
Software Architecture Constraint Reuse-by-Composition

Chouki Tibermacinea, Salah Sadoub, Minh Tu Ton Thatb, Christophe
Donya

aLIRMM, CNRS and Montpellier University, France
bIRISA, University of South Brittany, France

Abstract

Architecture constraints are specifications which enable developers to for-
malize design rules that architectures should respect, like the topological
conditions of a given architecture pattern or style. These constraints can
serve as a documentation to better understand an existing architecture de-
scription, or can serve as invariants that can be checked after the application
of an architecture change to see whether design rules still hold. Like any spec-
ifications, architecture constraints are frequently subject to reuse. Besides,
these constraints are specified and checked during architecture design time,
when component descriptions are specified (or selected from repositories),
then instantiated and connected together to define architecture descriptions.
These two facts (being subject to reuse and instantiation/connection) make
architecture constraints good candidates for component-based design within
a unified environment. In this paper, we propose a component model for
specifying architecture constraints. This model has been implemented as an
extension to an ADL that we have developed, which is called CLACS. The
obtained process advocates the idea of specifying architecture constraints us-
ing the same paradigm (of component-based development) as for architecture
description. To evaluate the component model, we conducted an experiment
with a catalog of constraints formalizing the topological conditions of ar-
chitecture patterns. The results of this experiment showed that constraint
specification is improved by this reuse-by-composition model.

Keywords: Architecture Constraint, Software Component, Architecture Description, OCL

Email addresses: tibermacin@lirmm.fr (Chouki Tibermacine),
salah.sadou@irisa.fr (Salah Sadou), minhtutonthat@gmail.com (Minh Tu Ton
That), dony@lirmm.fr (Christophe Dony)

Preprint submitted to Future Generation Computer Systems January 23, 2016

1. Introduction: Context and Motivations

Software architectures are key design artifacts, which are sketched at the
beginning of the development process and maintained throughout the soft-
ware life-cycle in order to satisfy and make persistent user (functional) and
quality requirements. These design artifacts play several roles in software
development. First, they provide a global view of the structure and/or be-
havior of the developed software system, hiding some implementation details,
for enabling an easy global comprehension of the software system. Second,
they make easier the reasoning about non-functional requirement satisfac-
tion, by providing a good means for capturing and documenting a part of
the initial design choices. Third, they represent an interesting media for com-
municating with the other stakeholders involved in the software development
project.

Architecture constraints represent a formal description of conditions im-
posed by some design choices made in an architecture description [1, 2, 3].
By formal description, we mean here a processable (checkable) specification
of these conditions. Examples of such constraints include the topological
conditions imposed by an architecture style or pattern used when designing
a software architecture. The benefit from these constraints is twofold. First,
they play a documentation role and thus help developers in understanding
an architecture description and the design choices made during its construc-
tion. For example, a system designed using a given set of patterns, like the
Facade and the Composite [4] can be documented using constraints, stating
for instance for the Facade pattern that there must be a unique interface
for client components. This documentation can be read by future develop-
ers, involved in the system’s maintenance, to know without ambiguity which
patterns have been instantiated in the architecture. This helps them in bet-
ter understanding the previous design choices. Second, they play the role of
invariants that can be checked after an architecture evolution [5]. If devel-
opers decide to make some changes to the evolved system’s architecture, the
checking of constraints enables to notify the developers about the instanti-
ated patterns potentially affected by changes (if for example the interface of
the Facade is anymore the only interface to client components).

In contrast to constraints in constraint programming, architecture con-
straints are not conditions that should be satisfied by a solution in an op-

2

timization problem, where we would like to find an optimal solution among
many possible ones. They are conditions that are evaluated to see whether a
given single “fixed” solution (our architecture description) satisfies the con-
ditions or not. If the conditions are not satisfied, we are not led to find
another possible solution. We should in this case change the current so-
lution (architecture description), by undoing previous changes for example,
and then re-evaluate the conditions. Furthermore, conditions in architecture
constraints should not be confused with invariants in contract programming
(or Design by Contract [6]). In contract programming, invariants are mainly
checked at runtime, while conditions in architecture constraints are checked
statically. In architecture constraints, we analyze the architecture descrip-
tion of a software system, and not the dynamic states of components in this
architecture, as done in contract programming.

The context of our work is component-based software development (CBSD).
In a CBSD setting, architecture descriptions are specified using component-
based Architecture Description Languages (ADLs). Some ADLs provide
means to specify architecture constraints (see [3] for a literature review). Un-
fortunately these languages provide limited solutions for reusing constraints,
while these are by nature reusable specifications (examples in the following
sections and the results of the experiment –Section 6– confirm these state-
ments). For defining new constraints, developers should be able to reuse
existing constraints and combine them with others (possibly new ones).

In a previous work [7], we proposed a family of languages based on OCL
(Object Constraint Language [8]), for specifying architecture constraints.
These languages offer the possibility for architects to easily specify constraints
depending on the language used to define their architecture descriptions.
These languages benefit from the expressive power and ease of use [9] of
their underlying language, OCL. However, like existing ADLs or constraint
languages, this family of languages does not provide means for efficiently
reusing constraints.

To make such specifications reusable, we can imagine a solution where
constraints are wrapped in functions, as in procedural programming. These
functions embed thus the checking of constraints. Then, these functions,
which can be organized in modules, can be imported and called: i) in ar-
chitecture descriptions whenever constraints must be checked, or ii) in spec-
ifications of other (more complex) constraints. In this paper, we pushed
further this reuse schema (of wrapping constraints in functions) and we pro-
pose that architects, who define architecture descriptions using a component

3

model [10], specify architecture constraints using the same component model.
In this way, constraints are specified in component descriptors, which can be
instantiated and connected to other components. The ultimate goal here is
to provide a unified environment for architecture description.

This article is an extended version of a previous communication [11]. In
this article, we have more particularly:

• detailed and extended our specification of the model,

• illustrated our model with several (different, including real-world) ex-
amples,

• largely extended the related work,

• provided another more practical implementation (as a UML profile)

• and added an empirical evaluation established through the construction
of a catalog of constraint components for architectural patterns.

In the following section, we illustrate through examples the problem ad-
dressed in our work and present the motivations of the proposed model. In
Section 3, we first give an overview of the approach that we propose, then
we detail our model for specifying software architecture constraints in com-
ponents. In Section 4, we show through examples how our approach can be
used in practice. After that, we introduce in Section 5 the current imple-
mentation of the proposed approach integrated to a component-based ADL,
called CLACS. In Section 6 we expose an empirical evaluation of this model
where we quantified the reusability provided by the component model. This
evaluation has been performed on a set of architecture constraints formaliz-
ing the topological conditions of 31 architectural patterns. Before concluding
and listing the perspectives of this work in the last section, we discuss the
related work in section 7.

2. Context and Problem Statement

The constraints shown in this section are defined in ACL (Architecture
Constraint Language [7]), which is a language based on the OMG’s Object
Constraint Language (OCL). Besides, architecture descriptions to which con-
straints are associated are defined using UML. First, we introduce ACL and
the UMLs metamodel for component-based architecture description. Then,

4

we present two examples of ACL constraints. At last, we make a summary
of the problems identified on these examples.

2.1. Introduction to ACL and UML’s Component Model

Constraints in ACL are defined as invariants. They navigate in the meta-
model representing the abstract grammar of the ADL used for describing the
architectures on which the constraints apply1. In contrast to OCL (when
used at the metamodel level), they do not apply to all instances of this
metamodel, i.e. all architecture descriptions defined using that ADL. They
however apply only to a specific instance of this metamodel, which is an ar-
chitecture description referenced in the context part of the constraint. The
use of this metamodel provides the architects with the capability of defining
(in the constraints) expressions that analyze architecture descriptions.

Figure 1: An Excerpt from the UML 2.x metamodel (Components and Composite Struc-
tures)

The examples of architecture constraints presented in this section nav-
igate in the metamodel shown in Figure 1, which is an excerpt from the
UML 2.x metamodel. This metamodel encompasses the definition of UML
components and composite structures [12]. The meta-class Component is a

1By “navigate in the metamodel”, we mean that we use, in the constraints, OCL
navigation expressions in which we move from one meta-class to another one in order to
analyze the architecture elements which are instances of these meta-classes.

5

specialization of Class. This gives to components class capabilities (par-
ticipating in generatization relations, or playing the role of classifiers for
instances, for example). In addition, Class inherits in this model from
EncapsulatedClassifier and StructuredClassifier. This means that a
component (as a specialization of EncapsulatedClassifier) can have ports
that can declare provided and/or required interfaces (see the bottom left part
of Figure 1). This enables components to encapsulate their contents, and ex-
pose their functionnality via their ports, which are the communication points
with their environment (other components). A component (as a specializa-
tion of StructuredClassifier) can declare parts, which are a specific kind of
properties that reference the instances that compose the internal structure of
the component (we refer to this as the composite structure). These parts can
play roles in connections (they can be attached to connector ends). A com-
ponent can have connectors which link connectable elements. Such elements
can be ports of a part in a composite structure of a component (Association
between ConnectorEnd and Property in the metamodel) or ports of the en-
compassing component having a composite structure. Finally, a component
can have one or several Classifiers (classes, for example) which realize it.
By Realization of a component, the UML specification refers to the set of
classifiers that implement the behavior of the component. These classifiers
can be other components (Component is a specialization of Classifier).

Figure 2: An Example of a UML 2.x diagram

An example of a UML 2 diagram is depicted in Figure 2. (This is an
excerpt from Figure 11 presented in Section 4.3.) JDT Compiler is a compo-
nent. compilerTool and compilerAPT are parts in the composite structure
of this component. tool and apt in the bottom of the figure are ports of
the component, with two different provided interfaces. Besides, a required

6

interface is declared in the tool port of compilerAPT part. There are three
connectors in this example: two delegation connectors defined between the
parts and their encompassing component, and an assembly connector which
links the required interface and the provided one of the two parts.

2.2. Illustrative Examples

The first constraint presented below checks if the architecture description
of a component named ACS (Access Control System) conforms to the layered
architecture style [13]. In this constraint we assume that the internal ar-
chitecture of this component contains a set of component instances each of
which representing a layer.

1 context ACS: Component inv LayeredArch i tecture :
2 l e t l a y e r s : Set (Component) = ACS. part . type−>asSet ()
3 −>s e l e c t (t : Type | t . oc l I sKindOf (Component))
4 −>c o l l e c t (t : Type | t . oclAsType (Component)) ,
5 connector s : Set (Connector) = ACS. ownedConnector
6 −>r e j e c t (c : Connector | c . kind=ConnectorKind : : d e l e g a t i o n)
7 in
8 −− Each l a y e r should be connected
9 laye r s−>f o r A l l (c : Component |

10 connector s . end . ro l e−>i n c l u d e s (c . ownedPort))
11 and
12 −− Each l a y e r should be connected to at most
13 −− two other l a y e r s
14 l aye r s−>f o r A l l (com : Component |
15 connectors−>s e l e c t (con : Connector |
16 con . end . ro l e−>i n c l u d e s (com . ownedPort))
17 −>s i z e () <= 2)
18 and
19 −− The number o f l a y e r s that are connected
20 −− to only one other l a y e r i s equal to two
21 −− (top and bottom l a y e r s)
22 l aye r s−>s e l e c t (c : Component |
23 connectors−>one (con : Connector |
24 con . end . ro l e−>i n c l u d e s (c . ownedPort)))−>s i z e () = 2

Listing 1: ACL Constraint for a Layered Architecture

We assume in this example that the architecture description should con-
tain at least three layers. We obviously suppose here that the layered ar-
chitecture style cannot be checked on an architecture description having an
internal architecture with only two component instances.

7

This constraint checks first if all the layers are connected, by analyzing
all the connectors that are attached to the ports of the layers (we exclude
delegation connectors between ACS and its internal components in Line 6).
In Lines 9 and 10, the constraint checks if each layer is connected. Concretely,
it verifies if there is at least one connector whose end is attached to one port
of each component in the set of components (layers). The constraint then
checks if each layer is connected to at most two other layers. It iterates
(the forAll quantifier in Line 14) over the set of all components (layers)
and then selects the connectors whose ends are attached to the ports of each
component. The set of these connectors must contain at most two instances.
At last, the constraint requests the number of layers that are connected to
only one other layer (having only one connector whose end is attached to their
port – see one(...) collection operation in Line 23). This should be equal to
two, which correspond to the top and bottom layers. All the other (middle)
layers should thus be implicitly connected to exactly two other layers.

We can observe in this example that the constraint is composed of many
“independent” parts that are assembled together via the and logical operator
(Lines 11 and 18). All these parts assembled together formalize the topo-
logical conditions imposed by the layered architecture style, but it is easy
to observe that these parts have their own consistent semantics. For exam-
ple, the part in lines 9 to 10 checks that there should be no orphan (not
connected) components in an internal architecture, and the part in Lines 22
to 24 checks that in an internal architecture, a number x of components (in
the example x = 2) should be connected individually to a single other compo-
nent. These two parts could meaningfully be reused independently from the
others either alone or within another more global constraint. They represent
reusable entities that can be named and placed in a library or a catalog in
order to be reused by developers of new architecture descriptions to formal-
ize their design choices. In the actual specification, these constraint parts
cannot be reused, and are considered as part of the topological conditions of
the layered style.

Let us now consider another example. A Bus configuration, like the
Enterprise Service Bus [14], organizes components into three categories: the
customers, the producers and the bus. Customers require some services and
producers provide these services but these two kinds of components cannot
be connected together, because they may have mismatching interfaces (they
have not been designed initially to work together). The bus component plays
here the role of an adapter in order to make it possible for the customers to

8

communicate with the producers. The constraint formalizing the conditions
imposed by the structure of this architecture pattern is given below:

1 context ESB: Component inv :
2 l e t bus : Component = ESB. part . type−>asSet ()
3 −>s e l e c t (t : Type | t . oc l I sKindOf (Component)
4 and t . name=’ busImpl ’)
5 −>c o l l e c t (t : Type | t . oclAsType (Component))
6 −>asOrderedSet ()−> f i r s t () ,
7 customers : Set (Component) = ESB. part . type−>asSet ()
8 −>s e l e c t (t : Type | t . oc l I sKindOf (Component)
9 and (t . name=’ cust1 ’ or t . name=’ cust2 ’ or t . name=’ cust3 ’))

10 −>c o l l e c t (t : Type | t . oclAsType (Component)) ,
11 producers : Set (Component) = ESB. part . type−>asSet ()
12 −>s e l e c t (t : Type | t . oc l I sKindOf (Component)
13 and (t . name= ’ prod1 ’ or t . name=’ prod2 ’ or t . name=’ prod3 ’))
14 −>c o l l e c t (t : Type | t . oclAsType (Component))
15 in
16 −− The bus should have at l e a s t one
17 −− input port and one output port
18 bus . ownedPort−>e x i s t s (p1 , p2 : Port |
19 p1 . provided−>notEmpty ()
20 and p2 . requ i red−>notEmpty ())
21 and
22 −− Customers should have output por t s only
23 customers−>f o r A l l (c : Component |
24 c . ownedPort−>f o r A l l (requ i red−>notEmpty ()
25 and provided−>isEmpty ()))
26 and
27 −− Customers should be connected
28 −− to the bus only
29 customers−>f o r A l l (com : Component |
30 com . ownedPort−>f o r A l l (p : Port |
31 p . end−>notEmpty ()
32 implies
33 ESB. ownedConnector
34 −>e x i s t s (con : Connector |
35 bus . ownedPort−>e x i s t s (pb : Port |
36 con . end . ro l e−>i n c l u d e s (pb))
37 and con . end−>i n c l u d e s (p . end))))
38 and
39 −− Producers should have input por t s only
40 producers−>f o r A l l (c : Component |
41 c . ownedPort−>f o r A l l (provided−>notEmpty ()
42 and requ i red−>isEmpty ()))
43 and

9

44 −− Producers should be connected
45 −− to the bus only
46 producers−>f o r A l l (com : Component |
47 com . ownedPort−>f o r A l l (p : Port |
48 p . end−>notEmpty ()
49 implies
50 ESB. ownedConnector
51 −>e x i s t s (con : Connector |
52 bus . ownedPort−>e x i s t s (pb : Port |
53 con . end . ro l e−>i n c l u d e s (pb))
54 and con . end−>i n c l u d e s (p . end))))

Listing 2: ACL Constraint for a Bus Configuration

In Lines 2 to 6, this constraint filters the set of parts (internal compo-
nents) of the ESB component in order to keep the component representing
the bus. This filtering is performed by selecting a component with a spe-
cific name, which is busImpl. The same thing is done for customers and
producers, respectively in Lines 7 to 10 and in Lines 11 to 14. In the con-
straint, we navigate to the part types and select those which are components
(oclIsKindOf(Component)) and which have some specific names. The re-
maining of the constraint checks if the customers have only output ports and
the producers have input ports only2. Checking the existence of output ports
only consists in analyzing: i) the set of required interfaces declared in the
ports, which must not be empty, and ii) the set of provided interfaces which
must be empty. For checking the existence of input ports only, we reverse
the analyzed sets: the set of required interfaces must be empty and the set
of provided interfaces must not. In addition the constraint checks that all
customers and producers are connected to the bus only (connectors link the
ports of the bus to the ports of the customers/producers). Before making
these checkings the constraint tests if the bus exports at least one input port
and one output port (in Lines 18 to 20).

In contrast to the example of Listing 1, we can observe that this constraint
contains many identifiers that reference specific elements in the architecture
description of ESB (the internal component busImpl in Line 4, for example).
This constraint is therefore not reusable as it is in other contexts. In addition,
if the constraint is reused in an architecture description where there are

2For the sake of simplicity, we assume here that we have an architecture description
with a pure bus configuration.

10

more customers or producers, its definition should be changed. And this
becomes cumbersome if we should consider a large number of customers and
producers. Thus, giving it a syntactic signature and putting, as parameters
in this signature, the names of the architecture elements which are part of
its definition would clearly make this constraint more generic and reusable
with other architecture descriptions.

2.3. Summary of the Identified Problems

ACL and existing languages or tools for specifying architecture constraints
(cf. Related Work Section) do not give yet optimal answers to the issues we
have illustrated in the examples above, and which raise the following needs:

• Reusability: constraints need to be specified in a way that makes them
reusable specifications;

• Customizability: to be reused and applicable in different contexts, ar-
chitecture constraints should be parameterized by architecture elements
that constitute the architecture description on which they are checked,
and which are not known a priori ;

• Composability: the first example showed that complex constraints can
be beneficially built as combinations of other (existing) simpler ones.

The work presented in the following section aims at proposing a solution
to answer these needs.

3. Proposed Model

In this paper, we propose an approach for architecture constraint spec-
ification, where constraints are embedded in software components. These
components provide operations via ports for checking the embedded con-
straints. These operations have signatures with parameters. The constraints
themselves are specified as the body of these operations. Defined in this way,
constraints can use the parameters declared in their operation’s signature.
In addition, they can use the required port declared by their embedding
component to invoke other operations. This what makes these constraints
customizable and composable entities. They are assembled with business
(functional) components which require the checking of constraints on their
internal architecture description. In the proposed approach, each time the

11

architect wants to check a given constraint on a business component, she/he
can declare an internal or external required port and connect it to a constraint
component. The architect can declare multiple required ports connected to
internal constraint components if she/he needs to check several constraints
on the internal architecture of her/his business components.

An input (provided) checking port is integrated automatically to business
components that have internal constraint components. This port enables to
check all the constraints that are associated to these business components.
Each business component that has a provided checking port is instantiated at
design time for checking its constraints. We chose to use a port for checking
the constraints of a component in order to operate with the same concepts
in the design stage by describing a component-based architecture.

Figure 3: Specifying Software Architecture Constraints in Components

For the first example that we have presented in the previous section, we
obtain, using the proposed approach, a set of constraint component descrip-
tors representing the different parts of this constraint3 (left part of Figure 3.).
Each component descriptor provides a single input port for checking, through

3Note that constraint component descriptors are specified manually by the developers
and not generated automatically starting from their textual “gross” format.

12

an operation, a part of the constraint. On the other hand, the business com-
ponents declare in their internal architecture as many constraint components
as design choices that should be checked. To meet the design choice (the lay-
ered architecture style) of the business component, all constraint component
descriptors should be instantiated and assembled in a composite constraint
component (right part of Figure 3). The latter will provide an input port to
check if the business component conforms to the layered architecture style.
Thus, connecting a business component to a constraint component means
that the latter is responsible for checking the validity of the design choice in
the first one.

Operations provided by constraint components can be parameterized by
architectural elements used in the constraint. In this way, constraints become
more generic and can be reused in different contexts (with different business
components). For example, the constraint of the Bus configuration will not
depend anymore on the components representing the bus, the customers or
the producers. This set of components becomes a parameter for checking the
constraint. It should be initialized (by argument passing) when the operation
is called from other business components for which the developer would like
to check the Bus configuration pattern. This developer should state (out-
side the constraint specification) which components in her/his architecture
description play the roles of the bus, the customers or the producers.

The checking of these constraints is performed statically. Static checking
implies a static analysis of the architecture description of business compo-
nents.

3.1. Architecture Constraints in CLACS

Our solution is embedded into an architecture description language called
CLACS (pronounced Klax). CLACS is a general purpose ADL that enables
constraint-component modeling and composition. It supports simple con-
cepts which have been unified from existing ADLs (components, connectors,
ports, interfaces, etc.). Its metamodel is depicted in Figure 4. In order to not
add (yet-)other constructs for constraint-component modeling, we chose to
use the same constructs as for business component modeling. We have just
stereotyped the metaclasses representing these constructs in the metamodel
of Figure 4. In this component model, we distinguish between (constraint)
component descriptors and (constraint) component instances (a dichotomy
like between classes and objects). Descriptors specify checking ports, which

13

Figure 4: A Simplified Metamodel of CLACS

are a special kind of ports, described by “Checking” interfaces. In these
interfaces, a developer specifies signatures of operations for architecture con-
straint checking. These operation signatures are then associated by her/him
to ACL constraints, which are the boolean expressions that are effectively
checked. If a component exports a checking input port (it is thus described
by a provided interface), this component is able to check the specified ACL
constraint(s). If a component exports an output port (described thus by a
required interface), this means that the operation signatures specified in the
interface, which describes this port, are required by the component in order
to be able to check its own constraint(s).

Constraint component descriptors can be primitive (for modeling simple
constraints) or composite (for complex ones). If a developer defines a com-
posite descriptor, she/he should declare, in the internal architecture of the
descriptor, a set of constraint component instances that compose the con-
straint and some “checking” (constraint) connectors. Constraint connectors
link two checking ports (an output port to an input one). ACL constraints
have as a context a metadescriptor of the business component which is con-
nected to the encompassing constraint component. In the body of the con-
straint (as shown in the example of Figure 5), the keyword self is replaced
by context which is a special required port connected to this metadescrip-

14

tor of the business component4. Intermediate constraint components may
exist between a business component and a constraint component. Indeed, a
constraint component may require another constraint component, which in
turn requires a constraint component, and so on. In this case, CLACS mod-
eling environment ensures a propagation of the context (the connection to
the metadescriptor of the business component) to all constraint components,
even those which are not directly connected to the business component in
order to solve the context keyword in their ACL constraint specification.
In addition, ACL constraints can use one or several output checking ports.
These ports are used to call required operations, when composing constraint
components (see subsection 3.3). We have chosen to make required operation
calls, in constraint specifications, through ports, because this is the natural
way of doing in component-based development. We made this choice for
being consistent and providing a unified modeling environment.

Constraint components can have states. If a developer defines a constraint
component descriptor with several checking operations and if there is a shared
navigation expression between ACL constraints in these operations, she/he
can factorize this expression and declare it as the expression that evaluates
a special private attribute of that component descriptor. This attribute is
called an architecture constraint query in CLACS. The value of this attribute
is evaluated once, when the constraint component descriptor is instantiated
and connected to a business component. The value of this attribute can
be used in the ACL constraints of the different checking operations of the
constraint component descriptor. An example is given in Section 3.4.

3.2. Specifying Constraint-Components

Figure 5 depicts a graphical representation of a simple (primitive – not
composite) constraint component descriptor. This descriptor can be instan-
tiated in an architecture description in order to check the Bus configuration
architecture pattern (see Listing 2, Section 2). Each BusConfiguration

instance owns one input port named busChecker that exports a constraint
checking operation having the following signature (see right part of Figure 5):

isBusConfiguration(busName:String,customerNames:String[1..*],
producerNames:String[1..*]):Boolean

4This required port (context) and the connector to the metadescriptor are not explic-
itly modeled in the examples of this paper in order to not complexify the architecture
descriptions.

15

Figure 5: Example of a Primitive Constraint Component

Each BusConfiguration instance can then be connected, through that
checking port, to any business component requiring this constraint checking
operation.

In contrast to the constraint shown in Listing 2, the ACL constraint spec-
ification in this constraint component5 uses the parameters declared in the
operation signature (isBusConfiguration(...)). Indeed, this constraint
needs the name of the component instance representing the bus as a simple
String, the names of the component instances representing the customers, as
a non-empty literal set of strings, and the names of the components repre-
senting producers as a non-empty literal set of strings too. These parameters
are used in the constraint specification as property call expressions.

When called within our modeling environment, a provided operation of a
constraint component returns true if the architecture description of the busi-
ness component to which it is connected fulfills the constraint. When such
a connection is established, via checking ports, and a constraint evaluated,
the context keyword is automatically solved to a connector to a metade-
scriptor of the business component to which the constraint will be applied.

5Note here that the ACL constraint navigates in the CLACS metamodel (depicted in
Figure 4) and not in the UML2 one (as it has been done in Section 2). In this case,
constraints are checked on CLACS architecture descriptions and not on UML component
diagrams.

16

When composite constraint-components are built, in which a constraint com-
ponent is connected to another one, a transitive closure is computed on that
connector until a metadescriptor of the business component is found.

3.3. Connecting Business to Constraint Components

A business component, which embeds a constraint component instance
(called here a constrained business component) has a checking output port,
which provides the modeling environment with the operation for running the
constraint checkings. Within its internal architecture, a constrained business
component descriptor declares one or several business component instances
and one or several constraint component instances. They are connected to-
gether using either traditional (business) connectors (between business com-
ponents only) or constraint connectors.

Figure 6: Example of a Business Component connected to a Constraint Component

An example of such constrained business component is given in Figure 6.
This is a simplified view of the business component, where we show only
constraint-related elements. Business operations provided by this compo-
nent and ports of internal components are not illustrated in this figure. The
component descriptor is named ESB. It declares, in addition to its business
modeling elements, an instance of BusConfiguration, which exports the
input port named busChecker. Since ESB is connected to a contraint com-
ponent, an operation checkAC() is automatically added to the descriptor

17

Figure 7: Composition of Constraint Components

with a default implementation (a skeleton of an ACL constraint to be cus-
tomized by the developer) in which there are calls to each operation provided
by the embedded constraint components (in our example, there is only one
operation call). This operation is the starting point used by the modeling
environment for launching the evaluation of constraints, after instantiating
this descriptor. The implementation of this operation is shown in the box
at the bottom of Figure 6. It consists of calling the operation provided by
the checking port busChecker. It passes to this operation the necessary ar-
guments for its interpretation: the name of the component instance playing
the role of the bus, and the names of the component instances playing the
roles of customers and producers.

3.4. Connecting and Composing Constraint Components

In the previous subsection, we have shown how to use an input checking
port inside an ACL constraint specification. This constraint was defined in
the specification of the input port (checker) of a business component (ESB).
In this subsection, we will focus on constraint components and will refine the
definition of the constraint component descriptor BusConfiguration and
decompose the specification of its ACL constraint into multiple parts. The
new specification of this ACL constraint is given in Figure 7.

In the body of the constraint (see again Figure 7) there is a call to
the operations areAllPortsOfKind(...) and areConnectedTo(...) pro-
vided by two different constraint component instances (portPropChecker

18

and componentInterconnection). These instances are shown in the left of
the figure. The first component checks the properties of ports (their kind
here), and the second checks connections between components. They pro-
vide many operations for constraint checking, among which the two opera-
tions used in our example. These two instances are declared in the internal
architecture of the BusConfiguration2 constraint component descriptor.

Now, we refine the description of the constraint component descriptor
ComponentInterconnection. Since it includes several constraint checking
operations which have a shared navigation expression in their ACL con-
straints (context.internalArchitecture.instance), we added an archi-
tecture constraint query (a special private attribute) named ctxIntlComps,
which stands for the context’s internal components. Figure 8 shows the new
descriptor of this component (ComponentInterconnection2). The ACL nav-
igation expression is defined as an OCL-like let expression (see the bottom
of Figure 8). The ACL constraints in the checking operations use henceforth
this constraint query (ctxIntlComps), which is evaluated only once. This is
depicted in the three ACL constraints surrounding the component descriptor.

Figure 8: A Constraint Component Descriptor with a Query

4. Illustrating the Model

We show in this section how we can apply the proposed model to some
examples of architecture constraints. In particular, we present three different
examples in order to further highlight: i) in Example 1, the reuse of existing

19

constraint-components in the specification of a new constraint-component,
ii) in Example 2, the composition of several constraint-components to build
a more complex architecture constraint, and iii) in Example 3, the application
of the model on a real-world case example.

4.1. Example 1: A Variant of the Layered Architecture style

The constraint component enabling the checking of the layered architec-
ture style, introduced in Section 2, is illustrated in Figure 9. It is composed
of two primitive constraint components. One of the components is an in-
stance of the same descriptor as the one instantiated in the description of
the constraint component BusConfiguration2 introduced previously, which
is ComponentInterconnection2. This time, we use another operation pro-
vided by this component: areAllConnectedToAtMost(...) which checks if
all the internal components of the context component are connected to at
most n (received as an argument) components. The other internal constraint
component is used for checking if all internal components of the context

component are connected.
In practice, the constraint introduced at the beginning of the paper (in

Section 2) can be used only with architecture descriptions where the whole
internal architecture conforms to the layered architecture style. Indeed, we
can observe that the constraint is expressed in a “context-independent” way:
it checks that “all” internal components of a given composite component,
whatever their number or name (and without referencing them explicitly),
form a layered architecture. This is not always the case. In real-world sit-
uations, architecture descriptions are configured as a layered architecture in
some parts of the architecture, but they include in other parts some addi-
tional components.

The constraint component descriptor of Figure 9 can be used in such sit-
uations. The signature of the provided operation of this component includes
the necessary parameter: isLayered(layerNames:String[1..*]):Boolean

The argument received by this operation is propagated to the operations of
the internal components, as illustrated in the ACL constraint at the left of
the figure.

The user of this constraint component descriptor should state (in the
description of her/his business component), in a literal set, the names of the
component instances playing the role of layers as following:
layeredChecker.isLayered(Set{’authenticator’,’accessAuthorizer’,
’localLogger’,’centralArchiver’})

20

Figure 9: Constraint Component for Checking the Layered Architecture Style

It is true that for this example of architecture constraint, we could simply
state that the component instance of layer 1 must not be connected to the
component instances of layer 3 and layer 4. In addition, there should be no
connection between layer 2 and layer 4. However, the advantage of specifying
this constraint in the way we have done is that it scales relatively well for a
larger number of layers. If we have more than four layers, we have just to add
the names of the additional layers in the literal set passed as an argument
for the constraint checking operation.

4.2. Example 2: Legacy Wrapper Architecture Pattern

We present here the application of our model on another (larger) example
of an architecture pattern. The constraint component illustrated in Figure 10
enables the checking of the Legacy Wrapper Architecture Pattern [15]. This
pattern recommends the “isolation” of legacy systems from the new devel-
oped components; all interactions between these two parts should go through
a specific component, named a legacy wrapper.

This constraint component is composed of five component instances. The
first component is an instance of the previous constraint component descrip-
tor specifying the Layered Architecture Style. Indeed the Legacy Wrapper
includes in its definition the constraints imposed by the layered architecture
style. The architecture description of the business system respecting this pat-
tern should include three layers: the new components layer, the legacy wrap-

21

Figure 10: Constraint Component for Checking the Legacy Wrapper Architecture Pattern

per (middle) layer and the legacy system(s) layer. In addition, the constraint
component includes two other constraint component instances. The first
one is responsible for checking the legacy wrapper component in the middle
layer and some of its properties (ComponentChecker), and the second checks
the groups of components inside the layers (ComponentGroupChecker). The
ComponentChecker requires some external constraint checking, which is satis-
fied by two other components: componentPropertyChecker and component-

Interconnection. This illustrates the ability for constraint components to
have output ports declaring some required constraint checking. For the sake
of simplicity, we have hidden the constraint specifications checked by all these
components.

4.3. Example 3: Architecture Constraints from a Real-World Component-
based Application

Let us now consider an example of the architecture description of a
real-world component-based application, together with its architecture con-
straints. The modeled software system is a set of Eclipse plugins that pro-
vide the Java programming environment JDT (Java Development Tools) in
the Eclipse SDK. The architecture of this set of plugins is depicted in Fig-
ure 11. It has been defined starting from the OSGi meta-data of these plugins
(the exported and imported packages and required bundles). For reasons of

22

simplicity, we have omitted some very simple component descriptors like
JDT Annotation. In addition, we have hidden from component descriptions
the interfaces required from the Eclipse Platform (required from the core
plugins of Eclipse, like SWT – the Standard Widget Toolkit, or the Platform
Runtime).

Figure 11: An Excerpt from the Architecture of Eclipse JDT

In one of the official technical documentations of Eclipse SDK [16], it is
mentioned that the core components of JDT have been designed separately
from the JDT user interface (see Section JDT Implementation in the previ-
ous reference). This means that these components, which are JDT Compiler,
JDT Core and JDT Launching, do not have required interfaces that are con-
nected to JDT UI (or JDT Debug UI). The rationale behind this design choice
is to “allow the JDT core infrastructure to be used in GUI-less configura-
tions, of the Eclipse Platform, and by other GUI tools that incorporate Java
capabilities but do not need the JDT UI” [16]. Besides this design choice,
JDT APT6, a tool for Java annotation processing, and JDT JUnit, a tool for
Java unit testing, are clearly supplementary plugins in JDT. The core compo-
nents of JDT should not depend on them (should not have required interfaces
connected to them). These two architecture constraints are specified using
CLACS and integrated to the architecture of JDT as depicted in Figure 12.

6https://eclipse.org/jdt/apt/index.php

23

https://eclipse.org/jdt/apt/index.php

Figure 12: Eclipse JDT Component connected to the Constraint Component

An instance of ComponentInterconnection2 is specified as an internal
component of the new architecture description of the composite component
Eclipse SDK (see the left of Figure 12). The operation existsDirectedCon-

nection(...) which is provided by this instance is called within the checkAC()
operation added to the JDT composite component (see the implementation
of this operation at the top right of the figure). The implementation of the
operation existsDirectedConnection(...) is given at the bottom right
of the same figure. A constraint connector has been established between
the two internal components. In addition another delegation constraint con-
nector has been defined between the composite business component (Eclipse
SDK) and its internal component JDT.

5. Implementation of the Constraint Component Model

We have implemented the constraint component model as a DSML (Domain-
Specific Modeling Language) using the UML profile mechanism. In the past,
we have developed another implementation as a new metamodel in Eclipse us-
ing Ecore with EMF [11]. A UML profile implementation is a better solution

24

than an EMF-based one, because it provides a better integration in existing
IDEs supporting UML modeling. All CLACS concepts have been designed as
UML stereotypes that extend UML meta-classes such as: Component, Port
and Connector. These stereotypes extend UML meta-classes having the
same name, except ComponentDescriptor which extends Component, and
ComponentInstance which extends Property.

We have extended this basic UML profile with concepts related to ar-
chitecture constraints. In this specific profile, we introduced the concept of
ACLConstraint, which extends UML Constraint metaclass, Architecture-
ConstraintChecking stereotype which extends UML Operation, and Archi-

tectureConstraintQuery stereotype which extends UML Property.
All diagrams depicted in the figures of this paper have been designed with

this profile, which has been implemented in IBM SDP (Rational R© Software
Development Platform). The created profile can be used in other UML edi-
tors. For example, the empirical evaluation, which is presented in the follow-
ing section, has been performed using this profile within the Papyrus UML
environment.

For ACL interpretation, we have developed a pre-processor7. Having the
architecture description of business components and their connected con-
straint components, ACL constraints are interpreted progressively by first,
evaluating parameters and let expressions. New operations (definitions
in Eclipse’s Complete OCL) are created on the fly and added (temporarily)
to the UML metamodel. These operations contain the ACL expressions to
evaluate, which are present in constraint components. The ACL constraint
which is present in the “top-level” business component (the starting point
of ACL interpretation – checkAC operation) is evaluated as an OCL invari-
ant by the OCL interpreter provided by Eclipse MDT. The context of this
invariant is the business component that embeds it.

6. Empirical Evaluation

The goal of the empirical evaluation presented here is to answer the fol-
lowing question: “To what extent our component model enables reusability
in the specification of architecture constraints?”. We present first the metric
we have used to quantify this quality attribute (reusability). Then, we show

7Available for download here: https://code.google.com/p/clacs/

25

https://code.google.com/p/clacs/

on which data the evaluation has been performed. At last, we present and
discuss the results and the threats to validity.

6.1. Reusability Measurement Method

In order to quantify to which extent the approach can enable reusability,
we should use an appropriate metric. Frakes and Terry in [17] reviewed six
categories of metrics and models of software reuse. They cover the reusability
of different artifacts in a software project, such as: source code, architecture,
data, documentation, etc. Most of the surveyed metrics focus on long term
reuse activities where the reuse level is tracked throughout the lifecycle of
artifacts. In our work, the evaluation focuses on a given set of data where each
entity is not supposed to go through different development phases. Therefore,
we choose the cost-benefit analysis category to measure the level of reusability
supported by our approach. In general, metrics in this category estimate the
cost of developing a system without and with reuse and from that, show the
benefit of the reuse support. Of these metrics, we choose the one proposed
by Gaffney and Durek [18], and which is defined as follows:

C = (b + (E/n) - 1)R + 1

where:

C is the cost of software development

R is the proportion of reused elements

b is the cost of incorporating the reused elements into the new product

E is the cost of developing a reusable element

n is the number of uses of reused elements

Some clarifications need to be made about this formula. C is one impor-
tant indicator of the effectiveness of the reuse method. If there is no reuse
at all, C is equal to 1. The more effective the reuse approach is the less C is.
For instance, C equals to 0.8 indicates that the cost of software development
decreases to 80% thanks to the reuse method. b and E reflect the estimated
cost of incorporating and developing, respectively, the reused elements. b is
supposed to be greater than 0 because it always takes effort to apply the
reuse method. E is supposed to be greater than 1 because the creation of a

26

reusable element requires an extra effort. Basically, E is the sum of the costs
of developing a new element (without reuse support) and applying the reuse
method.

6.2. Experiment Data

As data for our experiment, we chose as architecture constraints the topo-
logical conditions imposed by architecture patterns (AP) for many reasons:
i) APs are widely used as a means to characterize an architecture, ii) they
are well documented in the literature, iii) they apply to component-based
architectures, which are the context of our work, and iv) their topological
conditions are considered as a suitable way to document a part of design
choices. Moreover, in the following sections we will show that this collec-
tion of architecture patterns is where the reuse of constraints takes place
and where our approach can be leveraged to facilitate it. We collected APs
from different sources [19, 20, 21] and we considered only those related to
the structural aspect of the architecture. We identified 31 patterns including
their variants. A variant represents a way of applying a pattern to a specific
context of an architecture. For instance, a pattern can relate to all elements
in an architecture or only to a subset of them, which is the case when the
pattern must also take care of filtering the related elements. Since each pat-
tern variant exists independently and the constraints imposed by it have a
different specification (because the architecture description is analyzed dif-
ferently within the constraints), the choice of differentiating and including
pattern variants in our experimentation does not bias its results.

For each pattern we identified from its textual definition a list of con-
straints that formalize the topological conditions imposed by it. Each ele-
ment of the list was implemented as a constraint component. We refer to this
kind of constraint components as basic constraint components. The pattern is
composed of these basic constraint components, and by itself is a constraint
component. We refer to the latter as a pattern constraint component. So, the
pattern and its basic constraint components are added to the global list of
constraint components. The complete set of “formalized” architecture pat-
terns is described in a technical report [22]. Patterns are numbered from 1 to
31 (numbers are indicated between brackets in the titles of each subsection
detailing a pattern) and are presented in pages 4 to 10 of this report.

During the “formalization” of a pattern, some of its basic constraints may
be already specified. This situation implies a reuse of already defined basic
constraint components for its definition. When the definition of a pattern as

27

a pattern constraint component includes all basic constraints from another
pattern we consider that the former includes the latter. Thus, to measure
the reusability we rely on these relationships.

6.3. Experiment Measurement

We performed some measurements to quantify reusability for the formal-
ized patterns. In particular, we measured the reusable part (proportion) in
the component-based specification of architecture constraints of each pattern
(the R value) and the number of reuses of each component (the n value).

6.3.1. Measure of the proportion of reuse in each pattern

As presented in Section 6.1, the R value represents the proportion of
reused elements in each entity. In the case of our experimentation, it rep-
resents the proportion of the pattern’s structure (a set of constraint com-
ponents) which is issued from reuse (used by other patterns). This reused
structure could be a basic constraint component or a pattern constraint com-
ponent. Figure 13 shows the values of R for all pattern constraint components
(P1 to P31 documented in [22]). As we can observe, the R value lies in the
range of 40% to 100%. What is noticeable is that there is up to 58% of
these pattern constraint components having 100% of their structure issued
from reuse. This reinforces our observation that architecture patterns have
potential to be designed from a reusable structure.

Figure 13: R value for patterns

28

6.3.2. Measure of the number of occurrences of reuse

Another value to be measured is n, which represents how many times a
set of constraint components is reused in the whole set of constraint com-
ponents. To measure n, we counted the number of occurrences of a basic
constraint component or a pattern constraint component in the structure of
other constraint components. Figure 14 depicts the number of times basic
constraint components (C1, C2, ... documented in [22]) are reused. The
result shows that there is a great number of basic constraint components
that are used in at least two different pattern constraint components. More
specifically, 47% of these basic constraint components are reused. Especially,
there are two basic constraint components that are used in more than 40%
of pattern constraint components. The first one checks whether all compo-
nents in a given architecture description are connected, and the second one
checks that all connectors between each pair of components must go in the
same direction. Indeed, these two constraints are often required by most of
architecture patterns.

Figure 14: Number of times basic constraint components are reused

Another similar calculation is performed on pattern constraint compo-
nents instead of basic constraint components. Indeed, pattern constraint
components, which are created by composing basic constraint components,
can themselves be reused to construct more complicated patterns. In other
words, this reflects the reuse of constraints at a higher level of abstraction.

29

Figure 15 depicts the number of times pattern constraint components are
reused. 5 out of 31 pattern constraint components are reused. Especially,
the pattern constraint component (P6) formalizing the Layered architecture
style/pattern is reused 4 times respectively in the constraint components of
the following patterns: Layered Pipe and Filter, N-Tier architecture, Legacy
Wrapper and Pipeline. This is understandable because all of these four pat-
terns are special cases of the Layered architecture pattern. Although there
are only 5 out of 31 pattern constraint components being reused to build the
structure of others, this demonstrates the potential to promote the reusability
of pattern constraint components in the construction of a pattern constraint
component library.

Figure 15: Number of times pattern components are reused

6.4. Experiment Result and Discussion

In this section we present the calculation of the C value for each pattern
constraint component. C represents the cost of constructing an entity taking
into consideration the reusability of its structure. The less C is, the more
effective the reuse brought out by the component model is. R and n values for
each pattern component are drawn from Section 6.3. b in our evaluation is
the cost of composing constraint components and E is the cost of developing
constraint components (e.g. creating ports or connectors). We take the b
and E values estimated in an industrial case study performed in the early
ninties on Ada components [23]. In this case study, the author identified
five categories of components according to their complexity, each of which

30

having its own values for b and E. Here are their descriptions given by the
author [23]:

Monolithic Components in this category are found to have a similar com-
plexity, both in development and in integration into development code

Polylithic Components in this category are found to have a similar com-
plexity regarding integration into development code

Graph The graph component is the most complex in the repository which can
be considered as a nontrivial, domain-independent reusable component.
We cannot find any similar complexity among these components both
in development and in use

Menu and Mask These are end-products of the project

Constraint-components fit in the “Polylithic” category, because these have
the same complexity regarding their integration into a composite constraint
component descriptor, and regardless the integrated constraint-components.
Indeed, the integration consists always in: i) instantiating the constraint com-
ponent descriptor, ii) connecting it to other instances, and iii) invoking its
operations. Even if invocations require sometimes argument passing, these
arguments are always literal values (strings and collections of strings in the
considered catalog). This makes invocations simple and homogeneous among
constraint components of the catalog. In addition, invocations always return
boolean values. This does not require any parsing of the returned values in
the composite component where invocations are made. In this category, b
and E are evaluated by the authors to respectively 0.15 and 1.2. It is true
that not being able to measure b and E means that we do not exactly measure
the impact of using component-based development in the reuse of constraints.
This is mentioned later as a threat to validity. But even so, we found that
0.15 and 1.2 reflect well their proportion to the cost of developing a product
from scratch (the unity, 1): i) b, the cost of integration (instantiation, con-
nection and invocation), which is a recurrent task, represents roughly the 7th
(1/7 ' 0.15) of the cost of development of the parts not issued from reuse;
ii) E, the cost of developing a reusable element, is greater than developing
a non-reusable element (> 1). It is a fifth (1/5) greater (1.2). This is the
cost of making an element reusable: declaring the constraint’s embedding
component descriptor with its ports and the provided/required interfaces.

31

Figure 16: C value for patterns

Figure 16 shows the cost of constructing 31 pattern constraint compo-
nents. C varies from 28% to 82%. As we can see, all of the constructed
pattern constraint components have a cost less than 1 which means that the
reuse really has an effect in reducing constraint component construction cost.
For instance, the Layered Pipe and Filter pattern component (P9) has the
cost of 28% which can be explained by the fact that 100% of its structure
can be reused and moreover, its internal structure (Layered (P4), SameDi-
rectionConnectors(C12), RestrictedLeftMostComponent(C15) and Restrict-
edRightMostComponent(C18)) is the one being most reused. Details about
each pattern constraint component can be found in the aforementioned re-
port [22].

Finally, the average cost of constructing all the catalog’s pattern con-
straint components is measured as the sum of the costs of all pattern com-
ponents that are not entirely reused, divided by the total number of pattern
components. The reason why only the cost of pattern components not being
entirely reused is involved in the calculation is that as long as a constraint
component is entirely reused, its cost is already distributed when measuring
the cost of the reusing components (E in the metric’s formula in Section 6.1).
If we take into consideration the costs of all the pattern constraint compo-
nents, these costs (of initial construction) will be replicated. And this will

32

alter the measurement of the average cost. We obtained for this average
cost 40,09% which is a reasonable value to justify the effectiveness of reuse
brought by our component model.

6.5. Threats to validity

In our case, the internal validity concerns the confidence we have in the
correctness of our pattern definitions. The external validity concerns the
reproduction of our evaluation in other contexts.

6.5.1. Internal validity

Sometimes, the description of an architecture pattern implicitly imposes
some constraints that we have involuntarily forgotten (not specified). We
mitigate these risks by having pattern constraints drawn from many different
sources. Thus, we are pretty confident with the correctness of our pattern
catalog.

The determination of constraints in patterns could be biased by the fact
that the number of researchers (three) participating in the pattern constraint
specification process is limited. However, we conducted our experiment on
a relatively large set of data and we made sure that the way each pattern is
elaborated using constraint components is the most representative one.

6.5.2. External validity

The data is gathered from existing architectural patterns from the liter-
ature. However, the use of our evaluation process is general but should be
also applied to other domains of constraint usage (for instance, SOA pat-
terns [24] or OOP design patterns [4]). Nevertheless, the catalog of patterns
we collected is quite large (31 variants of different patterns) and we expect
them to be representatives to the typical use of architecture constraints.

7. Related Work

Our work is compared here with different works in the literature, or-
ganized in four different categories. First, we present the works proposing
models and languages for design-time reuse of architecture constraints, by
focusing mainly on existing ADLs. Then, we list the works dealing with
implementation-time specification and reuse of architecture constraints as-
sociated to programs. After that, we expose existing techniques for reusing
OCL constraints, since our model is based on this standard language. At

33

last, we show existing quality models enabling reuse and composition of con-
straints.

7.1. Architecture Constraint Reuse at Design Stage in ADLs

In the literature, there are many ADLs that provide capabilities for archi-
tecture constraint specification. Among these ADLs, we can quote Acme [25],
Aesop [26], Wright [27] and SADL [28, 29]. Aesop is one of the first ADLs
having proposed a constraint language. The authors use the terms “style or
topology constraints” and “configuration rules” for referring to architecture
constraints. These are written in methods in classes, and checked during
architecture description validation. In these methods, the architect uses an
API called FAM (Fable Abstract Machine) for introspecting architecture de-
scriptions.

SADL is an ADL enabling the specification of constraints (called by
its authors Well-formedness Rules) for formalizing architecture styles. It
introduces a syntax for expressing predicates in the first-order logic in order
to restrict the types of elements composing an architecture description or a
style specification (components, connectors, ports, etc.). In SADL, there are
some basic types representing architecture elements structure and behavior,
without any constraint. Then a new architecture description or architecture
style should introduce subtypes (by inheritance) with possible additional
constraints. These are checked during the interpretation of primitives for
instantiating components or connectors and connecting them.

Wright (a succesor of Aesop) is an ADL used to define formal specifi-
cations of architecture descriptions. This language provides some language
constructs for specifying architecture constraints.

Acme embeds Armani [30], a first-order predicate language which enables
the specification of architecture constraints: invariants and heuristics. Invari-
ants should not be violated, however heuristics should be observed but can
be violated. In order to specify reusable constraints, “design analyses” can
be used. These are functions, like CLACS operations, that can be called from
other design analyses, from invariants or from heuristics. To specify a con-
straint in Armani, we need to choose between: i) a design analysis (a reusable
constraint as a function) and an invariant/heuristic, where we call this func-
tion, or ii) only an invariant/heuristic. In CLACS, we specify a constraint
component providing an operation (function), and then we connect it to a
business component, where we want to check the constraint, and where we
call this operation via a port. Thus, in CLACS there is only one concept for

34

representing business entities and their associated architecture constraints.
In addition, in Armani we did not find how to specify architecture constraints
(design analyses and invariants or heuristics) independently from a style or a
system instance definition. And if they can be defined independently, we did
not find how to reuse them (import their definitions). In CLACS, architec-
ture constraints are “first-class” entities that can be specified independently
and resused in different contexts.

Aesop, Armani and WRIGHT provide style refinement mechanisms. In-
deed, in these language, we can define some styles as refinements of other
styles in which we can add constraints or specialize types of architectural
elements.

Reuse in these languages is implemented by inheritance. In our case,
reuse is implemented by composition. Inheritance and composition are two
complementary mechanisms in software reuse. Each one offers an interest-
ing reuse schema in a given situation. But in our context of architecture
constraint specification, in the situations we have encountered when reusing
constraints, we have either added or removed constraint parts to/from ex-
isting constraints. We have not had to redefine a constraint part. We think
thus that inheritance is not a pertinent solution for architecture constraint
reuse. However, inheritance certainly makes sense in reusing specifications
of architectural styles or patterns (which are different from architecture con-
straints).

FScript8 is a scripting language for the reconfiguration of Fractal [31]
component-based architecture descriptions. It provides a way for writing
actions (reconfigurations with side effects) and functions (architecture con-
straints without side effects). It has a syntax for introspecting architecture
descriptions (FPath) which is based on XPath.

In FScript as in CLACS, we can write parameterized architecture con-
straints. In addition, the authors of FScript state that it is possible to call
existing functions inside FPath requests. We assume more generally that
we can call functions representing architecture constraints inside functions
representing other architecture constraints for composing them. In contrast
to CLACS, FScript’s architecture constraints are defined in scripts outside
architecture descriptions and are checked by external tools. This does not

8A Tutorial of this language is available for download in an SVN repository of OW2:
svn://forge.objectweb.org/svnroot/fractal/tags/fscript-2.0

35

provide a unified paradigm/environment for software architects, where con-
straints are defined, reused and then checked with architecture descriptions.

AADL [32] (Architecture Analysis and Design Language) is an ADL for
describing (software and hardware) architectures of embedded and real-time
systems. Originally, this language does not provide a constraint language.
REAL [33] (Requirements and Enforcements Analysis Language) is a lan-
guage which has been proposed as an extension to AADL for expressing
architecture constraints. This language enables to write constraints as the-
orems that apply to collections of architecture elements (components, con-
nectors, etc.).

Constraints in this language use an architecture analysis mechanism for
getting in an architecture description the set of component instances of a cer-
tain type (Thread, Data, etc.), the values of their properties, or for testing the
access or the connections between component instances (Is Accessing To(...),
Is Bound To(...), Is Subcomponent Of(...), etc.). These high-level op-
erations correspond to the checking operations we have shown in CLACS
constraint component examples (areAllConnectedTo(...) provided by the
component ComponentInterconnection). This however is a fixed prede-
fined set of operations that cannot be extended by the language users. In
our model, an architect can write as many architecture constraints as she/he
wants, and then reuse them by instantiating their embedding components.

In [19, 34], the authors propose to use a number of “architectural prim-
itives” to model architectural patterns. Through the stereotype extension
mechanism of UML, one can define architectural primitives to design a spe-
cific structure [19] or behavior [34] of a pattern. Each primitive is a tangible
modeling element with its own semantic that can be composed to form a
pattern. In our work, a pattern constraint component is logically decom-
posed into basic constraint components. In other words, a basic constraint
is not necessarily a modeling element in a pattern but a part of the logic
of the pattern. Looking at pattern composition [35] from this point of view
helps us modeling patterns with more fine-grained logic, e.g. a structure that
imposes connectivity or an acyclic graph.

7.2. Architecture Constraint Specification and Reuse at Implementation Stage

In the literature, there is a great number of languages which has been pro-
posed for defining architecture constraints on object-oriented programs [36,
37, 38, 39, 40, 41, 42, 43, 44, 45]. Some of these languages refer to architecture
constraints as conditions on structural dependencies. These languages vary

36

from Prolog-like languages, like LogEn [41] (Logical Ensembles), LGA (Law
Governed Architecture) [42, 43], Spine [44] or Vespucci [45], to object-oriented
programming languages like CoffeeStrainer [36] for Java, CCEL (C++ Con-
straint Expression Language) [37] for C++, or DSLs like CDL (Category
Description Language) [38], DCL (Dependency Constraint Language [39]) or
SCL (Structural Constraint Language) [40]. In many of these works, there is
a query language for searching program units, and sometimes for grouping
them in some corse-grained units, called modules in DCL, building blocks
or ensembles in Vespucci. Then conditions are specified on these units. In
addition to these works, there are many open-source or commercial tools pro-
viding similar ways for expressing architecture constraints on object-oriented
programs, like Sonar, Checkstyle, Lattix, Macker, Classycle, Architexa and
JArchitect.

All these languages/tools focus on the specification of constraints and not
on the reuse or composition of these constraints. They propose simplifica-
tions of existing constraint languages or more efficient tools for checking these
constraints. The only exception is the work presented in [45] about Vespucci.
In this work, ensembles are groups of source code units (types, method and
field declarations). These are defined using a query language. Ensembles
can be hierarchically composed (by nesting other ensembles). Then con-
straints are defined between these ensembles in order to enforce conditions
on dependencies between these ensembles. Constraints are grouped in slices.
Slices that apply to composite ensembles automatically apply to their nested
ensembles. This hierarchical organization of constraints makes it possible
to compose complex constraints starting from simpler ones. As in CLACS,
this work deals with architecture constraint composition, but the expressed
constraints are simple conditions on dependencies (such as, “ensemble A can
create objects from classes in ensemble B”). To the best of our knowledge,
complex constraints like those imposed by architecture styles or patterns
cannot be defined in Vespucci.

7.3. OCL Constraint Reuse

Design pattern schemas [46] and component specification patterns [47]
are formal specifications which enable OCL constraint generation, for UML
class models in the first paper and for component specifications in the sec-
ond. These specifications introduce templates of OCL constraints with pa-
rameters which are passed during the instantiation of the templates. As in
CLACS, constraints are parameterized with modelling elements and are used

37

as libraries. However, modelling elements (parameters) in our case are archi-
tectural elements (component instances, ports, etc.) and constraints restrict
structural descriptions, whereas, in [46], modelling elements are UML class
entities and in [48] constraints target the functional aspect of components.

Eclipse OCL9 provides several practical extensions to the OCL specifica-
tion (like Complete OCL or OCLinEcore) which enable developers to specify
reusable and customizable OCL constraints. Documents of OCL constraints
can be defined, added to a given metamodel and then checked on models
conforming to this metamodel. The interesting part in these extensions is
the integration of new features (which can be operations with parameters)
in a metamodel using the def construct. We can imagine defining architec-
ture constraints by specifying them using operation definitions integrated
to the CLACS metamodel. In this way, we can reuse operation definitions
in other definitions in order to specify complex constraints. However, the
problem is that these constraints cannot be applied selectively to a given
architecture description and not on another one. Like traditional meta-level
OCL contraints, all architecture descriptions (models) should respect these
constraints. This limits thus their practical use as architecture constraints.

7.4. Constraint Reuse and Composition in Quality Specification Models

Our proposed model can also be compared to existing works on Qual-
ity of Service (QoS) specification and composition. In [49], the authors
present RBSLA, a language for specifying Service-Level Agreements (SLAs).
This language is based on RuleML (The Rule Markup Initiative: http:

//ruleml.org/) and enables the specification of predicates on the required
QoS for a given service. Like architectural constraints in CLACS, SLAs in
this language formalize some specifications that are usually defined in text
format. They can be composed to build more complex expressions in pred-
icate logic. In addition, SLAs are saved as XML documents in the same
way as models of constraint-components in CLACS are serialized in XMI.
Other similar languages include SLAng (The SLAng SLA Language: http://
uclslang.sourceforge.net/) and IBM’s WSLA (Web Service-Level Agree-
ments Project: http://www.research.ibm.com/wsla/). In SLAng, QoS
constraints are defined in OCL. SLAng constraints apply to service models
defined with EMOF [50] and restrict the behavior of services. QoS contracts

9Eclipse OCL Website: http://wiki.eclipse.org/OCL

38

http://ruleml.org/
http://ruleml.org/
http://uclslang.sourceforge.net/
http://uclslang.sourceforge.net/
http://www.research.ibm.com/wsla/
http://wiki.eclipse.org/OCL

in WSLA can be defined as XML documents. The focus in this language is on
the automatic monitoring of SLAs. SCA (Software Component Architecture)
specification [51] proposed the SCA Policy Framework as a way to specify
constraints and QoS requirements in component-based architectures. These
are called policies, they define conditions under which service components
execute and communicate. Originally, the constraint language presented in
our paper has been designed to document architectural choices taken to en-
sure quality requirements [5]. Similarly, in RBSLA, WSLA, SLAng and the
SCA specification, constraints are related to services’ quality. Nevertheless,
the kinds of quality attributes addressed in these languages are not the same
as the ones addressed in our work. QoS deals with runtime attributes (avail-
ability, confidentiality and performance, for example), however in our work
we address static attributes (such as the maintainability attribute for the
layered architecture style). In addition, these two kinds of non-functional
documentation (SLAs and policies from one side and constraint-components
from the other side) are not used in the same situations. SLAs and policies
are contracts between service requestors and service providers. Constraint-
components are contracts between architects of component-based applica-
tions and developers responsible for the evolution of these applications.

8. Conclusion

When performed manually from scratch, architecture constraint specifi-
cation is a complex, error-prone and time-consuming task. It requires a long
process of defining and then validating predicates in a formal language. For
an architect whose role is to define high-level component-based architecture
descriptions, and who is used to extensively reuse component descriptors,
this is a cumbersome task. Having a means to define such specifications
by reusing component descriptors is beneficial for two accounts. First, by
decomposing the specifications of architecture constraints in several “docu-
mentation” parts, a common repository of reusable, customizable and stable
(already tested and validated) component descriptors is provided for software
architects. Second, a unified environment for component-based software ar-
chitecture description is offered to software developers.

We plan in the future to enrich constraint-components with the other
parts of architecture design choice documentation. This will help architects
in incrementally building by-composition complex non-functional documen-
tations. In addition, we are investigating many complementary contributions

39

in this topic aiming at improving architecture constraint reuse throughout
the development process: i) translating automatically textual (“gross”) archi-
tecture constraint specifications into constraint component descriptors and
CLACS architecture descriptions; ii) generating code, which uses the reflec-
tive capabilities of COMPO programming language [52], starting from archi-
tecture constraints specified in CLACS; iii) reusing architecture constraints
by adaptation (narrowing, relaxing, etc.); and iv) specifying architecture con-
straints in a paradigm-independent way, by using graphs and operations on
them and then making automatic transformations towards object-oriented,
component-based or service-oriented architectures.

References

[1] J. Tyree, A. Akerman, Architecture decisions: Demystifying architec-
ture, IEEE Software 22 (2) (2005) 19–27.

[2] A. Jansen, J. Bosch, Software architecture as a set of architectural design
decisions, in: Proceedings of of the 5th IEEE/IFIP Working Conference
on Software Architecture (WICSA’05), 2005, pp. 109–120.

[3] C. Tibermacine, Software Architecture 2, John Wiley and Sons, New
York, USA, 2014, Ch. Architecture Constraints, pp. 37–90.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Sofware, Addison-Wesley Profes-
sional Computing Series. Addison Wesley Longman, Inc., 1995.

[5] C. Tibermacine, R. Fleurquin, S. Sadou, On-demand quality-oriented
assistance in component-based software evolution, in: Proceedings of
the 9th ACM SIGSOFT International Symposium on Component-Based
Software Engineering (CBSE’06), Springer LNCS, Vasteras, Sweden,
2006, pp. 294–309.

[6] B. Meyer, Eiffel: The Language, Prentice Hall, 1992.

[7] C. Tibermacine, R. Fleurquin, S. Sadou, A family of languages for ar-
chitecture constraint specification, In Journal of Systems and Software
(JSS), Elsevier 83 (1) (2010) 815–831.

40

[8] OMG, Object constraint language specification, version 2.2, doc-
ument formal/2010-02-01, Object Management Group Web Site:
http://www.omg.org/spec/OCL/2.2/PDF (2010).

[9] L. C. Briand, Y. Labiche, M. Di Penta, H. D. Yan-Bondoc, An ex-
perimental investigation of formality in uml-based development, IEEE
Transactions on Software Engineering 31 (10) (2005) 833–849.

[10] I. Crnkovic, S. Sentilles, A. Vulgarakis, M. R. Chaudron, A classifica-
tion framework for software component models, IEEE Transactions on
Software Engineering 37 (5) (2011) 593–615.

[11] C. Tibermacine, S. Sadou, C. Dony, L. Fabresse, Component-based spec-
ification of software architecture constraints, in: Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software
Engineering (CBSE’11), ACM, 2011, pp. 31–40.

[12] OMG, Unified modeling language superstructure, version 2.4.1 spec-
ification, document formal/2011-08-06, Object Management Group
Web Site: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
(2011).

[13] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerg-
ing Discipline, Prentice Hall, 1996.

[14] D. Chappell, Enterprise Service Bus: Theory in Practice, OReilly Media,
2004.

[15] P. Avgeriou, U. Zdun, Architectural patterns revisited a pattern lan-
guage, in: In 10th European Conference on Pattern Languages of Pro-
grams (EuroPlop 2005), 2005, pp. 1–39.

[16] Eclipse, Eclipse platform technical overview,
https://eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-
whitepaper.html (Last access: February 2015).

[17] W. Frakes, C. Terry, Software reuse: Metrics and models, ACM Comput.
Surv. 28 (2) (1996) 415–435.

[18] J. E. Gaffney, T. A. Durek, Software reuse–key to enhanced produc-
tivity: Some quantitative models, Inf. Softw. Technol. 31 (5) (1989)
258–267.

41

[19] U. Zdun, P. Avgeriou, A catalog of architectural primitives for modeling
architectural patterns, Information and Software Technology 50 (910)
(2008) 1003 – 1034.

[20] F. Buschmann, M. R., H. Rohnert, P. Sommerlad, M. Stal, Pattern
Oriented Software Architecture: A System of Patterns, John Wiley &
Sons, 1996.

[21] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, J. Stafford, Documenting Software Architectures, Views and
Beyond, Second Edition, Addison-Wesley, 2010.

[22] T. M. Ton That, C. Tibermacine, S. Sadou, Catalogue of architectural
patterns characterized by constraint components, version 1.0, Tech. rep.,
IRISA, University of South Brittany, France (2013).

[23] J. Favaro, What price reusability?: A case study, ACM SIGAda Ada
Letters XI (3) (1991) 115–124.

[24] T. Erl, SOA Design Patterns, Prentice Hall, 2009.

[25] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural description
of component-based systems, in: G. T. Leavens, M. Sitaraman (Eds.),
Foundations of Component-Based Systems, Cambridge University Press,
2000, pp. 47–68.

[26] D. Garlan, R. Allen, J. Ockerbloom, Exploiting style in architectural
design environments, in: Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, New Orleans, Louisiana,
USA, 1994, pp. 175–188.

[27] R. Allen, A formal approach to software architecture, Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (May 1997).

[28] M. Moriconi, X. Qian, R. A. Riemenschneider, Correct architecture re-
finement, IEEE Transactions on Software Engineering 21 (4) (1995) 356–
372.

[29] M. Moriconi, R. A. Riemenschneider, Introduction to sadl 1.0: A lan-
guage for specifying software architecture hierarchies, Tech. rep., Com-
puter Science Laboratory, SRI International (1997).

42

[30] R. T. Monroe, Capturing software architecture design expertise with
armani, Tech. rep., School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, USA (2001).

[31] E. Bruneton, C. Thierry, M. Leclercq, V. Quéma, S. Jean-Bernard, An
open component model and its support in java, in: Proceedings of the
ACM SIGSOFT International Symposium on Component-based Soft-
ware Engineering (CBSE’04). Held in conjunction with ICSE’04, Edin-
burgh, Scotland, 2004, pp. 7–22.

[32] P. H. Feiler, D. P. Gluch, Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language,
Addison-Wesley Professional, 2012.

[33] O. Gilles, J. Hugues, Expressing and enforcing user-defined constraints
of aadl models, in: In Proceedings of the 5th UML and AADL Workshop
(UML and AADL 2010), 2010.

[34] A. Kamal, P. Avgeriou, Modeling architectural patterns behavior us-
ing architectural primitives, in: R. Morrison, D. Balasubramaniam,
K. Falkner (Eds.), Software Architecture, Vol. 5292 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2008, pp. 164–179.

[35] M. T. Thon That, S. Sadou, F. Oquendo, I. Borne, Preserving architec-
tural pattern composition information through explicit merging opera-
tors, Future Generation Computer Systems (2014) 1–32.

[36] B. Bokowsky, Coffeestrainer: Statically-checked constraints on the def-
inition and use of types in java, in: Proceedings of the 7th European
Software Engineering Conference held jointly with the 7th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), Springer-Verlag, Toulouse, France, 1999, pp. 355–374.

[37] A. Chowdhury, S. Meyers, Facilitating software maintenance by auto-
mated detection of constraint violations, in: In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM’93), IEEE, 1993,
pp. 262–271.

[38] N. Klarlund, J. Koistinen, M. I. Schwartzbach, Formal design con-
straints, in: Proceedings of the 11th ACM SIGPLAN conference on

43

Object-Oriented Programming, Systems, Languages, and Applications,
ACM Press, San Jose, California, USA, 1996, pp. 370–383.

[39] R. Terra, M. T. de Oliveira Valente, A dependency constraint language
to manage object-oriented software architectures, Software Practice and
Experience 39 (12) (2009) 1073–1094.

[40] D. Hou, H. Hoover, Using scl to specify and check design intent in source
code, IEEE Transactions on Software Engineering 32 (6) (2006) 404–423.

[41] M. Eichberg, S. Kloppenburg, K. Klose, M. Mezini, Defining and con-
tinuous checking of structural program dependencies, in: Proceedings
of the 30th international conference on Software engineering (ICSE’08),
ACM, 2008, pp. 391–400.

[42] N. H. Minsky, Law-governed regularities in object systems. part i: An
abstract model, Theory and Practice of Object Systems 2 (4) (1996)
283–301.

[43] N. H. Minsky, P. Pratim Pal, Law-governed regularities in object sys-
tems. part ii: a concrete implementation, Theory and Practice of Object
Systems 3 (2) (1997) 87–101.

[44] A. Blewitt, A. Bundy, I. Stark, Automatic verification of design pat-
terns in java, in: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering (ASE’05), ACM, 2005,
pp. 224–232.

[45] R. Mitschke, M. Eichberg, M. Mezini, A. Garcia, I. Macia, Modular
specification and checking of structural dependencies, in: Proceedings
of the 12th annual international conference on Aspect-oriented software
development (AOSD’13), ACM, 2013, pp. 85–96.

[46] M. Giese, D. Larsson, Simplifying transformations of ocl constraints, in:
Proceedings of the 8th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS/UML 2005),
Montego Bay, Jamaica, 2005, pp. 309–323.

[47] J. Ackermann, K. Turowski, A library of ocl specification patterns for
behavioral specification of software components, in: Proceedings of the

44

18th International Conference Advanced Information Systems Engineer-
ing (CAiSE’06), Springer-Verlag, 2006, pp. 255–269.

[48] J. Ackermann, Formal description of ocl specification patterns for be-
havioral specification of software components, in: Workshop on Tool
Support for OCL and Related Formalisms - Needs and Trends. Held in
conjunction with MODELS’05, 2005, pp. 15–29.

[49] A. Paschke, Rbsla a declarative rule-based service level agreement lan-
guage based on ruleml, in: Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies
and Internet Commerce Vol-2 (CIMCA-IAWTIC’06), IEEE Computer
Society, 2005, pp. 308–314.

[50] O. M. Group, Meta object facility (mof) 2.0 core specification,
document ptc/04-10-15, OMG Web Site: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-15.pdf (2004).

[51] O. SOA, Open soa. service component architecture specifications,
http://osoa.org/ (2007).

[52] P. Spacek, C. Dony, C. Tibermacine, A component-based meta-level ar-
chitecture and prototypical implementation of a reflective component-
oriented programming and modeling language, in: Proceedings of the
17th International ACM Sigsoft Symposium on Component-Based Soft-
ware Engineering (CBSE’14), ACM Press, 2014, pp. 13–22.

45

Author Biographies

Chouki Tibermacine is an associate professor at Mont-
pellier University (France) since fall 2007. He received his
Ph.D. from the University of South Brittany (France) in
2006 and M.Sc in Distributed Systems from the Univer-
sity of Paris VI (France) in 2003. His current research fo-
cuses on the specification, evolution and transformation of
object-oriented, component-based and service-oriented soft-
ware architectures and programs. He participated to sev-

eral research projects with industrial (IBM among others) and international
academic partners. He co-authored about thirty peer-reviewed articles. He
was the publicity chair of ECOOP’13, ECSA’13 and ECMFA’13 organized
jointly in Montpellier in 2013. Since 2010, he is co-responsible for the french
work group on software reverse-engineering, maintenance and evolution (GT
RIMEL) of the french CNRS research group on Programming and Software
Engineering (GDR GPL). He received the ACM SIGSOFT Distinguished Pa-
per Awards in CBSE’11 and CBSE’14. He is holding the Scientific Excellence
Fellowship from Montpellier University for the period 2012-2016.

Salah Sadou is an associate professor in Computer Sci-
ence at University of Southern Brittany, France. He ob-
tained the B.Eng. in 1987 at Algiers University of Science
and Technology, Algeria, the M.Sc. in 1988 at Ecole Cen-
trale de Lyon, France, and the PhD degree in 1992 at Ecole
Centrale de Lyon, France. His current research interests
are centred on languages, processes and tools for designing
and engineering systems where the evolution acts as a first

class entity. His current research interests include architectural description
languages with non-functional properties as first class entities, software re-
structuring (from object-oriented to component-oriented), component-based
description languages and software quality.

Minh Tu Ton That received the BS degree in computer
science in 2010 from the University of Sciences, HCM city,
Vietnam; MS degree in computer science in 2011 from the
University of Toulouse, France; PhD degree in 2014 from the
university of South Brittany, France. His research interests
are pattern formalization, model driven engineering, and

46

component-based software development.

Christophe Dony is a Professor at the Montpellier Uni-
versity and is member of the LIRMM research laboratory.
He received a Ph.D. degree in Computer Science from Paris-
VI University and LITP laboratory in 1989. He worked
from 1989 to 1992 in a Xerox-France research laboratoty.
He joined the Montpellier-II University in 1992 and re-
ceived a ”Research direction capacitation” degree in Com-
puter Science in 1998. He became full professor in 2002.

Christophe Dony has worked and published, in the context of several na-
tional and international collaborations on such aspects of object-based and
component-based software engineering such as: interactive and reflective lan-
guages, exception handling, classless object-oriented languages, reuse and
software product lines, interactive programming environments, component
architectures, modelling and programming component-based languages.

47

	1 Introduction: Context and Motivations
	2 Context and Problem Statement
	2.1 Introduction to ACL and UML's Component Model
	2.2 Illustrative Examples
	2.3 Summary of the Identified Problems

	3 Proposed Model
	3.1 Architecture Constraints in CLACS
	3.2 Specifying Constraint-Components
	3.3 Connecting Business to Constraint Components
	3.4 Connecting and Composing Constraint Components

	4 Illustrating the Model
	4.1 Example 1: A Variant of the Layered Architecture style
	4.2 Example 2: Legacy Wrapper Architecture Pattern
	4.3 Example 3: Architecture Constraints from a Real-World Component-based Application

	5 Implementation of the Constraint Component Model
	6 Empirical Evaluation
	6.1 Reusability Measurement Method
	6.2 Experiment Data
	6.3 Experiment Measurement
	6.3.1 Measure of the proportion of reuse in each pattern
	6.3.2 Measure of the number of occurrences of reuse

	6.4 Experiment Result and Discussion
	6.5 Threats to validity
	6.5.1 Internal validity
	6.5.2 External validity

	7 Related Work
	7.1 Architecture Constraint Reuse at Design Stage in ADLs
	7.2 Architecture Constraint Specification and Reuse at Implementation Stage
	7.3 OCL Constraint Reuse
	7.4 Constraint Reuse and Composition in Quality Specification Models

	8 Conclusion

