in
software debugging. We formalize the problem of fault localisation as finding
the k best patterns satisfying a set of constraints modelling the most suspicious
statements. We use a Constraint Programming (CP) approach to model and
to solve our itemset based fault localization problem. Our approach consists of
two steps: i) mining top-k suspicious suites of statements; ii) fault localization
by processing top-k patterns. Experiments performed on standard benchmark
programs show that our approach enables to propose a more precise localiza-
tion than a standard approach.

Keywords Fault localization · Itemset mining · Constraint programming ·
Test case coverage

1 Introduction

Developing software programs is universally acknowledged as an error-prone
task. The major bottleneck in software debugging is how to identify where the
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bugs are (Vessey, 1985), this is known as fault localization problem. Nonethe-
less, locating a fault is still an extremely time-consuming and tedious task.
Over the last decade, several automated techniques have been proposed to
tackle this problem.

Most of automated techniques for fault localization compare two kinds
of execution traces, namely the passed and failed executions (Jones et al,
2002), such as Tarantula (Jones and Harrold, 2005) which is one of the most
popular fault localization technique. These methods are based on a scoring
function to evaluate the suspiciousness of each statement in the program by
exploiting the occurrences of the considered statements in passing and failing
test cases. Since, the statements with high scores correlate highly with faults
and that brings us to a total order on statements from highly suspicious to
guiltless statements. It is important to stress that this technique does not
differentiate between two failing (resp. passing) test cases, and consequently
it ignores the dependencies between statements that can help us to locate the
fault.

Other techniques take in account the cause effect chains with a dependence
analysis by using, for instance, program slicing (Agrawal et al, 1993). The
disadvantage here is that fault can be located in a quite large slice (static
slicing) and/or can be time/space consuming (dynamic slicing).

Recently, the problem of fault localization was abstracted as a data mining
problem. Cellier and al. (Cellier et al, 2009, 2011) propose a combination of
association rules and Formal Concept Analysis (FCA) to assist in fault local-
ization. The proposed methodology tries to identify rules between statement
execution and corresponding test case failure. The extracted rules are then
ordered as a lattice and explored bottom up to detect the fault.

In the data mining community, many approaches have promoted the use of
constraints to focus on the most promising knowledge according to a potential
interest given by the final user. As the process usually produces a large number
of patterns, a large effort is made to a better understanding of the fragmented
information conveyed by the patterns and to produce pattern sets i.e. sets
of patterns satisfying properties on the whole set of patterns (De Raedt and
Zimmermann, 2007; Rojas et al, 2014). Discovering top-k patterns (i.e. the k
best patterns according to a score function) is a recent trend in constraint-
based data mining to produce useful pattern sets (Crémilleux and Soulet,
2008).

In this spirit of this promising avenue, we propose in this paper an itemset
mining approach to tackle the fault localization problem. We formalize the
problem of fault localization as finding the k best patterns satisfying a set
of constraints modeling the most suspicious statements. We use the test cases
coverage of a program collected during the testing phase for finding the location
of program fault. Our approach, which benefits from the recent progress on
cross-fertilization between data mining and Constraint Programming (Guns
et al, 2011; Khiari et al, 2010), is achieved in two steps:
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1. Mining top-k suspicious patterns (i.e., set of statements) according to dom-
inance relations and using constraints dynamically posted,

2. Ranking the statements by processing the top-k patterns in an ad-hoc
ranking algorithm to locate the fault.

Our localization approach is based on two working hypothesis. The first
hypothesis is usually called the competent developer hypothesis (DeMillo et al,
1978) . It states that, even some faults are introduced, the resulting program
would certainly fulfill almost all of its specifications. In other words, the re-
sulting program may contain faults, but it will certainly tackle the problem
it has been designed for. The second requirement on which our approach is
based is the single fault hypothesis, i.e., there is only one faulty statement in
the program. This requirement might appear as being restrictive but it has
been shown that complex faults usually result from the coupling of single faults
(a.k.a. the coupling effect (Jones et al, 2002)).

Experiments performed on several benchmark of single fault programs
(Siemens suite) show that our approach enables to propose a more precise lo-
calization as compared to the most popular fault-localization technique Taran-
tula (Jones and Harrold, 2005). To the best of our knowledge, our proposal is
the first data mining approach that exploits pattern sets to fault localization.

This paper is organized as follows. Section 2 sketches definitions and presents
the context. Section 3 gives a background on pattern discovery and describes
the CP modeling for itemset mining. Section 4 presents the detail of our ap-
proach for fault localization. Section 5 presents an illustrative example of fault
localization using our approach. Section 6 reports experimental results and a
complete comparison with Tarantula. Section 7 presents the related fault-
localization methods in the area of data mining and using failing/passing exe-
cutions. Section 8 concludes the paper and gives some directions for the future
works.

2 Background and Motivation

This section presents background knowledge about the problem of fault local-
ization and constraint satisfaction problems.

2.1 Fault localization problem

In software engineering, a failure is a deviation between expected and actual
result. An error is the part of the program that is liable to lead to a subsequent
failure. Finally, a fault in the general sense is the adjudged or hypothesized
cause of an error (Laprie et al, 1992). The purpose of fault localization is to
pinpoint the root cause of observed symptoms under test cases.

Given a faulty program P having n lines, labeled L = {e1, e2, ..., en}. For
instance, for the program "Character counter" given in Figure 1, we have
L = {e1, e2, ..., e10}.
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Test cases
Program : Character counter tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8
function count (char *s) {

int let, dig, other, i = 0;
char c;

e1: while (c = s[i++]) { 1 1 1 1 1 1 1 1
e2: if(’A’<=c && ’Z’>=c) 1 1 1 1 1 1 0 1
e3: let += 2; //- fault - 1 1 1 1 1 1 0 0
e4: else if ( ’a’<=c && ’z’>=c ) 1 1 1 1 1 0 0 1
e5: let += 1; 1 1 0 0 1 0 0 0
e6: else if ( ’0’<=c && ’9’>=c ) 1 1 1 1 0 0 0 1
e7: dig += 1; 0 1 0 1 0 0 0 0
e8: else if (isprint (c)) 1 0 1 0 0 0 0 1
e9: other += 1; 1 0 1 0 0 0 0 1
e10: printf("%d %d %d\n", let, dig, other);} 1 1 1 1 1 1 1 1
Passing/Failing F F F F F F P P

Fig. 1: Example of program and its associated transactional dataset.

Definition 1 (Test case) A test case tci is a tuple 〈Di, Oi〉, where Di is
a collection of input settings for determining whether a program P works as
expected or not, and Oi is the expected output.

Definition 2 (Passing and failing test case) Let 〈Di, Oi〉 a test case and
Ai be the current output returned by a program P after the execution of its
input Di. If Ai = Oi, tci is considered as a passing (i.e. positive), failing (i.e.
negative) otherwise.

Definition 3 (Test suite) A test suite T = {tc1, tc2, ..., tcm} is a set of m
test cases that are intended to test whether the program P follows the specified
set of requirements.

Definition 4 (Test case coverage) Given a test case tci and a program
P , the set of executed (at least once) statements of P with tci is a test case
coverage Ii = (Ii,1, ..., Ii,n) where Ii,j = 1 if the jth statement is executed, 0
otherwise.

A test case coverage indicates which parts of the program are active during
a specific execution. For instance, the test case tc4 in Figure 1 covers the
statements 〈e1, e2, e3, e4, e6, e7, e10〉. The according test case coverage is then
I4 = (1, 1, 1, 1, 0, 1, 1, 0, 0, 1).

2.2 Constraint Satisfaction Problem

A CSP consists of a finite set of variables X = {x1, . . . , xn} with finite domains
D = {D1, . . . , Dn} such that each Di is the set of values that can be assigned
to xi, and a finite set of constraints C. Each constraint C(Y ) ∈ C express a
relation over a subset Y of variables X. The objective is to find an assignment
(xi = di) with di ∈ Di for i = 1, . . . , n, such that all constraints are satisfied.
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Example 1 Let be the following CSP:

X = {x1, x2, x3}
D = {D1, D2, D3} where, D1 = {1, 2}, D2 = {0, 1, 2, 3}, D3 = {2, 3}
C = {C1(x1, x2), C2(x1, x2, x3), C3(x1)} where,

C1(x1, x2) : x1 > x2
C2(x1, x2, x3) : x1 + x2 = x3
C3(x1) : x1 6= 0

Here, the current CSP admits two solutions : (x1 = 2, x2 = 0, x3 = 2) and
(x1 = 2, x2 = 1, x3 = 3).

In Constraint Programming (see (Rossi et al, 2006)), the resolution pro-
cess consists of iteratively interleaving search phases and propagation phases.
The search phase essentially consists of enumerating all possible variable-value
combinations, until we find a solution or prove that none exists. It is generally
performed on a tree-like structure. In order to avoid the systematic generation
of all the combinations and reduce the search space, the propagation phase
shrinks the search space: each constraint propagation algorithm (also called
propagator) removes values that a priori cannot be part of a solution w.r.t.
the partial assignment built so far. The removal of inconsistent domain values
is called filtering. If all inconsistent values are removed from the domains with
respect to a constraint C, we say that C is domain consistent.

Consider for example the constraint C1(x1, x2) : x1 > x2. The propagator
for this constraint will remove values 2 and 3 from D2. The repeated applica-
tion of propagators can lead to a successive reduction of domains until reaching
a fixed point where no value can be pruned. At this point, the search assigns a
variable one of its values. Whenever the domain of one of the variables becomes
empty, the search backtracks to explore alternatives.

Constraint programming provides a very expressive type of constraints.
One can denote the predefined constraints (i.e., arithmetic constraints), con-
straints given in extension (list of allowed/forbidden combinations of values),
and logical combination of constraints. Another kind of constraints are reified
constraints, also known as meta constraints. A reified constraint b↔ c involves
a boolean variable b and a constraint c, and it is equivalent to (b = 1∧c)∨(b =
0∧¬c). This kind of constraints is useful to express propositional formulas over
constraints, formulas that are common in data mining (see Section 3).

3 Frequent Itemset Mining

This section gives a brief overview of the CP approach for itemset mining (De Raedt
et al, 2008; Guns et al, 2011).

3.1 Context and definitions

Let I be a set of distinct literals called items and T = {1, ...,m} a set of
transaction identifiers. An itemset (or pattern) is a non-null subset of I. The
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Table 1: Transactional dataset D

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Table 2: Binary matrix

Trans. A B C D E F
t1 0 1 0 0 1 1
t2 0 1 1 1 0 0
t3 1 0 0 0 1 1
t4 1 1 1 1 1 0
t5 0 1 1 1 1 0
t6 0 1 1 1 1 1
t7 1 1 1 1 1 1

language of itemsets corresponds to LI = 2I\∅. A transactional dataset is a set
D ⊆ I×T . Table 1 presents a transactional dataset D where each transaction ti
gathers articles described by items denoted A,. . . ,F . The traditional example
is a supermarket dataset in which each transaction corresponds to a customer
and every item in the transaction to a product bought by the customer.

Definition 5 (Coverage and Frequency) The coverage of an itemset x is
the set of all identifiers of transactions in which x occurs: coverD(x) = {t ∈
T |∀i ∈ x, (i, t) ∈ D}. The frequency of an itemset x is the size of its cover:
freqD(x) = |coverD(x)|.

Example 2 Consider the transactional dataset in Table 1. We have for x =
BEF that coverD(x) = {t1, t6, t7} and freqD(x) = 3.

Constraint-based pattern mining aims at extracting all patterns x of LI
satisfying a query q(x) (conjunction of constraints), which usually define what
we call a theory (Mannila and Toivonen, 1997): Th(q) = {x ∈ LI | q(x) is true}.
A common example is the frequency measure leading to the minimal frequency
constraint. The latter provides patterns x having a number of occurrences in
the dataset exceeding a given minimal threshold minfr: freqD(x) ≥ minfr.
Another usual constraint is the size constraint which constrains the number
of items of a pattern x.

Example 3 Let us consider the following query q(x) = freqD(x) ≥ 5∧ size(x) =
2. It addresses all frequent patterns (minfr = 5), having a size equal to 2. With
the running example in Table 1, we get four solutions : BE,BC,BD and CD.

In many applications, it appears highly appropriate to look for contrasts
between subsets of transactions, such as passing and failing test cases in fault
localization (see Section 4). The growth rate is a well-used contrast mea-
sure (Novak et al, 2009). Let D be a dataset partitioned into two subsets
D1 and D2:

Definition 6 (Growth rate) The growth rate of a pattern x from D2 to
D1 is:

mgr(x) =
|D2| × freqD1(x)

|D1| × freqD2
(x)
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Emerging Patterns are those having the growth rate greater than some
given threshold. Jumping Emerging Patterns are those which do not occur in
D2. They are at the core of a useful knowledge in many applications involving
classification features such as the discovery of suspicious statements in the
program (see Section 5).

The collection of patterns contains redundancy w.r.t. measures. Given a
measure m, two patterns xi and xj are said to be equivalent if m(xi) = m(xj).
A set of equivalent patterns forms an equivalent class w.r.t. m. The largest
element w.r.t. the set inclusion of an equivalence class is called a closed pattern.

Definition 7 (Closed pattern) A pattern xi ∈ LI is closed w.r.t. a measure
m iff ∀xj ∈ LI , xj ) xi ⇒ m(xj) 6= m(xi).

The set of closed patterns is a compact representation of the patterns (i.e
we can derive all the patterns with their exact value for m from the closed
ones).

Example 4 Consider the frequency measure (i.e. m = freq). In our running
example, if we impose that freqD(x) ≥ 5, we get 9 frequent patterns which are
summarized by four equivalence classes (and thus 4 closed frequent patterns).
For instance, BCD〈5〉1 is a closed pattern for BC〈5〉, BD〈5〉, CD〈5〉, C〈5〉 and
D〈5〉. The three other equivalence classes are: B〈6〉, E〈6〉 and BE〈5〉.

Moreover, the user is often interested in discovering richer patterns satisfy-
ing properties involving several local patterns. These patterns define pattern
sets (De Raedt and Zimmermann, 2007) or n-ary patterns (Khiari et al, 2010).
The approach that we present in this paper is able to deal with pattern sets
such as the top-k patterns.

Definition 8 (top-k patterns) Let m be a measure, and k an integer. top-k
is the set of k best patterns according to m :
{x ∈ LI | freqT (x) ≥ 1 ∧ 6 ∃y1, . . . , yk ∈ LI : ∀1 ≤ j ≤ k,m(yj) > m(x)}

Example 5 In our running example, the top-4 closed frequent patterns (i.e.,
m = freq) are: B〈6〉, E〈6〉, BE〈5〉, BCD〈5〉.

3.2 CP model for the itemset mining

As defined in Section 3.1, let D be a dataset where I is the set of its n items and
T the set of its m transactions. The set of items can be indexed by consecutive
integers and thus can be referenced by their indexes; consequently, without
loss of generality, the set of items I is supposed to be a set of n integers
I = {1, ..., n}. The transactional dataset D can be represented with a 0/1
(m,n) transactional boolean matrix d, such that

∀t ∈ T ,∀i ∈ I, (dt,i = 1)↔ (i ∈ t).
1 Value between 〈.〉 indicates the frequency of a pattern.
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Table 2 illustrates the transactional binary matrix of the transactional dataset
given in Table 1, where 1 (resp. 0) means that an article is (resp. is not)
in a transaction. In (De Raedt et al, 2008), the authors model an unknown
patternM ⊆ I and its associated dataset T by introducing two sets of boolean
variables:

– item variables {M1,M2, ...,Mn} where (Mi = 1) iff (i ∈M),
– transaction variables {T1, T2, ..., Tm} where (Tt = 1) iff (M ⊆ t).

The relationship betweenM and T is modeled by reified constraints stating
that, for each transaction t, (Tt = 1) iff M is a subset of t:

∀t ∈ T : (Tt = 1)↔
∑
i∈I

Mi × (1− dt,i) = 0 (1)

Using the boolean encoding, it is worth noting that some measures are easy
to encode: freqD(M) =

∑
t∈T Tt and size(M) =

∑
i∈IMi. So, the minimal

frequency constraint freqD(M) ≥ minfr (where minfr is a threshold) is en-
coded by the constraint

∑
t∈T Tt ≥ minfr. In the same way, the minimal size

constraint size(M) ≥ α (where α is a threshold) is encoded by the constraint∑
i∈IMi ≥ α.

Finally, the closedness constraint closedfreq(M) ensures that a pattern has
no superset with the same frequency; it is encoded in (Guns et al, 2011) using
equation (1) as follows:

closedfreq(M) ≡

[
∀i ∈ I : (Mi = 1)↔

∑
t∈T

Tt × (1− dt,i) = 0

]
(2)

4 Fault Localization by Itemset Mining

In this section, we first give our modeling of the fault localization problem
as an itemset mining under constraints. Then, we formalize the problem of
fault localization as finding the k most suspicious patterns and we detail our
algorithm for mining top-k suspicious patterns. Finally, we describe how to
exploit the top-k patterns to return at the end an accurate fault localization.

4.1 Modeling the fault localization as a constrained itemset mining

Let L = {e1, ..., en} be a set of indexed statements composing a program P and
T = {tc1, ..., tcm} a set of test cases. The transactional dataset D is defined as
follows: (i) each statement of L corresponds to an item in I, (ii) the coverage
of each test case tci forms a transaction in T . Moreover, to look for contrasts
between subsets of transactions, T is partitioned into two disjoint subsets T +

and T −. T + (resp. T −) denotes the set of coverage of positive (resp. negative)
test cases.
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Let d be the 0/1 (m,n) matrix representing the dataset D. So, ∀t ∈ T ,∀i ∈
I, (dt,i = 1) if and only if the statement i is executed (at least once) by
the test case t. Figure 1 shows the transactional dataset associated to the
program Character counter. For instance, the coverage of the test case t5 is
I5 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 1). As t5 fails, thus I5 ∈ T −.

Let M be the unknown suspicious pattern we are looking for. As detailed
in Section 3.2, we introduce two sets of boolean variables:
item variables {M1,M2, ...,Mn} representing statements, and transaction vari-
ables {T1, T2, ..., Tm} representing test cases. So,M will represent a suspicious
set of statements.

Like for T , transaction variables are partitioned into two disjoint subsets:
variables {T+

t } representing positive test cases T + and variables {T−t } denot-
ing negative test cases T −. We define also the frequency measure on T + (resp.
T −) as freq+(M) =

∑
t∈T + T

+
t (resp. freq−(M) =

∑
t∈T − T

−
t ).

To reduce the redundancy among the extracted patterns, we have to im-
pose closedfreq(M), which states that M must be a closed pattern w.r.t the
frequency measure. In our case, this constraint is imposed on T + and T −
to ensure that M has no superset with the same frequencies in the two sets.
We encode this constraint using equation (3), which is a decomposition of the
closedness constraint (2) on T + and T −.

closedfreq(M) ≡[
∀i ∈ I : (Mi = 1)↔

( ∑
t∈T +

T+
t × (1− d+t,i) = 0

)
∧
( ∑

t∈T−
T−t × (1− d−t,i) = 0

)]
(3)

4.2 top-k suspicious patterns

The intuition behind the most of fault localization methods is that statements
that appear in the failing test cases are more likely to be suspicious, while the
statements that appear only in the traces of passed executions are more likely
to be guiltless (Eric Wong et al, 2010; Jones and Harrold, 2005; Renieres and
Reiss, 2003). To extract the most suspicious patterns (i.e. set of statements),
we define a dominance relation �R between patterns.

Definition 9 (Dominance relation) Given a bipartition of T into two dis-
joint subsets T + and T −, a patternM dominates another patternM ′ (denoted
M �R M ′), iff: [

freq−(M) > freq−(M ′)
]
∨ (4)

[(freq−(M) = freq−(M ′))∧(freq+(M) < freq+(M ′))]

The dominance relation states that M �R M ′, if M is more frequent than
M ′ in T −. If M and M ′ have the same frequency in T −, M should have a less
positive frequency to dominate M ′.

We also define the indistinct relation =R between patterns.
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Definition 10 (Indistinct relation) Two patternsM andM ′ are indistinct
(denoted by M =R M ′), iff[

freq−(M) = freq−(M ′)
]
∧
[
freq+(M) = freq+(M ′)

]
∧
[
(M 6⊂M ′) ∧ (M ′ 6⊂M)

]
(5)

The indistinct relation states that two patterns can have the same level
of suspiciousness. According to the dominance relation �R, we define a top-k
suspicious patterns.

Definition 11 (top-k suspicious pattern) A pattern M is a top-k suspi-
cious pattern (according to �R) iff 6 ∃P1, . . . Pk,∈ LI ,∀1 ≤ j ≤ k, Pj �R M .

Thus, M is a top-k suspicious pattern if there exists no more than (k− 1)
patterns that dominate M . A set of top-k suspicious patterns is defined as
follows:

{M ∈ LI | elementary(M) ∧ 6 ∃P1, . . . Pk,∈ LI ,∀1 ≤ j ≤ k, Pj �R M}

The constraint elementary(M) allows to specify that M must satisfy a
basic property. In our case, we impose that searched suspicious patterns have
to satisfy the following property:

elementary(M) ≡ closedfreq(M) ∧ freq−(M) ≥ 1 ∧ size(M) ≥ 1,

which means that a suspicious pattern M must be closed in positive and
negative test cases, must include at least one statement and must appear at
least in a negative test case.

4.3 Mining top-k suspicious patterns

This section shows how the top-k suspicious patterns can be extracted using
constraints dynamically posted during search (Rojas et al, 2014). The main
idea is to exploit a dominance relation (noted �R) between sets of state-
ments to produce a continuous refinement on the extracted patterns thanks
to constraints dynamically posted during the mining process. Each dynamic
constraint will impose that none of the suspicious patterns already extracted
is better (w.r.t �R) than the next pattern (which is searched). This process
stops when no better solution can be obtained.

Algorithm 1 extracts the top-k patterns (i.e., most suspicious patterns)
according to the dominance relation �R. It takes as input the positive and
negative test cases (T + and T −), a positive integer k, and returns as output
top-k suspicious patterns. The algorithm starts with a constraint store equal
to elementary(M) (line 1). First, we search for the k first suspicious patterns
that are solutions of the current constraint store, using the SolveNext(C)
function (lines 2-4). The SolveNext(C) function asks a CP solver to return a
solution of C which is different from the previous returned solutions. Initially,
the first call of SolveNext(C) returns the pattern P1. The second call will
return a pattern P2 6= P1, and so on. During the search, a list of top-k
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Algorithm 1: Extraction of top-k most suspicious patterns 〈S1, ..., Sk〉

Input T +, T −, k
Output S: top-k most suspicious patterns

1 C ← elementary(M); S ← ∅; i← 1;
2 repeat
3 P ← SolveNext(C);
4 if P 6= ∅ then S.add(P ); i← i+ 1

until (i > k) or (P = ∅);
5 Sort S according to decreasing order �R;
6 while P 6= ∅ do
7 C.add(M �R Sk);
8 P ← SolveNext(C);
9 if P 6= ∅ then

10 S.remove(Sk);
11 Insert P in S according to decreasing order �R;

end
end
return S;

suspicious patterns S is maintained. Once the k patterns are found, they are
sorted according to decreasing order �R (line 5). Thereafter, each time a new
pattern is found, we remove from S the least preferred pattern w.r.t. �R (line
10), we add the new pattern to S according to the decreasing order �R (line
11) and we add dynamically a new constraint (M �R Sk) at line 7 stating that
the new searched pattern M must be better w.r.t. �R than the least pattern
in the current top-k list S. Thus, the next solutions should verify both the
current set of constraints store and the new constraints added dynamically.
This process is repeated until no pattern is generated.

4.4 Fault localization by processing top-k suspicious patterns

Our top-k algorithm returns an ordered list of k best patterns S = 〈S1, . . . , Sk〉.
Each pattern Si represents a set of statements that can explain and locate the
fault. From one to another, some statements are appearing/disappearing ac-
cording to their frequencies in the positive/negative datasets (freq−, freq+).

We propose in this section an algorithm (see Algorithm 2) that takes as
input the top-k patterns and returns a ranked list Loc of most accurate sus-
picious statements enabling to better locate the fault (line 14). The returned
list Loc includes three computed ordered lists noted Ω1, Ω2 and Ω3. Elements
of Ω1 are ranked first, followed by those of Ω2, then by elements of Ω3, which
contains the least suspicious statements.

Algorithm 2 starts by merging the indistinct patterns of S (def. 10), i.e. thus
having the same frequencies in failing and passing test cases, or equivalently
having the same level of suspiciousness. This treatment is achieved by the
function Merge(S) (line 1) which returns a new list SM. A pattern resulting
from merging mutliple patterns is a single pattern including all statements
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contained in original patterns. Let us note that the returned list SM may be
equal to the initial top-k list S if there are no pair of patterns with the same
frequencies (freq−, freq+). Then, Algorithm 2 initializes Ω1 and Ω3 to the
empty list. Ω2 is initialized by statements that appear in the most suspicious
pattern of SM (i.e. SM1) (line 3).

From this set of most suspicious statements Ω2, Algorithm 2 will try to
differentiate these statements by taking advantage of the three following prop-
erties 1, 2 and 3.

Property 1 Given a top-k patterns S, SM1 is an over-approximation of the
fault-location: ∀Si ∈ S : (freq−1 = freq−i ) ∧ (freq+1 = freq+i )⇒ Si ⊆ SM1

Thus, SM1 contains most likely the faulty statement, i.e. statements that
are most frequent in the negative dataset and less frequent in the positive
dataset. However, it may also contains other statements that are suspicious
for a certain degree (over-approximation). That is why, in Algorithm 2, Ω2 is
initialized to SM1 at line 3.

Property 2 Given the sets of patterns SM (resulting from top-k patterns S)
and an over-approximation of the fault-location SM1 (Ω2), some statements
of SM1 will disappear in the next SMi ∈ SM : (SM1 \ SMi) 6= ∅.

In Algorithm 2, statements that disappear from Ω2 and appear in a given
SMi are noted ∆D (line 5). According to the frequency values, we have two
cases:

1. SMi has the same frequency as SM1 in the negative dataset but SMi is
more frequent in the positive dataset than SM1. Thus, statements of ∆D

are less frequent in the positive dataset compared with those of (Ω2 \∆D).
So, statements of ∆D are more suspicious than the remaining statements
in Ω2\∆D and should be ranked first (removed from Ω2 (line 8) and added
to Ω1 (line 7)).

2. SMi is less frequent than SM1 in the negative dataset. Again, statements
of ∆D should be ranked first and added to Ω1.

Consequently, Ω1 contains the most suspicious statements derived from the
initial state of Ω2. The remaining statements in Ω2 are those appearing in all
patterns SMi and are ranked second in terms of suspiciousness.

Property 3 Given the sets of patterns SM, and an over-approximation of the
fault-location SM1, some statements will appear in the next SMi ∈ SM :
(SMi \ SM1) 6= ∅.

According to the property 3, the statements that are not in SM1 and that
appear in a given SMi (line 9) are noted ∆A. So, ∆A should be added to Ω3

(line 13) and ranked after Ω2 as the least suspicious statements in the program
(line 14).

In summary, the first ordered list Ω1 ranks the statements of Ω2 according
to their order of disappearance in SM2..SMl (line 4). At the end of the algo-
rithm, Ω2 will contain the remaining less suspicious statements as compared
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to the ones of Ω1. Finally, the ordered list Ω3 will contain statements, which
do not belong to Ω2 but appears gradually in SM2 to SMl.

Algorithm 2: Fault localization using top-k patterns

Input top-k patterns S = 〈S1, . . . , Sk〉, frequecies of each Si: (freq+i , freq
−
i )

Output an ordered list of suspicious statements Loc = 〈Ω1, Ω2, Ω3〉
1 SM←Merge(S);
2 Ω1 ← 〈〉 ; Ω3 ← 〈〉; Loc← 〈〉;
3 Ω2 ← SM1; l← |SM|;
4 foreach i ∈ 2..l do
5 ∆D ← Ω2 \ SMi;
6 if ∆D 6= ∅ then
7 Ω1.add(∆D);
8 Ω2.removeAll(∆D);

end
9 ∆A ← SMi \ SMi−1;

10 ω ← ∅;
11 foreach b ∈ ∆A do
12 if (∀ω′ ∈ Ω3, ∀ω” ∈ Ω1 : b /∈ ω′ ∧ b /∈ ω”) then ω ← ω ∪ {b}

end
13 if ω 6= ∅ then Ω3.add(ω)

end
14 Loc.addAll(Ω1); Loc.add(Ω2); Loc.addAll(Ω3);

return Loc;

5 Running Example

In this section, we give an illustrative example to show the result of our
method through a simple program named Character counter, introduced in
(Gonzalez-Sanchez et al, 2011) and given in Figure 1. The program contains
ten executable statements, executed on eight test cases noted from tc1 to tc8
with failing (tc1 to tc6), and passing test cases (tc7 and tc8). In this exam-
ple, the fault is introduced at line 3 where the correct statement "let +=
1" is replaced by "let += 2". Figure 1 reports the coverage of each state-
ment with the value 1 if the statement is executed at least once by the test
case, 0 otherwise. According to our approach, the coverages of failing (resp.
passing) test cases form transactions of the negative (resp. positive) dataset
T − = {tc1, tc2, tc3, tc4, tc5, tc6} (resp. T + = {tc7, tc8}). Our constraint based
model presented in Section 4 aims at extracting the k most suspicious patterns.
We recall that the meaning given to the notion of suspiciousness is related to
the frequency of a given statement in the negative and/or positive datasets.
This means that the most suspicious statements are the ones with the highest
negative frequency and/or the lowest positive frequency. In this example, we
select k equals to the number of statements (i.e., k = 10) which is sufficient
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Patterns of statements freq+ freq− Rank
S1 : {e1, e2, e3, e10} 0 6 1
S2 : {e1, e2, e10} 1 6 2
S3 : {e1, e10} 2 6 3
S4 : {e1, e2, e3, e4, e10} 0 5 4
S5 : {e1, e2, e4, e10} 1 5 5
S6 : {e1, e2, e3, e4, e6, e10} 0 4 6
S7 : {e1, e2, e4, e6, e10} 1 4 7
S8 : {e1, e2, e3, e4, e5, e10} 0 3 8
S9 : {e1, e2, e3, e4, e6, e7, e10} 0 2 9
S10 : {e1, e2, e3, e4, e6, e8, e9, e10} 0 2 9

Table 3: The top-k suspicious patterns returned by Algorithm 1.

Statements Rank List
e3 1 Ω1

e2 2 Ω1

{e1, e10} 4 Ω2

e4 5 Ω3

e6 6 Ω3

e5 7 Ω3

e7 10 Ω3

{e8, e9} 10 Ω3

Table 4: The most suspicious statements with their ranks returned by Algo-
rithm 2.

Statements Tarantula Growth rate Rank
e3 1 ∞ 1
e5 1 ∞ 1
e7 1 ∞ 1
e2 0.66 2 4
e4 0.62 1.67 5
e6 0.57 1.33 6
e1 0.5 1 8
e10 0.5 1 8
e8 0.4 0.67 10
e9 0.4 0.67 10

Table 5: The most suspicious statements with their ranks returned by Taran-
tula and Growth rate measure.

to reach a good accuracy (see Section 6) and then we give a ranking on all
statements in P from the most suspect to the guiltless ones by processing
the top-k patterns. Table 3 reports the top-k ranking of the different patterns
computed by the first step of our approach with their respective frequencies.
Table 4 gives the results obtained by Algorithm 2 taking as input Table 3 as
a second step of our approach.

Tarantula and Growth rate measures: Tarantula’s formula, which
computes the suspiciousness of a statement e in the considered program, is
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defined as follows:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed + failed(e)

totalfailed

(6)

Formula (6) is very similar to the growth rate formula (given in definition 6)
which measures the emergence of a given pattern from a dataset to another
one (i.e., in our case, from negative test cases to positive test cases). The
two formulas evaluate the amount of the negative frequency compared with
the positive frequency; but Tarantula avoids dividing by a null positive
frequency. In fact, the Tarantula values have the same increase as the growth
rate, and consequently, they both give the same ranking of the statements
suspiciousness, as illustrated in Table 5.

According to the Algorithm 2 (line 1), as a first step and before ranking
the statements, we merge all patterns with the same frequencies (i.e., the same
level of suspiciousness). From Table 3, we have ∀i < 9,SMi = Si, and the two
last patterns S9, S10 will be merged in one pattern SM9 that will contain all
statements in S9 and in S10.

By comparing the results and the ranking strategy of our method (Table
4 ) with those given by Tarantula in Table 5 (2nd column) and the growth
rate (3th column) we draw the following observations:

• First, in our results, the fault, that is introduced in e3, is ranked first and
is the most suspicious statement. According to our Algorithm 2, this state-
ment is in the most suspicious pattern SM1 having frequencies (freq+ =
0, freq− = 6). We point out that e3 disappears in the next pattern SM2

having frequencies (freq+ = 1, freq− = 6). Here, e3 appears in SM1 and
disappears in the next SMi, which means that e3 must be added as a dis-
appeared statement to ∆D (at line 5) and removed from Ω2 (line 8). But,
Tarantula considers the three statements e3, e5, e7 as the most suspicious
with the same rank although these statements have different frequencies in
negative test cases. In fact, Tarantula is unable to distinguish between
them.

• By using Tarantula, the statements {e5, e7} are ranked before {e2, e4, e6},
whereas statements {e2, e4, e6} are more suspicious since they are more
present in failing test cases than {e5, e7}. This weak ranking is due to
the low precision provided by Tarantula’s formula (6). This weakness
is offset by the notion of appearing statements. Let us come back to our
example, the statements e4 and e6 are not in the most suspicious pattern
SM1 and they appear in the next patterns. Consequently, these statements
are added as appearing statements to ∆A (line 9) and then added to Ω3.

• Concerning the statements {e8, e9} and {e1, e10}, Tarantula reveals that
these statements have the same suspiciousness without distinguishing them.
Our approach gives the same results and the same suspiciousness because
we got them in the same time (same group). In our approach the statement
e7 has also the same suspiciousness as {e8, e9} because these statements
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Table 6: Faulty programs from the Siemens suite (111 programs).

Program Description Faulty versions LOC LEC Test cases
Replace Pattern replacement 29 514 245 5542
PrintTokens2 Lexical analyzer 9 358 200 4056
PrintTokens Lexical analyzer 4 348 195 4071
Schedule Priority scheduler 5 294 152 2650
Schedule2 Priority scheduler 8 265 128 2680
TotInfo Information measure 19 272 123 1052
Tcas Altitude separation 37 135 65 1578
LOC: lines of code in the correct version – LEC: lines of executable code

appear in different patterns but these patterns have the same frequencies,
so these statements will be in the same pattern after the merging step.

This comparison between the effectiveness of Tarantula and our con-
strained mining method reveals clearly the accuracy of our method which
exploits better the relationships between the statements of the program.

6 Experiments

This section reports several experimental studies. First, we present the bench-
mark programs we used for our experiments (see Sect. 6.1). Second, we detail
our experimental protocol for evaluating our approach (see Sect. 6.2). Third,
we study and discuss the influence of parameter k for mining top-k suspi-
cious patterns (see Sect. 6.3). Fourth, we compare our results with those ob-
tained with Tarantula (Jones and Harrold, 2005) and we study the impact
of varying the size of the test cases on performances of the two approaches
(see Sects. 6.4 and 6.5). Finally, we study and analyze the CPU times of our
approach (see Sect. 6.6).

6.1 Benchmark programs

As benchmark programs, we considered the Siemens suite, which is the most
common program suite used to compare the different fault localization tech-
niques. The suite contains seven C programs, faulty versions of these programs,
and test suites for each category of program2.

We recall here that the Siemens programs suite is assembled for fault lo-
calization studies as well as for fault detection capabilities of control-flow and
data-flow coverage criteria. In our experiments, we exclude 21 versions that are,

2 A complete description of Siemens suite can be found in (Hutchins et al, 1994)
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roughly speaking, out of scope of localization task (e.g., segmentation faults3).
On the whole, we have 111 programs with faults summarized in Table 6.

6.2 Experimental protocol

First of all, we need to know which statement is covered by a given execution.
For that, we use the Gcov4 profiler tool to find out the statements that are
actually executed by a given test case. Gcov can be used also to know how
often each statement is executed. This being said, in our approach we need
only the coverage matrix. Thus, we run the program P with a test case and
we compare the returned result to the expected one. If the returned result
matches with the expected one, we add the according test case coverage to the
positive transactional dataset; otherwise we add it to the negative one.

We implemented our approach as a tool named F-CPminer. The imple-
mentation was carried out in Gecode5, an open and efficient constraint pro-
gramming solver. Our implementation includes Algorithm 1 for mining top-k
suspicious patterns (see Sect. 4) and Algorithm 2 that processes the top-k pat-
terns and returns at the end an accuracy fault localization with a ranking on
statements according to their suspiciousness. All experiments were conducted
on a 3.10 GHz processor Intel Core i5-2400 with 8 GB of memory, running
Ubuntu 12.04 LTS.

To make a fair comparison between our F-CPminer and Tarantula, we
have implemented Tarantula and we evaluated the statement suspiciousness
as presented in (Jones and Harrold, 2005). We used a common metric in fault
localization, the exam score (Wong and Debroy, 2009) that measures the
effectiveness of a given fault localization technique. The exam score gives the
percentage of statements that a developer will check before the one containing
the fault. It is clear that the best approach is the one that has the lowest
percentage of exam score.

Tarantula and F-CPminer can return a set of equivalent statements in
terms of suspiciousness (i.e., with the same suspiciousness degree). In this case,
the effectiveness depends on which statement is to check first. For that reason,
we report two exam scores, the optimistic and the pessimistic one, denoted
respectively o-exam and p-exam. We talk about o-exam (resp. p-exam)
when the first (resp. last) statement to be checked in the set of equivalent
statements is the faulty one. We also define a third metric, ∆-exam = o-
exam − p-exam, representing the margin of the exam score. In other words,
∆-exam represents the distance between the optimistic and the pessimistic
score.

3 In our approach, it is possible to tackle versions with segmentation faults by considering
them as negative examples. In these cases, the last instruction which is mostly at the origin of
the error, is not seen by the execution trace. Moreover, Gcov is not able to generate properly
the covering instructions. Thus, these faulty versions pose many out-of-scope issues which
disturb a safe discussion of the experimental results.

4 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
5 www.gecode.org

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
www.gecode.org
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Fig. 2: Comparing various values of k.

Table 7: F-CPminer versus Tarantula (exam score comparison).
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Replace 5450 92 245 12.34 ± 10.75 11.04 ± 13.95 10.47 ± 9.37 9.31 ± 12.12 1.87 ± 3.11 1.73 ± 3.14
PrintTk2 3827 229 200 2.66 ± 3.26 16.44 ± 17.86 1.72 ± 2.18 15.50 ± 17.37 0.94 ± 1,48 0.94 ± 1.48
PrintTk 4016 55 195 5.89 ± 3.70 13.58 ± 11.21 3.97 ± 3.46 11.66 ± 11.40 1.92 ± 1.71 1.92 ± 1.71
Sched 2506 144 152 25.26 ± 26.51 6.71 ± 3.84 22.63 ± 25.39 5 ± 3.54 2.63 ± 1.44 1.71 ± 0.67
Sched2 2646 34 128 44.82 ± 21.23 62.01 ± 28.73 30.46 ± 22.50 51.17 ± 26.08 14.36 ± 7.18 10.84 ± 5.53
TotInfo 1015 37 123 11.51 ± 7.85 23.62 ± 16.30 5.56 ± 7.06 17.88 ± 14.62 5.95 ± 5.05 5.74 ± 5.14
Tcas 1542 36 65 40.33 ± 27.50 43.95 ± 31.91 16.13 ± 10.84 20.12 ± 14.61 24.19 ± 17.30 23.83 ± 17.62

6.3 Comparing various values of k for mining top-k suspicious patterns

Our first experiment aims to select the best value of k leading to the best
∆-exam score. Here, a small value for ∆-exam means that the method gives
small sets of statements with equivalent suspiciousness, which leads to an
accurate localization. We recall that Algorithm 1 for mining top-k suspicious
patterns takes as input parameter k. For this experiment, we selected three
programs from Replace, Schedule2 and Tcas of different sizes (resp. 245, 128
and 65 executable statements). We have varied the value of k from (n/5) to
(5×n), where n represents the program size in terms of executable statements.

Figure 2 shows the impact of k on the precision of the returned ∆-exam
score (i.e., the distance between the optimistic and pessimistic exam values).
The first observation that we can make is that by increasing the value of k,
we reduce the distance between o-exam and p-exam (i.e., ∆-exam). The
second observation is that starting from a value of k greater or equal to the
program size measured in executable statements (i.e., n), ∆-exam becomes
stable. Throughout the rest of this section and according to our tests, k is
fixed to the program size.
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Table 8: Pairwise comparisons between Tarantula and F-CPminer.

Winner Replace Print2 Print Sched Sched2 Totinfo Tcas Total
F-CPminer (12,12) (6,6) (2,2) (1,1) (7,7) (14,14) (19,20) (61,62)
Tarantula (16,15) (0,0) (0,0) (4,4) (1,1) (2,0) (6,4) (29,24)
tie game (1,2) (3,3) (2,2) (0,0) (0,0) (3,5) (12,13) (21,25)

(p-exam, o-exam)

6.4 F-CPminer versus Tarantula

Table 7 gives an exam score based comparison between F-CPminer and
Tarantula on the 111 faulty programs of Siemens suite. For each class of pro-
gram (e.g., Tcas includes 37 faulty versions), we report the averaged number
of positive test cases |T +|, the averaged number of negative test cases |T −|,
the value of k used in F-CPminer for mining top-k suspicious patterns (cor-
responding to the program size), the averaged p-exam, o-exam and ∆-exam
values ± the standard deviation for each class of programs.

The first observation is that F-CPminer wins on 5 program classes out
of 7 according to the reported o-exam and p-exam values. For instance, if
we take PrintTokens2 class with its 9 faulty versions (see Table 6), using F-
CPminer the fault is localized after examining only 2.66% of the code in the
pessimistic case (p-exam) with a standard deviation less than 4% and only
1.72% in the optimistic case (o-exam) with a standard deviation less than 3%.
On the other side, Tarantula needs to examine 16.44% in the pessimistic
case and 15.5% of the code in the optimistic case, in both cases, the standard
deviation is greater than 17%.

Our second observation relates to∆-exam values that are better in Taran-
tula than F-CPminer in most cases. It is worth mentioning that ∆-exam
relies heavily on the value of k (see Figure 2). Using k equal to the program
size leads us to a difference not exceeding 4% for one program class and 1%
for the other classes comparing to Tarantula.

In order to complement the results given by Table 7, we report in Table 8 a
pairwise comparison between Tarantula and F-CPminer on the 111 faulty
programs. For each category of program (e.g., Tcas), we give the number of
programs where Tarantula or F-CPminer wins by comparing the exam
scores (o-exam and p-exam). We also report the case when the exam values
are equal (i.e., tie game).

The results of Table 8 match with the results given in Table 7, where F-
CPminer is the winner on 5 out of the 7 classes. For instance, if we take
the Tcas program class and by comparing the o-exam (resp. p-exam) value,
F-CPminer is more accurate on 19 (resp. 20) faulty programs, while Taran-
tula is better only on 6 (resp. 4) faulty programs. Finally, both approaches
obtain the same o-exam (resp. p-exam) on 12 (resp. 13) programs.

From Tables 7 and 8, a general observation is that F-CPminer is highly
competitive as compared to Tarantula. Indeed, F-CPminer wins on almost
60% of benchmark programs (61 to 62 out of 111 programs), while Taran-
tula is doing better on 25% of benchmark programs ( 24 to 29 out of 111
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Fig. 3: Tarantula and F-CPminer effectiveness comparison.

programs). Finally, the two approaches behave similarly on 15% of the bench-
mark programs ( 21 to 25 out of 111 programs).

Figure 3 shows the effectiveness comparison, based on p-exam and o-
exam, between Tarantula and F-CPminer. The x-axis reports the exam
values while y-axis reports the cumulative percentages of located faults on
the 111 programs. Let us start with the pessimistic case (i.e. p-exam). Until
10% of exam, both approaches behave similarly by locating more than 40%
of faults. From 10% to 20%, we observe a difference of 10% of located faults
in favour of F-CPminer (i.e., 60% for F-CPminer instead of 50% of located
faults for Tarantula). For values of exam in the interval [20%, 40%], this
difference is reduced up to 6%. Between 60% and 70%, Tarantula arrives
to catch up F-CPminer by locating more than 84% of the faults. However,
F-CPminer enables to detect 100% of faults with a exam value equal to 80%,
while Tarantula needs to reach 100% of exam to locate all the faults. For
the optimistic case (i.e. o-exam) showed with dashed curves, F-CPminer is
acting quickly from the beginning by locating more faults than Tarantula.
It is important to stress that the two curves do not intersect and the one of
F-CPminer is always above the one of Tarantula. Let us note that after
30% of exam, F-CPminer in the pessimistic case detects the same percentage
of faults (i.e., 74%) than Tarantula in the optimistic case.

In order to strengthen the previous results, we carried out a statistical
test using the Wilcoxon Signed-Rank Test, where we are not able to assume
a normal distribution of the population (Lyman Ott et al, 2001). Here, the
one-tailed alternative hypothesis is used with the following null hypothesis
(Tarantula more efficient than F-CPminer): H0 : The exam score using
F-CPminer ≥ The exam score using Tarantula. That is, the alternative
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hypothesis H1 states that our F-CPminer examined a fewer number of state-
ments before locating the fault than Tarantula (F-CPminer more efficient
than Tarantula). With this test, we are able to conclude that the use of
F-CPminer is more efficient than Tarantula (H1 accepted) with 79.99%
confidence in the pessimistic case (p-exam) and 97.99% confidence in the
optimistic case (o-exam). This test strengthens the previous results on the
comparison of F-CPminer with Tarantula.

Overall, we can conclude that F-CPminer enables to locate most of the
faults more quickly than Tarantula in terms of effectiveness (i.e., exam
metric). Moreover, by considering the cumulative exam over all the 111 faulty
programs (i.e. the total number of executable statements that have to be
checked for the whole of the 111 faulty programs), F-CPminer has to check
2861 of statements against 3482 for Tarantula using p-exam (gain of 17%).
With o-exam, F-CPminer needs to check 1808 statements against 2496 for
Tarantula (gain of 27%).

Finally, we point out the following observations over the tested 111 pro-
grams :
– For 110 programs, the faulty statement is in the first pattern (i.e., SM1).
– For 96 programs, the faulty statement is in the first statement disappearing

from SM1.
– For 14 programs, the faulty statement is located in Ω2.
– For only one program, the faulty statement is located in Ω3.
These observations show clearly the effectiveness of the ranking strategy adopted
by Algorithm 2.

6.5 Impact of the size of test cases on fault localization accuracy

In this section, we study the impact of test cases on F-CPminer and Taran-
tula. For that, we have varied the number of test cases given as inputs by
varying the sizes of datasets T + and T −. For each program, we reduced the
size of its datasets from 100% to 10% by removing randomly at each time 10%
of test cases. At each time, we report the exam score (o-exam and p-exam)
for F-CPminer and Tarantula. In this section, we selected four programs
to present (PrintTokens2-v3, Tcas-v28, TotInfo-v18 and Replace-v22) that we
consider quite representative in terms of program and datasets sizes. Figure 4
reports the results on the selected programs.

PrintToken2-v3. For this instance of program, when considering the full
datasets (100% of test cases), F-CPminer and Tarantula obtain approxi-
mately the same results in terms of exam score. Once we start reducing the
number of test cases, we observe that F-CPminer keeps approximately the
same accuracy until 10% of test cases. In the other side, Tarantula exhibits
a chaotic behavior where the accuracy decreases (i.e (exam score) increases)
significantly after a reduction of 60% of test cases by reaching a score of 30%
of code to exam. These observations are made on 6 versions where only one
is from the same PrintToken2 class.
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Tcas-v28. For this instance, F-CPminer and Tarantula obtain approx-
imately the same results in terms of exam score with a slight gain in favour of
our tool. We can observe that datasets reduction have no substancial impact
on the accuracy of the two tools. This result is observed on 32 versions where
14 versions belong to the same Tcas class.

TotInfo-v18. Here, F-CPminer shows a stable behavior and more or
less the same accuracy during the datasets reduction, while Tarantula is
greatly impacted by this reduction (i.e., the exam score changes in a strange
manner). The same observations are made on 22 versions where 8 of them are
from TotInfo class.

Replace-v22. For this instance, we can see that the two approaches are
more or less affected by reducing the size of the datasets, Tarantula is still
more stable until a reduction of 50% of test cases. F-CPminer is stable from
75% to 35% of datasets reduction. For this case, the same observations (i.e., the
two approaches are affected by the reduction) are made on 34 other versions
from which 7 programs belong to the Replace class.

These observations are particularly informative and highlight the fact that
our approach can be less sensitive to the number of considered test cases. This
is especially true when we have 60 programs out of 111 where F-CPminer
behaves in the same manner (stable behavior) as the three first programs (see
fig.4). And this is especially true where on 62 programs Tarantula follows
a chaotic behavior and only on 17 programs, the behavior of Tarantula is
more stable than F-CPminer. Thanks to the quality of our top-k patterns ex-
traction and to the processing step, which enables to analyze the dependencies
between the extracted patterns. This is not the case for Tarantula, where
the adding or removing of test cases can lead to less accurate results.

6.6 Analyzing CPU times for F-CPminer

This section analyzes the CPU times of our approach. It is important to recall
that Tarantula approach evaluates the suspiciousness degree of each state-
ment using the formula 6 without taking in account any statement dependen-
cies. Therefore, the combinatorial explosion due to the possible combinations
of statements is not tackled by Tarantula. Consequently, the CPU times
obtained by Tarantula are very shorts (in milliseconds).

Table 9 reports for each class of program both the average CPU times and
the standard deviation for the two steps performed by F-CPminer (i.e. the
top-k extraction corresponding to Algorithm 1 and the post-processing step
corresponding to Algorithm 2).

The first observation that can be made is that extracting top-k patterns
is the most costly step for F-CPminer. This is in part explained by the very
high number of candidate patterns (i.e. |LI |). However, in our experiments,
the CPU times are not exceeding 235 seconds for the worst case (see Replace
programs) and it is less than 0.2 seconds in the best case (see Tcas programs).
The second observation that can be made is that the CPU times spent by the
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Fig. 4: Impact of the size of the datasets on the performances of F-CPminer
and Tarantula.

post-process step for a final localization of the faulty statement is negligible
(of order of milliseconds for the best and worst cases).

Figure 5 shows the CPU times variation for extracting top-k patterns for
the 29 faulty versions (from v1 to v29) of the Replace program. For this
class, the standard deviation of CPU time is quite large (i.e., 86.02s) accord-
ing to an average CPU time equal to 147.69s. The deviation is not negligible
due to the fact that all program versions take the same test cases but dif-
ferent T + and T − according to the introduced fault. For instance, for v5,
(|T −|, |T +|) = (271, 5271) and F-CPminer requires about 400 s. to extract
the top-k patterns. For comparison, for v24, (|T −|, |T +|) = (3, 5539) and F-
CPminer needs less CPU times to complete the extraction of top-k pattens
(22 s). In fact, extracting top-k patterns from a small negative dataset (i.e.
T −) and a considerable positive dataset (i.e. T +) is not time consuming. This
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Table 9: Comparing the CPU times for the two steps of F-CPminer on dif-
ferent programs (in seconds).

Program k Top-k extraction (Algo.1) Top-k processing (Algo.2)
Replace 245 147.69 ± 86.02 0.051 ± 0.015
PrintTokens2 200 146.25 ± 65.89 0.045 ± 0.013
PrintTokens 195 61.49 ± 34.35 0.030 ± 0.003
Schedule 152 27.41 ± 15.28 0.012 ± 0.004
Schedule2 128 12.66 ± 05.37 0.016 ± 0.004
TotInfo 123 2.53 ± 01.01 0.014 ± 0.006
Tcas 65 0.16 ± 00.02 0.001 ± 0.000
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Fig. 5: CPU times variation for top-k extraction (Algorithm 1) for Replace
program.

is especially true when the extracted patterns are the more frequent ones in
the negative dataset and less frequent ones in the positive dataset.

Impact of the size of test cases and parameter k on CPU times. Figure
6 shows the impact of varying the size of the dataset (i.e. test case) and the
value of k on the CPU times for the top-k extraction. For this experiment,
we have selected the program Replace(v5), which represents the worst case
for extracting top-k. We can observe that CPU time decreases considerably
when reducing the number of test cases (see Figure 6(a)). The same trend is
observed when varying the value of k (see Figure 6(b)).

In fact, the extraction of top-k patterns is closely related to the size of the
transactional datasets (test cases coverage) and the value of k. The behavior
of Figure 6(b) can be explained by the fact that with a large value of k, a
large number of patterns are extracted and the least patterns of the top-k
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list have low values of frequency. This increases drastically the number of
candidate patterns to be explored by Algorithm 1 and thus the CPU times. In
contrast, with small values of k, the least patterns in the top-k list tend to have
high values of frequency. Consequently, constraints added dynamically during
the mining process (line 7 of Algorithm 1) will refine the pruning condition
leading to more and more powerful pruning of the search space. This explains
the decreasing of CPU times.
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Fig. 6: Impact of varying the size of the dataset and the value of k on CPU
times.

7 Related works

In this section, we present some related works in the area of fault localization.

Using failing/passing executions. As introduced previously, Tarantula
(Jones and Harrold, 2005) is one of the most popular fault localization tech-
nique that records information linked to failing/passing executions in terms
of how each test case covers statements. Another technique rather close to
Tarantula is the one proposed by Cleve and Zeller (Cleve and Zeller, 2005)
and based on program states. The technique compares states of passing and
failing test cases. In a previous work (Zeller, 2002), Zeller shows that locating a
fault just by considering the search space (variables, values) is not sufficient in
general. Indeed, it is possible to return statements as faulty ones by comparing
the different states in passing/failing test cases, but a fault in a program can
produce a difference on all next states in the program. In (Cleve and Zeller,
2005), a search during execution is performed to locate the first transition
that leads to a fail. But these techniques do not differentiate between two fail-
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ing (resp. passing) test cases, and consequently they ignore the dependencies
between statements that can help us to locate the fault.

Using dependence analysis. Other techniques take in account the cause
effect chains with a dependence analysis by using, for instance, program slicing
(Agrawal et al, 1993). The disadvantage here is that fault can be located in a
quite large slice (static slicing) and/or can be time/space consuming (dynamic
slicing). In the same perspective, Renieris and Reiss (Renieres and Reiss, 2003)
use the notion of nearest neighbor, where they confront a failing trace with
the nearest passing trace. Here the distance between two traces is expressed
with the difference between the set of executed statements. In the case where
no nearest passing trace can be obtained, the technique builds the program
dependence graph and checks the adjacent nodes of the failing trace one by
one with the hope of finding the location of the fault.

Using data mining. In (Cellier et al, 2009), Cellier et al. propose a data
mining process DeLLIS which computes program element clusters and shows
dependencies between program elements. They compute all differences be-
tween execution traces and, at the same time, gives a partial ordering of those
differences. In (Cellier et al, 2008), Cellier et al. propose a methodology that
combines between association rules to search for possible causes of failure and
formal concept analysis to assist in fault localization. They try to identify rules
between statement execution and corresponding test case failure, and then
measure the frequency of each rule. Nessa et al. (Nessa et al, 2008) generate
statement subsequences of length N , referred to as N-grams, from the trace
data. The failed execution traces are then examined to find the N-grams with
a rate of occurrence higher than a certain threshold in the failed executions. A
statistical analysis is conducted to determine the conditional probability that
an execution fails given that a certain N-gram appears in its trace.

Our approach aims at exploiting recent progress on cross-fertilization be-
tween data mining and constraint programming in order to model the fault
localization problem as finding the top-k patterns of statements occurring more
frequently in failing executions and less frequently in the passing executions.
These top-k patterns are then processed by analysing their dependencies, in
order to infer a ranking on the suspiciousness degree of the statements.

8 Conclusion

In this paper we have proposed a new approach based on itemset mining and
constraint programming to deal with fault localization problem. Our approach
proceeds in two steps. In the first step, we have formally defined the problem
of locating faults in programs as a mining task using CP for modelling and
solving the arising constraints. Solving the underlying CP model enables us
to get the top-k most suspicious set of statements . The second step aims at
ranking in a more accurate way the whole top-k statements by taking benefit of
two main observations i) where faults are introduced in a program can be seen
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as a pattern (set of statements), which is more frequent in failing executions
than passing ones; ii) the difference between a more suspicious pattern and
a less suspicious one is a set of statements that appears/disappears in one
or the other; this difference helps us to know more about the location of the
fault. We have shown how these two properties can be exploited in an ad-hoc
ranking algorithm producing accurate localization. Finally we have compared
experimentally our approach implemented in F-CPminer with Tarantula
on a set of faulty programs. The results we obtained show that our approach
enables to propose a more precise localization as compared to Tarantula.

As future works, we plan to experiment our approach on programs with
complex faults (more than one faulty statement). We also plan to explore
other observations on the behavior of a faulty program and adding them as
constraints for mining the location of faults.
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