
HAL Id: lirmm-01277361
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277361

Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of fixed-point programs based on instruction
selection, the case of polynomial evaluation

Mohamed Amine Najahi

To cite this version:
Mohamed Amine Najahi. Synthesis of fixed-point programs based on instruction selection, the case
of polynomial evaluation. RAIM: Rencontres Arithmétiques de l’Informatique Mathématique, Jun
2012, Dijon, France. 5ièmes Rencontres Arithmétique de l’Informatique Mathématique, 2012. �lirmm-
01277361�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277361
https://hal.archives-ouvertes.fr

5e Rencontres Arithmétique de l’Informatique Mathématique (RAIM 2012)
Dijon, 20-22 juin 2012

Synthesis of fixed-point programs based on
instruction selection

... the case of polynomial evaluation

Amine Najahi

Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 1/25

Motivation

Embedded systems are ubiquitous
I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 2/25

Motivation

Embedded systems are ubiquitous
I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 2/25

Motivation

Embedded systems are ubiquitous
I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 2/25

Motivation

Embedded systems are ubiquitous
I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating−point arithmetic

Software implementing

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 2/25

Motivation

Embedded systems are ubiquitous
I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Applications

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 2/25

How to use floating-point programs on embedded systems?

Two approaches to continue using numerical algorithms on these cores:
1. convert the entire numerical application from floating to fixed-point arithmetic
2. write a floating-point emulation library and link the numerical application against it

Fixed-point conversion
3 produces a fast code

3 consumes less energy

7 machine specific: no standard

7 smaller dynamic range than
floating-point

7 tedious and time consuming

Floating-point support design
3 tons of code are written using

floating-point

3 an algorithm can be synthesized on
a PC and then transferred to the
device without modifications

7 slower

7 tedious and time consuming

↪→ There is a need for the automation of both processes.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 3/25

Fixed-point conversion vs. floating-point emulation design

Floating to fixed-point conversion tools:

I addressed by the ANR project DEFIS, with IRISA, LIP6, CEA, THALES, INPIXAL
I some tools are currently developed: ID.Fix, . . .
I two main approaches:

1. statistical methods: perform well, but provide no guarantees and may be slow.

2. analytical methods: usually quite pessimistic, but they are safer to use.

Floating-point emulation support:

I a number of high quality emulation libraries exist: FLIP, SoftFloat,. . .
I more or less compliant with the IEEE-754 standard
I FLIP: relies on polynomial evaluation to evaluate division and square root

• a huge number of schemes for evaluating a given polynomial development of CGPE

• ≈ 50 % of FLIP’s code was generated by CGPE.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 4/25

Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 5/25

The CGPE tool

Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 6/25

The CGPE tool

Overview of CGPE

Goal of CGPE: automate the design of fast and certified C codes for evaluating
univariate/bivariate polynomials

I in fixed-point arithmetic
I by using the target architecture features (as much as possible)

Remarks:

I fast that reduce the evaluation latency on a given target
I certified for which we can bound the error entailed by the evaluation within the

given target’s arithmetic

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 7/25

The CGPE tool

Global architecture of CGPE

Input of CGPE

1. polynomial coefficients and variables: value intervals, fixed-point format, ...

2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. some architectural constraints: operator cost, parallelism, ...

<polynomial >
<coefficient x="0" y="0" inf="0x00000020" sup="0x00000020" sign="0" integer_part="2" fraction_part="30"/>
<coefficient x="0" y="1" inf="0x80000000" sup="0x80000000" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="1" y="1" inf="0x40000000" sup="0x40000000" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="2" y="1" inf="0x10000000" sup="0x10000000" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="3" y="1" inf="0x07fe93e4" sup="0x07fe93e4" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="4" y="1" inf="0x04eef694" sup="0x04eef694" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="5" y="1" inf="0x032d6643" sup="0x032d6643" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="6" y="1" inf="0x01c6cebd" sup="0x01c6cebd" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="7" y="1" inf="0x00aebe7d" sup="0x00aebe7d" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="8" y="1" inf="0x00200000" sup="0x00200000" sign="1" integer_part="1" fraction_part="31"/>
<variable x="1" y="0" inf="0x00000000" sup="0xfffffe00" sign="0" integer_part="0" fraction_part="32"/>
<variable x="0" y="1" inf="0x80000000" sup="0xb504f334" sign="0" integer_part="1" fraction_part="31"/>
<absolute_evalerror value="25081373483158693012463053528118040380976733198921b-191" strict="false"/>

</polynomial >

cgpe --degree="[8,1]" --xml-input=cgpe -test1.xml --coefs="[100000000111111111]" \
--latency=lowest --gappa -certificate --output \
--schedule="[4,2]" --max-kept=5 --operators="[111111111111111111:133333333111333331]" ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 8/25

The CGPE tool

Global architecture of CGPE (cont’d)

Internals of CGPE
CGPE proceeds in two steps:

1. Computation step:
I computes evaluation schemes while

reducing their latency on unbounded
parallelism

I considers only two possible arithmetic
operations: addition and multiplication

I produces DAGs that represent the
computed efficient schemes

Computation of low latency parenthesizations

Selection of effective parenthesizations

a(t)

Eapprox ≤ θF(s,t) Eeval ≤ η ST231 features

C code Certificate

Computation of polynomial approximant

CGPECGPE

2. Filtering step:
I prunes the evaluation schemes that do not satisfy different criteria:

latency (scheduling filter), accuracy (numerical filter), ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 9/25

The CGPE tool

Global architecture of CGPE (cont’d)

Output of CGPE

uint32_t func_d9_0(uint32_t T, uint32_t S)
{

uint32_t r0 = T >> 2; // (+) Q[1.31]
uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
uint32_t r2 = mul(S, r1); // (+) Q[2.30]
uint32_t r3 = 0x00000020 + r2; // (+) Q[2.30]
uint32_t r4 = mul(T, T); // (+) Q[0.32]
uint32_t r5 = mul(S, r4); // (+) Q[1.31]
uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
uint32_t r8 = mul(r5, r7); // (-) Q[2.30]
uint32_t r9 = r3 - r8; // (+) Q[2.30]
uint32_t r10 = mul(r4, r4); // (+) Q[0.32]
uint32_t r11 = mul(S, r10); // (+) Q[1.31]
uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
uint32_t r16 = r4 >> 11; // (-) Q[1.31]
uint32_t r17 = r15 + r16; // (-) Q[1.31]
uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
uint32_t r19 = r13 + r18; // (-) Q[1.31]
uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
uint32_t r21 = r9 - r20; // (+) Q[2.30]
return r21;

}

Listing 1: C code

Coefficients and variables definition
a0 = fixed <-30,dn >(0x00000020p -30);
a1 = fixed <-31,dn >(0x80000000p -31);
a2 = fixed <-31,dn >(0x40000000p -31);

. . .
a8 = fixed <-31,dn >(0x00aebe7dp -31);
a9 = fixed <-31,dn >(0x00200000p -31);

T = fixed <-32,dn>(fixed <-23,dn>(var0));
S = fixed <-31,dn>(var1);

CertifiedBound =
25081373483158693012463053528118040380976733198921b-191;

Evaluation scheme
r0 fixed <-31,dn>= T * a2; Mr0 = T * a2;
r1 fixed <-31,dn>= a1 + r0; Mr1 = a1 + Mr0;

. . .
r21 fixed <-30,dn>= r9 - r20; Mr21 = Mr9 - Mr20;

Results
{

(
var0 in [0x00000000p -32,0xfffffe00p -32]

/\ var1 in [0x80000000p -31,0xb504f334p -31]
->
/\ r0 in [0,0xffffffffp -31]
/\ r0 - Mr0 in ?

. . .
/\ r21 in [0,0xffffffffp -30]
/\ |r21 - Mr21| - CertifiedBound <= 0
/\ CertifiedBound in ?

)
}

Listing 2: GAPPA certificate

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 10/25

The CGPE tool

Global architecture of CGPE (cont’d)

Output of CGPE

uint32_t func_d9_0(uint32_t T, uint32_t S)
{

uint32_t r0 = T >> 2; // (+) Q[1.31]
uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
uint32_t r2 = mul(S, r1); // (+) Q[2.30]
uint32_t r3 = 0x00000020 + r2; // (+) Q[2.30]
uint32_t r4 = mul(T, T); // (+) Q[0.32]
uint32_t r5 = mul(S, r4); // (+) Q[1.31]
uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
uint32_t r8 = mul(r5, r7); // (-) Q[2.30]
uint32_t r9 = r3 - r8; // (+) Q[2.30]
uint32_t r10 = mul(r4, r4); // (+) Q[0.32]
uint32_t r11 = mul(S, r10); // (+) Q[1.31]
uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
uint32_t r16 = r4 >> 11; // (-) Q[1.31]
uint32_t r17 = r15 + r16; // (-) Q[1.31]
uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
uint32_t r19 = r13 + r18; // (-) Q[1.31]
uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
uint32_t r21 = r9 - r20; // (+) Q[2.30]
return r21;

}

Listing 3: C code

13

12

11

10

9

8

7

6

5

4

3

2

1

T a2

r0

a1

r1

S

r2

a0

r3

T T

r4

S

r5

Ta4

r6

a3

r7

r8

r9

r10

S

r11

Ta6

r12

a5

r13

T a8

r14

a7

r15

a9

r16

r17

r18

r19

r20

r21

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 11/25

The CGPE tool

Achievements and lacking features of CGPE

Features achieved by CGPE
3 validated on the ST200 core

3 so far, no ambushes were
encountered for √, 3

√, 1√ , 1
3√ · · ·

3 produced optimal schemes for some
of the above functions such as √

Features lacking in CGPE
7 simplistic description of the

underlying architecture
(ex. no handling of advanced
operators such as ST200
shift_and_add instruction)

7 the only shifts handled correspond
to the multiplication by a power of 2

7 hypotheses are made on the format
of the input coefficients

Problem: without hypotheses on the formats of the input coefficients, CGPE fails
Solution: add the handling of multiple shifts to CGPE

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 12/25

The CGPE tool

Achievements and lacking features of CGPE

Features achieved by CGPE
3 validated on the ST200 core

3 so far, no ambushes were
encountered for √, 3

√, 1√ , 1
3√ · · ·

3 produced optimal schemes for some
of the above functions such as √

Features lacking in CGPE
7 simplistic description of the

underlying architecture
(ex. no handling of advanced
operators such as ST200
shift_and_add instruction)

7 the only shifts handled correspond
to the multiplication by a power of 2

7 hypotheses are made on the format
of the input coefficients

Problem: without hypotheses on the formats of the input coefficients, CGPE fails
Solution: add the handling of multiple shifts to CGPE

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 12/25

The CGPE tool

Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]

3. leading zeros’ elimination shifts: used to gain some bits of precision

• 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

• to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Remark: to detect whether one of these shifts is needed, we rely on:
I fixed-point arithmetic rules (for case 2)
I MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

The CGPE tool

Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]

3. leading zeros’ elimination shifts: used to gain some bits of precision

• 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

• to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Remark: to detect whether one of these shifts is needed, we rely on:
I fixed-point arithmetic rules (for case 2)
I MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

The CGPE tool

Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]

3. leading zeros’ elimination shifts: used to gain some bits of precision

• 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

• to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Remark: to detect whether one of these shifts is needed, we rely on:
I fixed-point arithmetic rules (for case 2)
I MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

The CGPE tool

Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]

3. leading zeros’ elimination shifts: used to gain some bits of precision

• 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

• to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Remark: to detect whether one of these shifts is needed, we rely on:
I fixed-point arithmetic rules (for case 2)
I MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

The CGPE tool

Shift handling in CGPE

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication

2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]

3. leading zeros’ elimination shifts: used to gain some bits of precision

• 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format

4. overflow prevention shifts: used before an arithmetic operation to prevent it from
overflowing

• to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format,
both operands are shifted to the Q[2.30] format

Problem: shifts may affect the critical path, potentially increasing the latency of the DAG
Solution: use more advanced instructions to help absorb this increase

I ex: shift-and-add instruction available on some fixed-point processors like the ST231

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

Instruction selection: an extension of CGPE

Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 14/25

Instruction selection: an extension of CGPE

The problem of instruction selection

A well known problem in compilation that was proven to be NP-complete on DAGs.

Usually solved using a tiling algorithm:
I input:

• a DAG representing an arithmetic expression.
• a set of tiles, with a cost for each.
• a function that associates a cost to a subtree.

I output:
• a set of covering tiles that minimize the cost function.

+1
7

×3

x1 x2

× 3

x3 x4

((x1 · x2)+(x3 · x4))

FmaLeft3
6

x1 x2 ×3

x3 x4

FmaLeft(x1,x2,(x3 · x4))

FmaRight3
6

×3

x1 x2

x3 x4

FmaRight((x1 · x2),x3,x4)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 15/25

Instruction selection: an extension of CGPE

The problem of instruction selection

A well known problem in compilation that was proven to be NP-complete on DAGs.

Usually solved using a tiling algorithm:
I input:

• a DAG representing an arithmetic expression.
• a set of tiles, with a cost for each.
• a function that associates a cost to a subtree.

I output:
• a set of covering tiles that minimize the cost function.

+1
4

×3

x1 x2

× 3

x3 x4

((x1 · x2)+(x3 · x4))

FmaLeft3
6

x1 x2 ×3

x3 x4

FmaLeft(x1,x2,(x3 · x4))

FmaRight3
6

×3

x1 x2

x3 x4

FmaRight((x1 · x2),x3,x4)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 15/25

Instruction selection: an extension of CGPE

Remark on instruction selection

Some work in the area
Voronenko and Püschel from the Spiral group (2004):

Automatic Generation of Implementations for DSP Transforms on Fused
Multiply-Add Architectures.

3 They provide a short proof of optimality in the case of trees.

7 Their method handles FMAs in DAGs but is not generic.

We wish to integrate numerical verification in the process of instruction selection.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 16/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0

1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0 1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0 1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0 1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0 1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP()
2: TopDownSelect()
3: ImproveCSEDecision()
4: BottomUpDP()
5: TopDownSelect()

+

× +

×

a1 a2

�α

a3

a0

1

BottomUpDP()

3

4
2

5

TopDownSelect()

the progress step by step of the tiling algorithm
on the expression (a2

0 +((a1×a2)+(a3� α)))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 17/25

Instruction selection: an extension of CGPE

Instruction tiles considered in CGPE

Classical tiles
1. addition tile.
2. multiplication tile.
3. shift tile.

Advanced tiles

4. fma tiles (left and right).
5. add3 tiles (left and right).
6. shiftAdd tiles (available on the ST200 core).
7. square tile.

 add

+

multiply

×

 shift

�

fma_left

×

+

×

add3_left

+

×+

shift_add_left

+

×�

square

×

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 18/25

Instruction selection: an extension of CGPE

Instruction tiles considered in CGPE

Classical tiles
1. addition tile.
2. multiplication tile.
3. shift tile.

Advanced tiles
4. fma tiles (left and right).
5. add3 tiles (left and right).
6. shiftAdd tiles (available on the ST200 core).
7. square tile.

 add

+

multiply

×

 shift

�

fma_left

×

+

×

add3_left

+

×+

shift_add_left

+

×�

square

×

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 18/25

Instruction selection: an extension of CGPE

Simple example

Original code

uint32_t func_d9_0(uint32_t T, uint32_t S)
{

uint32_t r0 = T >> 2; // (+) Q[1.31]
uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
uint32_t r2 = mul(S, r1); // (+) Q[2.30]
uint32_t r3 = 0x00000020 + r2; // (+) Q[2.30]
uint32_t r4 = mul(T, T); // (+) Q[0.32]
uint32_t r5 = mul(S, r4); // (+) Q[1.31]
uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
uint32_t r8 = mul(r5, r7); // (-) Q[2.30]
uint32_t r9 = r3 - r8; // (+) Q[2.30]
uint32_t r10 = mul(r4, r4); // (+) Q[0.32]
uint32_t r11 = mul(S, r10); // (+) Q[1.31]
uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
uint32_t r16 = r4 >> 11; // (-) Q[1.31]
uint32_t r17 = r15 + r16; // (-) Q[1.31]
uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
uint32_t r19 = r13 + r18; // (-) Q[1.31]
uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
uint32_t r21 = r9 - r20; // (+) Q[2.30]
return r21;

}

Listing 4: Original C code

With the fma in 3 cycles and the
shift in 1 cycle

uint32_t func_tiled(uint32_t T, uint32_t S)
{

uint32_t r0 = power(T, -2);
uint32_t r1 = add(0x80000000 , r0);
uint32_t r2 = fma_right(0x00000020 , S, r1);
uint32_t r3 = square(T);
uint32_t r4 = mul(S, r3);
uint32_t r5 = mul(T, 0x07fe93e4);
uint32_t r6 = sub(0x10000000 , r5);
uint32_t r7 = mul(r4, r6);
uint32_t r8 = sub(r2, r7);
uint32_t r9 = square(r3);
uint32_t r10 = mul(S, r9);
uint32_t r11 = mul(T, 0x032d6643);
uint32_t r12 = sub(0x04eef694 , r11);
uint32_t r13 = mul(T, 0x00aebe7d);
uint32_t r14 = sub(0x01c6cebd , r13);
uint32_t r15 = power(r3, -11);
uint32_t r16 = add(r14, r15);
uint32_t r17 = fma_right(r12, r3, r16);
uint32_t r18 = mul(r10, r17);
uint32_t r19 = sub(r8, r18);
return r19;

}

Listing 5: Code after tiling

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 19/25

Instruction selection: an extension of CGPE

Simple example

Original code

uint32_t func_d9_0(uint32_t T, uint32_t S)
{

uint32_t r0 = T >> 2; // (+) Q[1.31]
uint32_t r1 = 0x80000000 + r0; // (+) Q[1.31]
uint32_t r2 = mul(S, r1); // (+) Q[2.30]
uint32_t r3 = 0x00000020 + r2; // (+) Q[2.30]
uint32_t r4 = mul(T, T); // (+) Q[0.32]
uint32_t r5 = mul(S, r4); // (+) Q[1.31]
uint32_t r6 = mul(T, 0x07fe93e4); // (+) Q[1.31]
uint32_t r7 = 0x10000000 - r6; // (-) Q[1.31]
uint32_t r8 = mul(r5, r7); // (-) Q[2.30]
uint32_t r9 = r3 - r8; // (+) Q[2.30]
uint32_t r10 = mul(r4, r4); // (+) Q[0.32]
uint32_t r11 = mul(S, r10); // (+) Q[1.31]
uint32_t r12 = mul(T, 0x032d6643); // (+) Q[1.31]
uint32_t r13 = 0x04eef694 - r12; // (-) Q[1.31]
uint32_t r14 = mul(T, 0x00aebe7d); // (+) Q[1.31]
uint32_t r15 = 0x01c6cebd - r14; // (-) Q[1.31]
uint32_t r16 = r4 >> 11; // (-) Q[1.31]
uint32_t r17 = r15 + r16; // (-) Q[1.31]
uint32_t r18 = mul(r4, r17); // (-) Q[1.31]
uint32_t r19 = r13 + r18; // (-) Q[1.31]
uint32_t r20 = mul(r11, r19); // (-) Q[2.30]
uint32_t r21 = r9 - r20; // (+) Q[2.30]
return r21;

}

Listing 6: Original C code

With the fma in 3 cycles and the
shift in 3 cycle

uint32_t func_tiled(uint32_t T, uint32_t S)
{

uint32_t r0 = fma_right(0x80000000 , T, 0x40000000);
uint32_t r1 = fma_right(0x00000020 , S, r0);
uint32_t r2 = square(T);
uint32_t r3 = mul(S, r2);
uint32_t r4 = mul(T, 0x07fe93e4);
uint32_t r5 = sub(0x10000000 , r4);
uint32_t r6 = mul(r3, r5);
uint32_t r7 = sub(r1, r6);
uint32_t r8 = square(r2);
uint32_t r9 = mul(S, r8);
uint32_t r10 = mul(T, 0x032d6643);
uint32_t r11 = sub(0x04eef694 , r10);
uint32_t r12 = mul(T, 0x00aebe7d);
uint32_t r13 = sub(0x01c6cebd , r12);
uint32_t r14 = power(r2, -11);
uint32_t r15 = add(r13, r14);
uint32_t r16 = fma_right(r11, r2, r15);
uint32_t r17 = mul(r9, r16);
uint32_t r18 = sub(r7, r17);
return r18;

}

Listing 7: Code after tiling

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 20/25

Instruction selection: an extension of CGPE

Remarks on instruction selection in CGPE

A separation is achieved between the computation of DAGs (Intermediate
Representation) and the code generation process

I the code can be generated according different criteria cost function
I this general approach allows to tackle other problems (sum, dot-product, ...)

We are not bound to use these tiles, we can add many others
I CGPE can thus serve as a platform of simulation
I this general approach allows to give

some feedback on the eventual
need or usefulness of some tiles

Gappa certificate

Numeric Filter

Output Filter

Expressions Generator

Polynomial.xml

Tiles.xml
Tiling filter

<polynomial>

 <coefficient ... >
 <coefficient ... >

 <coefficient ... >

<tiles>

</polynomial>

</tiles>

<add, cost=1, operands=2 ...>

<mul, cost=3, operands=2 ...>

<shift, cost=1, operands=1 ...>

S
te

p
 1

S
te

p
 2

C code

 ...
 ...
 ...

 ...
 ...

 <variable ... >

 ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 21/25

Instruction selection: an extension of CGPE

Remarks on instruction selection in CGPE

A separation is achieved between the computation of DAGs (Intermediate
Representation) and the code generation process

I the code can be generated according different criteria cost function
I this general approach allows to tackle other problems (sum, dot-product, ...)

We are not bound to use these tiles, we can add many others
I CGPE can thus serve as a platform of simulation
I this general approach allows to give

some feedback on the eventual
need or usefulness of some tiles

Gappa certificate

Numeric Filter

Output Filter

Expressions Generator

Polynomial.xml

Tiles.xml
Tiling filter

<polynomial>

 <coefficient ... >
 <coefficient ... >

 <coefficient ... >

<tiles>

</polynomial>

</tiles>

<add, cost=1, operands=2 ...>

<mul, cost=3, operands=2 ...>

<shift, cost=1, operands=1 ...>

S
te

p
 1

S
te

p
 2

C code

 ...
 ...
 ...

 ...
 ...

 <variable ... >

 ...

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 21/25

Conclusion and perspectives

Outline of the talk

1. The CGPE tool

2. Instruction selection: an extension of CGPE

3. Conclusion and perspectives

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 22/25

Conclusion and perspectives

Conclusion

Code synthesis for fast and certified polynomial evaluation

I fast and certified C codes, in fixed point arithmetic
I tool to automate polynomial evaluation implementation, using at best architectural

features

I implemented in the tool CGPE (Code Generation for Polynomial Evaluation)

http://cgpe.gforge.inria.fr/

Extension of CGPE based on instruction selection:

I automatic handling of all input formats.
I better usage of the advanced architectural features (such as fma, add-3,

shift-and-add, ...)
I using a tiling algorithm implies more modularity, as code generation is now an

independant process.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 23/25

http://cgpe.gforge.inria.fr/

Conclusion and perspectives

Current work and perspectives

Current work

I keep working on instruction selection in CGPE
I make CGPE more general to tackle other problems, like matrix inversion and

multiplication, ...

Further extensions of CGPE

I handle other arithmetics like floating-point arithmetic, where the fma tile is more and
more ubiquitous

I target other architectures (like FPGAs)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 24/25

Conclusion and perspectives

Current work and perspectives

Current work

I keep working on instruction selection in CGPE
I make CGPE more general to tackle other problems, like matrix inversion and

multiplication, ...

Further extensions of CGPE

I handle other arithmetics like floating-point arithmetic, where the fma tile is more and
more ubiquitous

I target other architectures (like FPGAs)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 24/25

Conclusion and perspectives

5e Rencontres Arithmétique de l’Informatique Mathématique (RAIM 2012)
Dijon, 20-22 juin 2012

Synthesis of fixed-point programs based on
instruction selection

... the case of polynomial evaluation

Amine Najahi

Advisors: Matthieu Martel and Guillaume Revy

Joint work with Christophe Mouilleron

Équipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

D
A

LI

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 25/25

	RAIM 2012
	The CGPE tool
	Instruction selection: an extension of CGPE
	Conclusion and perspectives

