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Abstract—Nowadays the automated design of efficient floating-
point implementations of correctly rounded elementary functions
like cos, sin, log, exp, · · · is a real challenge. Indeed, the
variety of hardware architectures and floating-point formats
makes such implementation process tedious and error-prone. This
article focuses on the particular case of floating-point logb(x)
functions on integer processors. First it proposes a unified range
reduction for logb(x), that enables to reduce the evaluation
of these functions to a single well-chosen polynomial. Second
it gives some sufficient conditions on the approximation and
evaluation errors to guarantee correct rounding. And third it
shows how to automate the implementation process on integer
processors, when b ∈ {2, exp(1), 10}. Finally we illustrate how
this automated approach enables to speedup the design of efficient
implementations of logb(x) for standard floating-point formats.

Keywords: correctly rounded floating-point logarithm, polynomial
evaluation, automated design, integer processor.

I. INTRODUCTION

Since 2008, the IEEE 754 standard requires the correct round-
ing for the basic operations (namely, +, −, ×, /, and √ ) and
for the four rounding direction attributes (rounding to-nearest-
even, rounding upward, rounding downward, and rounding
toward zero) [1]. This property is now also recommended
for the elementary functions like cos, sin, log, exp, · · · . In
this sense, this article focuses on the automated design of
correctly rounded implementations for the logarithm functions
on integer processors, for the rounding to-nearest-even.

In the literature, many techniques have already been de-
signed for the implementation of logarithm functions. They
classically rely on table lookups and/or polynomial evalua-
tions. In [2], Tang proposes a method to implement several
functions including log(x), that combines table lookup and
polynomial evaluation, and where tabulated values are regu-
larly spaced values. It enables to achieve an output accuracy
very close to 0.5 ulp. This technique has more recently been
used for the design of logarithm function in the Intel libm [3],
[4]. In Tang’s method, the tabulated values are approximation
of the function to be implemented. In order to increase the
accuracy of these tabulated values, Gal proposes the accurate
tables method to implement a set of elementary functions,
especially log(x) and log10(x) [5], [6]. The values are not
regularly spaced anymore, but chosen so that they are closer
to representable floating-point numbers. This improves the
accuracy of the tabulated values of about 10 bits, and testings
show that this enables to achieve correct rounding in about
99.9% of the test cases.

Both these methods are well-adapted for software and
hardware implementations. However when targeting specific

hardware, others techniques have been studied [7], [8], [9],
[10]. In [7], [8], Wong and Goto propose a first method where
tables addressed by p/2 bits are used for implementing func-
tions for numbers of precision p. However this does not scale
well when the precision p increases. These authors propose a
second method in order to make the most of the underlying
hardware circuit [11]. This relies on the use of 16 × 56-
bit rectangular multipliers. Being faster than double precision
multipliers, these enable to speedup the full implementation,
while keeping an output accuracy of 1 ulp. More recently, this
approach has been adapted in software to implement correctly
rounded log(x) in the CR-Libm project [12].

All these methods rely on tabulated values. On the other
side of this spectrum, another approach consists in using only
polynomial evaluations. This is for example done in [13],
which deals with hardware designs of correctly rounded imple-
mentations of the log2(x) function for floating-point numbers
of precision 16 and 24.

In this article, we extend to transcendental functions the
work done in [14] on square root and division. Particularly
our target architecture is the ST231 processor, a 4-issue 32-bit
VLIW integer processor from STMicroelectronics, providing
1-cycle 32-bit ALU operations but a 3-cycle 32-bit multiplica-
tion. On this target, using table lookup methods may be partic-
ularly ill-suited, since accessing data from memory might lead
to a penalty of about 100 cycles [15]. For these reasons, we
choose to focus on methods based on polynomial evaluation,
and relying on integer arithmetic. In addition, to avoid branches
and to reduce the code size, unlike methods based on a two-
step process (quick and accurate steps), our goal is to provide
implementation relying on only one polynomial evaluation step
enabling to reach the targeted accuracy.

Hence the main contributions of this article are:

• A unified range reduction for the logb(x) functions,
similarly to [3, § 11] but relying on one polynomial
evaluation only instead of table lookups,

• Sufficient conditions on the polynomial approximation
and evaluation accuracy to reach the required accuracy,

• Some guidelines on how to implement these logarithm
functions on integer arithmetic, together with some ele-
ments on the error analysis of these implementations,

• And finally a script implementing this approach and
enabling to automate the implementation of logb(x) for
various precisions p.

This article is organized as follows: After some prelim-
inaries and notations in Section II, Section III details the
algorithm we propose to implement logb(x). Since this relies



Input x NaN −∞ x < 0 ±0 x > 0 +∞
Output qNaN −∞ RN(logb(x)) +∞

Table I: Special values of logb(x).

on polynomial evaluation, Section IV gives some sufficient
conditions on approximation and evaluation errors required
in order to ensure a certain output accuracy, and thus to
reach correct rounding. Then Section V is devoted to the
implementation on integer processors, and its error analysis.
Finally Section VI shows some experimental results, before
concluding in Section VII.

II. PRELIMINARIES AND NOTATIONS

Let us consider the following floating-point data: ±0, ±∞,
quiet or signaling Not-a-Numbers (qNaN, sNaN), or binary
floating-point numbers x defined in [1] as:

x = (−1)
sx ·mx · 2ex , (1)

with sx ∈ {0, 1}, mx = (m0.m1 . . .mp−1)2 with mi ∈ {0, 1},
and ex ∈ {emin, . . . , emax} encoding in at most w digits. The
precision p and extremal exponents emin and emax are assumed
to be integers such as p ≥ 2 and emin = 1 − emax. Using these
notations, let us define α and Ω, the smallest and largest non-
zero positive floating-point number, respectively:

α = 2emin−p+1 and Ω = (2− 21−p) · 2emax .

Now let x be a non-zero floating-point number. Its normal-
ized representation is given as follows:

x = (−1)
s ·m · 2e, (2)

with m = mx·2λ and e = ex−λ, and where λ ∈ {0, · · · , p−1}
denotes the number of leading zeros in the binary represen-
tation of mx. It follows that e ∈ {emin − p + 1, · · · , emax} and
m ∈ [1, 2− 21−p].

Finally, let us denote by x− and x+ the predecessor and
successor of the floating-point number x, respectively.

III. ALGORITHM FOR CORRECTLY ROUNDED logb(x)

Here and hereafter, we assume the value b defined as follows:

b ∈ R∗+ and b ∈ {2, exp(1), 10}. (3)

The rest of this section presents the unified range reduction
we propose to implement logb(x) for various precisions p.

A. Special and straightforward inputs of logb(x)

Let x be a floating-point number as in (1). From [1] we know
that x is a special input for logb(x) if x ∈ {NaN,−∞, x <
0,±0,+∞}. Table I shows the result to be returned according
to the input x. Otherwise if x is not a special input, the routine
shall return the result RN(logb(x)). This occurs when x > 0
and more particularly α ≤ x ≤ Ω.

Property 1. Let x be a non-negative floating-point number as
in (1), with α ≤ x ≤ Ω. Since logb(x) is a transcendental
function, and both floating-point numbers and breakpoints are
algebraic numbers, we know that logb(x) cannot be a break-
point, except for straightforward inputs such as logb(1) = 0.
(See [16] for details.)

It follows from Property 1 that, except for straightforward
inputs, in rounding to-nearest-even, logb(x) cannot be halfway
between two floating-point numbers. The only straightforward
input is x = 1: in this case, the logb(x) routine shall return the
floating-point value 0. In the rest of this section, we consider
α ≤ x ≤ Ω and x 6= 1.

Property 2. Let x be a non-negative floating-point number as
in (1), with α ≤ x ≤ Ω and x 6= 1. If α > b−Ω and Ω < bΩ,
then the function x 7→ logb(x) does not overflow.

Proof: If α > b−Ω and Ω < bΩ, we deduce that
b−Ω < x < bΩ. Hence since x 7→ logb(x) is monotonically
increasing over R∗+, it follows that −Ω < logb(x) < Ω, and
more generally |logb(x)| < Ω, which concludes the proof.

Property 3. Let x be a non-negative floating-point number as
in (1), with α ≤ x ≤ Ω and x 6= 1. If 2−p/ log(b) > 2emin , the
function x 7→ logb(x) does not underflow.

Proof: On a first hand, using Taylor expansion of the func-
tion log(1 + x) around 0, we know that log(x+) > 2−p, and
since log(b) > 0, logb(x

+) > 2−p/ log(b). On a second side,
using Taylor expansion of the function log(1−x) around 0, we
know that log(x−) < −2−p, and logb(x−) < −2−p/ log(b).
Since logb(x) is monotonically increasing over R∗+, we have
|logb(x)| > 2−p/ log(b). And if 2−p/ log(b) > 2emin , then
|logb(x)| > 2emin , which concludes the proof.

Using Properties 2 and 3 we can conclude that, under
certain conditions, the function logb(x) does never overflow
nor underflow. For the particular cases of IEEE 754 imple-
mentations, all these conditions are verified, and Properties 2
and 3 hold. This simplifies considerably the implementation
process, as shown further in Section V.

B. Unified range reduction for logb(x)

Let us detail our unified range reduction: To do so, let x be a
non-negative floating-point number as in (2) with s = 0, and
such as α ≤ x ≤ Ω and x 6= 1. It follows that:

logb(x) = logb(2) · e+ logb(m). (4)

When the result gets close to 0, using this rewriting may lead
to a catastrophic cancellation when both terms are of opposite
sign. Since logb(2) and logb(m) are non-negative, as explained
in [3], this may occur when e = −1. To remedy this, we
rewrite (4) as

logb(x) =

{
logb(2) · e+ logb(m), if m < 1.5,
logb(2) · (e+ 1) + logb(m/2), otherwise,

that is

logb(x) = logb(2) · (e+ τ) + logb(m/2
τ ), (5)

where τ = [m ≥ 1.5]. In addition, the case m/2τ = 1 can be
handled separately, and is no longer considered in this section:
indeed logb(1) = 0 and logb(x) = logb(2) · (e+ τ).

Let us now consider the general case m/2τ 6= 1. Notice
that even in this case, logb(m/2

τ ) may also get arbitrarily close
to 0. And computing logb (x) as in (5) may lead to a loss of



accuracy especially when e+ τ = 0. Hence to overcome this
issue, let us define t = m/2τ − 1 where

t ∈ T with T = [−2−2, 2−1 − 21−p] \ {0}, (6)

together with ϕ ∈ R and µ ∈ Z, such that

logb(2) = ϕ · 2µ and 1 ≤ ϕ < 2. (7)

Then computing logb(m/2
τ ) in (5) may be done through the

evaluation of `(t) defined as:

`(t) =
logb(1 + t)

2µ · t
=

log2(1 + t) · ϕ
t

. (8)

Note that for a given value b, the values ϕ and µ are constant
and they are computed at implementation-time. Now since ϕ
in (7) lies [1, 2), using the fact that log2(1 + t)/t ∈ (1, 2),
∀ t ∈ T , we deduce that `(t) remains in (1, 4). And in that
case no loss of accuracy occurs. Therefore from (8), if we note
h = 2δ · t with |h| ≥ 2−1, we have

logb(m/2
τ ) = h · `(t) · 2µ−δ, (9)

where h ∈ H with

H = [−1 + 23−p,−2−1] ∪ [2−1, 1− 22−p], (10)

and |h · `(t)| ∈ [2−1, 4). And since 2−p ≤ |t| ≤ 2−1 − 21−p,
we deduce that δ lies in {1, · · · , p− 1}.

Finally from (5), (7), and (9), logb(x) is defined as follows:

logb(x) =
(
ϕ · (e+ τ) + 2−δ · h · `(t)

)
· 2µ. (11)

C. How to get correctly rounded result?

When x is not a straightforward input, in order to determine
the correctly rounded result from (11), let us define u ∈ R
such that |u| ∈ [1, 2), and c ∈ Z as follows:

u · 2c =
(
ϕ · (e+ τ) + 2−δ · h · `(t)

)
. (12)

Hence using (11) and (12):

RN(logb(x)) = (−1)sign(u) · RN(|u|) · 2µ+c. (13)

Since in our cases, logb(x) does never underflow nor overflow,
RN(|u|) and µ + c can be seen as the significand and the
exponent of the result, respectively, while its sign corresponds
to the sign of u, and where the value of c falls in one of the
following two cases:

• Case 1: e+ τ = 0. Here we have |u| ·2c = 2−δ · |h · `(t)|.
Since δ ≥ 1 and |h · `(t)| ≥ 2−1, we deduce that

c ∈ {−1− δ, · · · , 0}.

• Case 2: e + τ 6= 0. From the definition of logb(x)
in (5), using (7) and (11), we can deduce that |u| · 2c >
| log2(0.75)| ·ϕ. Since ϕ > 1, we have c ≥ −2. Moreover
when |ϕ · (e + τ)| ≥ 4, |u| · 2c ≥ 1 and the value c is
roughly the size of ϕ · (e+ τ):

blog2(ϕ · |e+ τ |)c − 1 ≤ c ≤ dlog2(ϕ · |e+ τ |)e+ 1.

And if we denote by cmax the largest value of c, we have
cmax = dlog2

(
ϕ ·max(|emin − p+ 1|, |emax + 3|)

)
e+ 1.

Note that when RN(|u|) = 2, the significand and the exponent
become 1 and µ+ c+ 1, respectively.

Now if we note r = RN(|u|), since u cannot be computed
exactly, we must approximate it by a finite-precision value û.
Once û is known accurately enough, the computation of r is
straightforward and done as follows, where truncate(·)p−1 is
the truncation function on p− 1 fraction bits:

r = truncate(|û|+ 2−p)p−1. (14)

IV. SUFFICIENT CONDITIONS TO COMPUTE CORRECT
ROUNDING

The problem is now reduced to the approximation of u in (12),
by the computation of a value û, such that

|u− û| < ε. (15)

Here the value of the error bound ε depends on the function
and is linked to the Table Maker’s Dilemma [17]. This will be
discussed further in Section VI-A. For the computation of û,
our implementation process follows 3 main steps, as what is
done in [14] for roots and division.

1) First we consider the value u as the exact result of the
function F (t′, h′, e′, τ ′, δ′, c′) defined as:

F =

(
ϕ · (e′ + τ ′) + 2−δ

′
· h′ · logb(1 + t′)

2µ · t′

)
· 2−c

′
,

at the point (t′, h′, e′, τ ′, δ′, c′) = (t, h, e, τ, δ, c).
2) Second, since F cannot be evaluated directly using arith-

metic operations available on computers, we approximate
this function F by a function P over T ×H×E×{0, 1}×
D × C, with T and H in (6) and (10), respectively, and

E = [emin, emax], D = {1, · · · , p− 1}, and C = {−p, · · · , cmax}.

Here a good choice for P (t′, h′, e′, τ ′, δ′, c′) is:

P =
(
ϕ · (e′ + τ ′) + 2−δ

′
· h′ · a(t′)

)
· 2−c

′
,

where a(t′) is a polynomial approximant of the function
logb(1 + t′)/(2µ · t′) over T .

3) Third we evaluate the function P at the point
(t, h, e, τ, δ, c) by a finite-precision evaluation program P ,
and we assign the result to û.

Most of the time, the constant ϕ in P is not exactly repre-
sentable in finite precision. Hence the function to be evaluated
is therefore the function P̂ (t′, h′, e′, τ ′, δ′, c′) defined by:

P̂ =
(
ϕ̂ · (e′ + τ ′) + 2−δ

′
· h′ · a(t′)

)
· 2−c

′
,

where

ϕ̂ = RDk−1(ϕ) and 0 ≤ ϕ− ϕ̂ < 22−k. (16)

Here the value of ϕ is rounded downward to ensure that it
remains less than 2 in the implementations.

Recall that our goal is to automate the design of correctly
rounded implementations. For this purpose, we need to exhibit
some sufficient conditions on the accuracy of the different
parts of the program, such as the targeted accuracy is achieved.
Here and hereafter, we denote by α(a) the approximation error
of a(t):

α(a) = max
t′∈T

∣∣∣∣ logb(1 + t′)

2µ · t′
− a(t′)

∣∣∣∣ ,



and by ρ(P) the evaluation error of P:

ρ(P) = max
∣∣∣P̂ (t′, h′, e′, τ ′, δ′, c′)− P(t′, h′, e′, τ ′, δ′, c′)

∣∣∣
for all (t′, h′, e′, τ ′, δ′, c′) ∈ T ×H × E × {0, 1} × D × C.

Property 4. Given u and (t, h, e, τ, δ, c), together with the
polynomial a, the functions P , P̂ , and the program P , let us
denote û = P(t, h, e, τ, δ, c). If

(2− 23−p) · α(a) + ρ(P) ≤ ε− 26−k, (17)

then the value û satisfies (15).

Proof: Using the definition of F , P , P̂ , and P , it follows:

|u− û| = |F (t, h, e, τ, δ, c)− P(t, h, e, τ, δ, c)|
≤ |F (t, h, e, τ, δ, c)− P (t, h, e, τ, δ, c)|+∣∣∣P (t, h, e, τ, δ, c)− P̂ (t, h, e, τ, δ, c)

∣∣∣ +∣∣∣P̂ (t, h, e, τ, δ, c)− P(t, h, e, τ, δ, c)
∣∣∣

≤ 2−δ−c · |h| ·
∣∣∣∣ logb(1 + t)

2µ · t
− a(t)

∣∣∣∣ +

2−c · |e+ τ | · |ϕ− ϕ̂|+ ρ(P).

Since |h| < 1 − 22−p, using the definition of δ and c in
Section III, and of the floor function b·c, it follows from (16),
that:

|u− û| < (2− 23−p) · α(a) + 26−k + ρ(P),

which concludes the proof.

From Property 4, we know that if (17) holds, then the
computed value û is accurate enough to guarantee the correct
rounding. Note that when b = 2, |ϕ − ϕ̂| = 0, and thus this
condition becomes (2−23−p)·α(a)+ρ(P) ≤ ε. Therefore, the
goal is now to build a polynomial a(t′) together with a program
P so as (17) holds. The first step consists in computing the
finite-precision polynomial a(t′). The evaluation error ρ(P)
being non-negative, the polynomial a must be such as:

α(a) < (ε− 26−k)/(2− 23−p). (18)

Typically for the binary32 format, if we target an accuracy
ε = 2−51, we need k = 64. And in this case, α(a) must be
less than ≈ 2−51.99. Then once the polynomial a is computed,
having

α(a) ≤ θ where θ < (ε− 26−k)/(2− 23−p),

the objective is to find a program P such that ρ(P) ≤ η, where

η < ε− 26−k − (2− 23−p) · θ. (19)

The bound η depends on the underlying arithmetic and the
error entailed by the evaluation of a. This is discussed further
in Section V-C.

V. AUTOMATED IMPLEMENTATION

Given b as in (3), the precision p, and the exponent emax,
this section gives some guidelines to implement logb(x) on
integer processors, by using the algorithm presented in this
article. This results in a code that takes as input and returns
a floating-point datum encoded by an integer using the binary
interchange format encoding described in [1, § 2]. Note that
these guidelines being parametrized by (b, p, emax), a tool can
be derived to automate this implementation process.

A. Assumption

We assume here that the floating-point input and output are
encoded using k′-bit integers, and all the internal computations
are done in k-bit two’s complement arithmetic, with k ≥ k′ and
k′, k > 0. For the binary32 format, we have (k′, k) = (32, 64).

Moreover for the implementation purpose, in addition
to the usual integer operations available in the standard C
language, we consider the following routines available, where
X and Y are k-bit integers:

• mul(X , Y ) = bX · Y · 2−kc,
• min(X , Y ) : smaller value between X and Y ,
• and nlz(X) : number of leading zeros of X .

Finally, from Properties 2 and 3 we know that no underflow
nor overflow occurs in our test cases. This simplifies the
implementations, since no special handling has to be designed.

B. Guidelines

The special and straightforward input handling as well as the
input unpacking and output packing are implemented in a
similar way to what is done in [14], and it is not detailed
in this article. In our context, input unpacking results in:

• a k-bit unsigned integer F = (m− 1) · 2k,
• and a k′-bit signed integer E representing e.

The goal is now to write some pieces of code to help in
computing the approximation û. Particularly, we compute an
integer U such that û = U ·2n with n a well-chosen exponent.
For doing this, let us define the following k-bit signed integers:

• L = ϕ̂ · 2k−2, such that 1 ≤ L < 2,
• Ei = (E + τ) · 2k−i where i is the number of useful

bits in the k-bit integer representation of e + τ , that is,
excluding redundant sign bits,

• M = m · 2k−2, T = t · 2k, H = h · 2k−1,
• and V = poly_eval(T,H) encoding the evaluation

result of h · a(t), where poly_eval is a program that
works on k-bit integers.

Here, instead of evaluating a(t) and multiplying the result
by h, we tend to distribute the multiplication by h inside the
evaluation of a(t). And since |h · `(t)| < 4, this program can
always be built so as to return a signed integer

V =
(
h · a(t)

)
· 2k−3.

Computation of M , T , δ, and H . The integer M is computed
from F that encodes the fractional part of the input significand,
as follows:

M = m · 2k−2 = (1 + f) · 2k−2

= 2−2 · F + 2k−2.

To compute T , we have to compute first the value of τ , which
is actually defined as the result of the test [m ≥ 1.5], that is,
[M ≥ 1.5 · 2k−2]. Finally, the integer T is

T = t · 2k = (m/2τ − 1) · 2k

= (M/2τ − 2k−2) · 22,

where τ ∈ {0, 1}. Here is a piece of code to compute M , τ ,
and T .



M = (F >> 2) + C1; // C1 = 2^(k-2)
tau = (M >= C2); // C2 = 1.5 * 2^(k-2)
T = ((M >> tau) - C1) << 2;

Then to compute H , the key point is to determine δ. It
corresponds actually to the number of sign bits in the bitstring
of T . Indeed, if T = 2k−2, then t = 0.25 and δ = 1. Hence
to do so, all the bits of T are first inverted only when it is
negative: this is done by combining a XOR and a right shift
operation as shown at Line 1 in the code below, and where the
shift is a signed shift involving sign extension [18, § 5.3]. Then
a nlz instruction is used to count the number of leading zeros
appearing in the resulting integer, which corresponds to δ.
1 inv_T = T ^ (T >> C3); // C3 = k-1
2 delta = nlz(inv_T);
3 H = T << delta;

Note that the C standard requires that a shift operation of a
k-bit integer is done by {0, · · · , k − 1} bits to be valid [19].
Hence at Line 3, since δ ∈ {1, · · · , p − 1} in (9) and p < k,
the shift operation is well-defined.

Computation of U . From T and H , we are now able to
compute U encoding û. It is done through the computation
of two k-bit integers U1 and U2, representing ϕ · (e+ τ) and
2−δ · h · a(t), respectively.

Let us start by U1: Since our multiplication is a truncated
multiplication, instead of approximating L · E, we prefer to
approximate L·Ei in order to maintain a sufficient accuracy on
the truncated result. Hence the first step consists in computing
the integer Ei = (E+τ) ·2k−i. The parameter i is determined
similarly to δ: it equals to the wordlength of the integer E+ τ
(that is k′) minus the number of useless redundant sign bits:

i = k′ − (nlz(inv_E)− 1).

And the integer Ei is obtained by left shifting E+ τ by k− i
bits, as shown the piece of code below.

inv_E = (E + tau)^((E + tau) >> C4); // C4 = k’-1
i = C5 - nlz(inv_e); // C5 = k’+1
Ei = (E + tau) << (C6 - i); // C6 = k

This results in the following code, where U1 is defined as:

U1 = mul(L,Ei) = bL · Ei · 2−kc
= bϕ̂ · (e+ τ) · 2k−i−2c.

U1 = mul(L, Ei);

Note that when b = 2, we have ϕ = 1 and L = 2k−2. Then
we simply have U1 = Ei · 2−2. In this case, the above piece
of code is simplified as follows.

U1 = Ei >> 2;

Now let us continue with U2: The multiplication by 2−δ

in 2−δ · h · a(t) is implicit, and it is not implemented. Hence
we have U2 = V , and

U2 =
(
2−δ · h · a(t)

)
· 2k−3+δ.

Remark that in the particular case t = 0, we have T = 0
and H = 0. And whatever the polynomial coefficients, we

have V = 0. Hence we do not need to handle the case t = 0
separately, and it can be handled in the general flow.

Once U1 and U2 are known, they must be scaled to the
same power of 2 to be added. This scaling operation must be
carried out such as no overflow occurs on any of both integers
U1 and U2, and in order to keep at most accuracy. Since i ≥ 1
and δ ≥ 1, we know that i + 2 ≥ 3 and 3 − δ ≤ 2, and thus
k − i − 2 ≤ k − 3 + δ. In this case, U2 must be scaled to fit
in the format of U1. Hence we have:

U2 = bU2/2
i+δ−1c,

where i+δ−1 ≥ 0. However, when e+τ = 0 then E+τ = 0,
and U1 = 0: in this case, in order not to loss accuracy, U2

must not be scaled. And in order to avoid branches in the
resulting code, we may use a mask that cancels the scaling
of U2 when E + τ = 0. The piece of code below shows this
scaling step, where mask is a k′-bit integer whose bitstring is
only composed of 0 when E+τ = 0 and of 1 otherwise. Then,
by using a AND operation, the shift right operand is either 0
(when E + τ = 0) or the value we want U2 to be shifted.

mask = 0 - ((E + tau) != 0);
U2 = U2 >> (min(k-1, i + delta - 1) & mask);

In this code, a min instruction is used to ensure that the
shift remains valid. If min(k − 1, i + δ − 1) = k − 1 and
E + τ 6= 0, the resulting integer U2 is 0 as if we would have
right shifted U2 of i+ δ− 1 positions. But here the value of i
is at most

imax = dlog2(|emin − p+ 1|)e+ 1 + [emin − p+ 1 = −2exponent],

since |emin−p+1| ≥ 2 and emin = 1−emax. And using δ ≤ p−1,
it follows that if imax < k−p+2 then the min instruction above
is not required, which simplified the code as below.
U2 = U2 >> ((i + delta - 1) & mask);

Finally, U is computed by adding U1 and U2. Notice that
when E + τ 6= 0, we have i ≥ 2. In this case by construction,
both |U1| and |U2| are less than 2k−2. Hence we conclude that
no overflow occurs when computing U .
U = U1 + U2;

Computation of c. The quantity U represents the approxima-
tion û such that U = û · 2n. It follows from (12) and the
definition of U that

n =

{
c+ k − i− 2, if e+ τ 6= 0,
c+ k − 3 + δ, if e+ τ = 0.

Since |U | 6= 0, we have 1 ≤ |U |/2nlz(|U |)−1 < 2 and
k = nlz(|U |) + 1 + n. Hence c is defined as:

c =

{
i+ 1− nlz(|U |), if e+ τ 6= 0,
2− δ − nlz(|U |), if e+ τ = 0.

To avoid branches in the resulting code, when e + τ 6= 0,
we may define c = 2 − δ − nlz(|U |) − (1 − i − δ), where
subtracting 1 − i − δ only when e + τ = 0 is done using a
mask as previously.

It follows that the computation of c requires the determi-
nation of |U |. From [18, § 2.4], we know that |U | may be



computed similarly to δ or i above: by inverting all the bits of
U and adding 1 if this one is negative. The code below shows
the computation of |U |, c, and n.

absU = (U ^ (U >> C3) - (U >> C3);
c = 2 - delta - nlz(absU) - ((1-i-delta) & mask);
n = k - 1 - nlz(absU);

Note that by construction, nlz(|U1|) = 2. It follows that
nlz(|U |) ∈ {1, 2, 3}. Hence we deduce that

c ∈ {i, i− 1, i− 2} when e+ τ 6= 0. (20)

This point will be useful in Section V-C when dealing with
error analysis.

Computation of the result sign, exponent, and significand.
For the packing process, we have to compute the sign of the
result, together with its biased exponent and significand. First
the sign of the result S ∈ {0, 1} can be read on the most
significant bit of the integer U .

S = (U >> C3) & 1;

Second let us compute the significand r of the result. For
doing this, let R be a k′-bit integer such as R = r · 2p−1.
Using (14), together with the definition of U and û, R can be
computed as follows:

R = b(|U |+ 2n−p)/2n−p+1c.

When X is a k-bit integer and x ∈ {0, · · · , k − 1}, bX/2xc
can be implemented using a right shift operation. Hence, since
0 ≤ n− p ≤ k − 1, the following piece of code computes R.

R = (absU + (1 << (n-p))) >> (n-p+1);

Third from (13), we know that the exponent d of the result
is computed as follows:

d =

{
µ+ c, if RN(|u|) 6= 2,
µ+ c+ 1, if RN(|u|) = 2.

As shown in [14], the second case may be ignored, and the
exponent update is done within the packing process. Particu-
larly the idea is to compute D, a k′-bit exponent representing
the biased value of µ+ c− 1:

D = µ+ c− 1 + emax = µ+ c− emin.

Recall the µ is known at implementation-time, and it depends
on the value b.

D = c + C7; // C7 = mu - emin

C. Error analysis

The goal is here to bound the error entailed by the evaluation of
the function P̂ in finite-precision arithmetic by the program P ,
that is, to bound the quantity |P̂ − û|, by η as in (19), and to
determine a sufficient condition on ρ(a) defined by:

ρ(a) = max
(t′,h′)∈T ×H

∣∣h′ · a(t′)− V · 23−k∣∣ (21)

such as the error bound η in (19) is satisfied. For this purpose,
let us distinguish two cases:

• Case 1: e+τ = 0. In this case, the error comes only from
the computation of U2. By definition, we have:∣∣∣P̂ − û∣∣∣ =

∣∣h · a(t)− U2 · 23−k∣∣ · 2−c−δ.
Since c ≥ −1− δ, using (21) we deduce∣∣∣û− P̂ ∣∣∣ ≤ 2 · ρ(a). (22)

• Case 2: e+ τ 6= 0. By definition, we have:∣∣∣P̂ − û∣∣∣ ≤ ∣∣ϕ̂ · (e+ τ)− U1 · 2i+2−k∣∣ · 2−c +∣∣2−δ · h · a(t)− U2 · 2i+2−k∣∣ · 2−c.
The mul instruction returning the truncated result of a
finite-precision multiplication, since c ≥ −2 and i ≥ 1,
and using (20) and (21) we deduce∣∣∣P̂ − û∣∣∣ < 4 · ρ(a) + 25−k. (23)

Property 5. Given the function P̂ , a program P , and
(t, h, e, τ, δ, c) together with û = P(t, h, e, τ, δ, c). If

ρ(a) < (ε− 26−k − (2− 23−p) · θ − 25−k)/4

then the bound η satisfies (19).

Proof: Using (22) and (23), it follows that η in (19) is

η = 4 · ρ(a) + 25−k,

which concludes the proof.

Finally, using Property 5, the remaining part consists in de-
signing an evaluation program for a, so that the evaluation
ρ(a) satisfies ρ(a) ≤ κ, where

κ < (ε− 26−k − (2− 23−p) · θ − 25−k)/4. (24)

VI. EXPERIMENTS

This section gives some results concerning the automated
implementation of logb(x) for the binary32 and binary64
floating-point formats.

A. Required error bound to ensure correct rounding

The first step of the implementation process consists in
determining the error bound ε in (15) required to ensure
correct rounding: this problem is known as the Table’s Maker
Dilemma. (See [16, § 12] for details.)

To our knowledge, for the logarithm functions, this bound
has been published for the binary64 but not for the binary32
floating-point format, except in [13] for the case b = 2. Hence
to determine this bound for the other cases, we designed an
approach based on exhaustive testing. This consists in comput-
ing the smallest distance between logb(x

′) and a breakpoint in
precision p, for all the floating-point inputs x′ ∈ [α,Ω]. Since
logb(x

′) cannot be computed exactly, the idea is (1) to compute
an approximation v of logb(x

′) in a precision p′ � p, (2) to
round v to the closest breakpoint in precision p and to assign
the result to v̂, and (3) to compute the distance d = |v − v̂|.
Using Sterbenz lemma, in precision p′, the distance d can be
computed exactly. Finally, the distance d being affected by the
error on v, it is increased by 2−p

′
. This process is illustrated



b 2 exp(1) 10

accuracy (# of bits) 51 58 56

smallest degree of a 19 21 21

Table II: Accuracy and smallest polynomial degree needed for cor-
rectly rounded logb(x) in binary32.

in Figure 1. Table II shows the results we obtained with our
approach implemented using the MPFR library,1 and where
(p, p′) = (24, 80). For example, to implement log2(x), we
need û in (15) so that |u− û| < 2−51.

breakpoints

logb(x
′)vv̂

d

Figure 1: Approach to determine the required error bound ε.

B. Implementation details for the binary32 format

Using Table II together with (18) and (24), and the guidelines
of Section V-B, we are now able to build the whole imple-
mentation of various logarithm functions. In this section, we
target the binary32 format.

1) Determination of the wordlength k: Since α(a) in (18)
and ρ(a) in (24) are non-negative, k must be chosen so as
ε − 26−k − 25−k > 0. Using Table II, we can conclude that
k = 64 is suitable for these implementations, except for log(x),
where this bound becomes negative. In this case k = 96
or k = 128 would be preferred. However, we can observe
that for log(x) only one input x requires a 58-bit accuracy:
x = 127837836949849943048192, and one input require a
57-bit accuracy: x = 58037908. For all the inputs but these
ones, an accuracy of 56 bits if sufficient to enable to decide
correct rounding. These inputs can thus be ignored during
the implementation process. At the end, we only have to test
whether correct rounding is achieved also for these: If it is
not the case, we just have to consider these as straightforward
inputs and to test them separately in the final code. Hence, for
the rest of this section, we consider k = 64, and a required
accuracy of 56 bits for log(x).

2) Polynomial approximation and evaluation: Let us con-
sider the log10(x) function. It follows from Table II and (18)
that ε < 2−56. Hence the approximation error of the polyno-
mial approximant a must satisfy α(a) ≤ θ where

θ < (2−56 − 2−58)/(2− 2−21) ≈ 2−57.41. (25)

Such a polynomial is built using the Sollya tool,2 as follows:

(1) Using the guessdegree routine, we determine the
smallest degree da of a so as the bound in (25) can be
reached.

(2) Then we compute a degree-da polynomial approximant a
of log10(1 + t)/(2−2 · t) over T using the fpminimax
routine, which returns the best polynomial with coeffi-
cients in a given format. As shown in Table II, here a

1See http://www.mpfr.org.
2See http://sollya.gforge.inria.fr/ and [20].

Function Nb. of instr. Latency IPC Scheme
log2(x) 883 251 3.51 Horner4
log(x) 869 313 2.77 Horner

log10(x) 837 299 2.79 Horner

Table III: Number of instructions, latency (cycles), and IPC for
correctly-rounded binary32 logb(x) on the ST231.

is a degree-21 polynomial, where each coefficient ai is
encoded on k bits, that is, using a 64-bit signed integer
Ai. In order to keep at most accuracy on each coefficient,
each Ai satisfy Ai = ai · 2fi , where fi is chosen so as
2k−2 ≤ |Ai| < 2k−1, that is, 262 ≤ |Ai| < 263.

(3) Finally, we determine the certified bound θ using the
supnorm routine. In this example, the approximation
error bound θ ≈ 2−58.62,3 which satisfies (25).

Once the bound θ is known, the key point is now to build
a code to evaluate a(t), whose evaluation error satisfies the
bound (24). It consists in writing a code so as ρ(a) ≤ κ where

κ <
(

2−56 − 2−58 − (2− 2−21) · θ − 2−59
)
/4.

This is done by calling the CGPE tool.4 Given the polynomial
coefficients and a bound on the evaluation error, it enables
to synthesize codes for evaluating the polynomial in fixed-
point arithmetic, that is, using only integer arithmetic, and to
guarantee that its evaluation error is within the given bound.
This accuracy certification step is performed with the help of
the Gappa tool, that uses interval arithmetic combined with
rewriting rules in order to formally prove numerical properties
on programs.5 If such a program cannot be found, we increase
the degree of the polynomial and restart the generation pro-
cess. Table II shows the smallest polynomial degree for each
function, while for log(x), a degree-22 polynomial is actually
used in the implementation, since no accurate enough program
could be found with a degree-21 polynomial.

C. Performance on the ST231

Using the process above, we have implemented in a few
minutes the three functions log(x), log2(x), and log10(x), for
the binary32 format. We have compiled the generated codes
on the ST231, a 4-issue 32-bit VLIW integer processor, in
O3 optimization level. To evaluate the underlying polynomials,
we tried four usual rules: Horner, 2nd-order Horner, 4th-order
Horner, and Estrin [23, § 4.6.4]. For log(x) and log10(x), we
are able to certify the evaluation error bound only with Horner
rule. Our first observation shows that Horner rule does not
expose enough ILP (Instruction-Level Parallelism) to make the
most of the ST231. Conversely, evaluating such high degree
polynomials in 64-bit arithmetic with Estrin rule exposes too
much ILP to be compiled on this architecture without register
spilling. We conclude that 4th-order Horner rule is the most
suitable schemes in our context, leading to a gain of ≈ 7% in
latency compared to Horner for the log2(x) function. Table III
shows the performance of these three codes on the ST231,
where mul and nlz instructions are emulated in software [18].

3θ = 28879668376211020327134098901851489831083855 · 2−203.
4See http://cgpe.gforge.inria.fr/ and [21].
5See http://gappa.gforge.inria.fr/ and [22].



binary32 binary64
Function Latency IPC Latency IPC
log2(x) 51 2.54 264 3.08

log(x) 64 1.98 269 3.59

log10(x) 58 2.05 269 3.56

Table IV: Latency (cycles) and IPC of faithfully rounded binary32
and binary64 logb(x) on the ST231.

We observe that using our automated approach leads to a
correctly rounded implementation in 251 to 300 cycles for all
these functions. In [24], a 47-cycle binary32 implementation is
given for log2(x): but it works an 32-bit arithmetic only, and
no guarantee is given on the accuracy of the output. Finally, in
our implementations, we reach an IPC (Instructions Per Cycle)
of ≈ 3.5, while using Horner rule would lead to an IPC of
≈ 2.8. This shows clearly the interest of our approach, since
no more than 4 instructions could be launched at each cycle
on the ST231.

D. Extension to faithful rounding

All along this article, our goal was to reach correctly rounded
implementations. If we now relax this constraint, and we
target faithful rounding: in this case, the bound in (15), is
no longer the ones in Table II, but we only need ε = 2−p,
where p is the precision of the considered format. Table IV
shows the performance on the ST231 of faithfully rounded
implementations of these three functions. Here we use k = 64
and degree-20 polynomials evaluated with 4th-order Horner
for binary64 implementations, while k = 32 and degree-9
polynomials are enough except for log(x) which required a
degree-10 polynomial, and where these are evaluated with 2nd-
order Horner rule, but for log2(x) which relies on Estrin.

We observe that our approach enables to write faithfully
rounded implementations with a latency of 51 up to 64 cycles
in binary32 and 264 up to 269 cycles in binary64, with
a relatively high IPC. This shows that computing correct
rounding may be costly on this architecture, about 200 cycles
for the binary32 format. This mainly comes from the degree
of the polynomial, which is smaller in this case, and from the
fact that 32-bit arithmetic is enough. Hence this reinforces the
interest in providing faithful implementations, for applications
and context where correct rounding is not necessary.

VII. CONCLUSION AND FUTURE WORKS

This article addresses the automated design of logarithm func-
tion implementations. We show the interest of our approach
for the correctly rounded implementation of binary32 log(x),
log2(x), and log10(x), resulting in full implementations in 251
up to 300 cycles on the ST231 processor. We also show how
this parametrized approach can be used to write faithfully
rounded binary32 and binary64 implementations, reducing
significantly the implementation latency. Note that the work
presented here for b ∈ {2, exp(1), 10} can be extended to
implement any logb(x) functions.

The research direction is threefold: First this could be
interesting to extend this approach to other transcendental
functions like expb(x), and to observe what performances
could be achieved on integer processors. Second all our

experiments have been carried out on integer processors. It
could be interesting to evaluate our implementations on other
architectures like general purpose processors, and to observe
how they compare with the other methods of the literature.
Third in our experiments, we used CGPE as a backend for
polynomial evaluations, where all the polynomials are evalu-
ated using classical schemes. Since CGPE enables to look for
a fast evaluation scheme, this could be interesting to study the
impact on performance and accuracy of this evaluation scheme.
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